
 



 1 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

 

 

 

 

Je souhaite remercier d'abord mes les enseignants Anne Tüscher, Joaquim Silvestre et François 
Guéna qui m'ont accompagné tout au long de ce parcours de mémoire. 

Ma reconnaissance va parƟculièrement à Monsieur Joaquim Silvestre, qui a joué un rôle 
fondamental dans ma compréhension du processus de recherche. Ses conseils hebdomadaires 
et son aide précieuse dans la formulaƟon de ma problémaƟque ont été déterminants, 
notamment lors des moments où je me trouvais submergé par la complexité du sujet. Son 
accompagnement rigoureux et sa paƟence m'ont permis de structurer ma pensée et de donner 
une direcƟon claire à mon travail.  

Je remercie également Madame Anne Tüscher pour son souƟen constant et ses précieux 
conseils en maƟère de rédacƟon. Sa perspicacité et ses suggesƟons m'ont permis d'affiner mon 
écriture et de présenter mes idées avec plus de clarté et de précision. Son experƟse dans la 
structuraƟon du mémoire a été inesƟmable. 

Je souhaite aussi remercier Monsieur François Guéna pour sa contribuƟon significaƟve durant 
l'année 2023/2024. 

Malgré la distance géographique durant mon erasmus en Belgique, ces trois professeurs ont 
maintenu un suivi régulier et aƩenƟf de mon travail à travers nos sessions en visioconférence. 
Leur engagement et leur disponibilité ont été essenƟels à la réalisaƟon de ce mémoire. 

L'année 2024/2025 a été parƟculièrement enrichissante grâce au suivi hebdomadaire de 
Joaquim Silvestre et Anne Tüscher. Leur complémentarité – M.Silvestre pour les aspects 
scienƟfiques et méthodologiques de la recherche, Mme. Tüscher pour la rigueur rédacƟonnelle 
- a été déterminante dans l'abouƟssement de ce travail. 

Ce mémoire n'aurait pas pu voir le jour sans leur encadrement bienveillant et leur experƟse. 
Leurs conseils, leurs encouragements et leur paƟence ont été les piliers de ma réussite dans 
ceƩe entreprise académique. 

Je Ɵens à souligner que la qualité de ce travail doit beaucoup à leur invesƟssement personnel 
et à leur capacité à me guider tout en me laissant développer ma propre réflexion. La 
réalisaƟon de ce mémoire n'aurait tout simplement pas été possible sans leur 
accompagnement précieux. 

 

 

 



 3 

Avant-propos 

 

Mon parcours en architecture, iniƟé à l'ENSA Paris La VilleƩe puis enrichi par une année de 
master à KU Leuven à Bruxelles avant mon retour à ENSA, m'a progressivement amené à 

m'intéresser à l'intersecƟon entre l'architecture et l'intelligence arƟficielle. CeƩe curiosité est 
née d'une volonté de comprendre et de maîtriser les nouvelles technologies qui transforment 

notre profession. 

 

L'émergence de l'intelligence arƟficielle²⁶ dans le domaine de l'architecture représentait pour 
moi un territoire inexploré, un défi intellectuel sƟmulant. Mon choix de me concentrer sur ce 
sujet était moƟvé par le désir d'acquérir une compréhension approfondie de ces ouƟls tout 

en les reliant directement à ma praƟque architecturale. Ma spécialisaƟon dans l'architecture 
résidenƟelle pendant mes études m'a naturellement conduit à m'intéresser à la généraƟon 
automaƟque de plans d'étage par l'IA, et plus parƟculièrement par les réseaux antagonistes 

généraƟfs (GANs¹⁹). 

 

Au fil de mes recherches, ma curiosité iniƟale s'est transformée en une quête plus précise : 
comprendre les mécanismes qui déterminent la qualité des plans générés par l'IA. CeƩe 

exploraƟon m'a mené vers l'étude des jeux de données (datasets) et de leur influence sur le 
processus de généraƟon, révélant des relaƟons complexes et parfois paradoxales entre la 

diversité des données et la qualité des résultats. 

 

La relaƟve nouveauté du sujet a consƟtué à la fois un défi et une opportunité. Le manque de 
recherches directement liées à ma problémaƟque m'a poussé à adopter une approche 

transversale, puisant dans diverses sources pour construire une compréhension cohérente du 
sujet. CeƩe démarche m'a permis de développer une perspecƟve unique sur la relaƟon entre 

données et concepƟon architecturale. 

 

Une des découvertes les plus marquantes de ce travail fut de constater que la qualité des 
plans générés ne dépend pas uniquement du volume de données disponibles, mais d'une 

interacƟon complexe entre plusieurs facteurs. CeƩe révélaƟon a profondément influencé ma 
compréhension du potenƟel et des limites de l'IA en architecture. 

 

Je souhaite maintenant partager les résultats de ceƩe recherche, espérant qu'ils 
contribueront à une meilleure compréhension de l'uƟlisaƟon de l'IA dans la concepƟon 

architecturale et ouvriront de nouvelles perspecƟves pour l'évoluƟon de notre profession. 
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Résumé 

 

Ce mémoire explore l'influence de la diversité des données dans les datasets dans la concepƟon 
architecturale assistée par intelligence arƟficielle, en se concentrant parƟculièrement sur la 
généraƟon de plans d'étage résidenƟels. l'IA transforme progressivement les praƟques 
architecturales, la quesƟon de la qualité et de la diversité des données au sein des jeux 
d'apprenƟssage devient fondamentale pour le développement d'ouƟls de concepƟon efficaces 
et perƟnents. 

 

À travers une analyse approfondie de trois papiers de recherche concernant les datasets 
majeurs - CubiCasa5K (5 000 plans), House-GAN (65 636 plans) et Graph2Plan (120 000 plans) 
- ceƩe recherche met en lumière la relaƟon complexe entre la diversité des données au sein 
d'un même dataset et la performance des systèmes d'ApprenƟssage AutomaƟque³ en 
architecture. L'étude révèle notamment un paradoxe intéressant entre le volume des données 
et leur précision technique. 

 

L'analyse comparaƟve des différentes approches de structuraƟon des données architecturales 
au sein des datasets permet d'idenƟfier leurs forces et limitaƟons actuelles. CeƩe recherche 
souligne notamment l'importance significaƟve des AnnotaƟons¹ techniques et de la 
contextualisaƟon environnementale dans les données, tout en révélant les défis persistants 
liés à la gesƟon de la complexité programmaƟque. L'étude met également en évidence les 
limites actuelles. 

 

Les résultats de ceƩe étude contribuent à une meilleure compréhension des facteurs 
influençant la qualité des plans générés par IA et ouvrent des perspecƟves pour le 
développement de données architecturales plus perƟnentes au sein des datasets. CeƩe 
recherche propose également des recommandaƟons concrètes pour l'évoluƟon future des 
ouƟls d'aide à la concepƟon architecturale, visant un meilleur équilibre entre volume, précision 
technique et diversité contextuelle des données. Elle suggère notamment une approche 
hybride combinant les avantages des différentes méthodes de structuraƟon des données pour 
opƟmiser la généraƟon de plans. 

Mots-clés : 

Dataset(jeux de données), GANs¹⁹, Intelligence arƟficielle, ApprenƟssage AutomaƟque³ , 
ConcepƟon architecturale(plans de bâƟments résidenƟels), Diversité des données, 
GénéraƟon automaƟque, Datasets : CubiCasa5K, House-GAN, Graph2Plan 

 
Dataset (Jeux de Données) :Un dataset, ou ensemble de données, est une collecƟon d'informaƟons organisées que l'on uƟlise pour entraîner et tester des modèles d'intelligence 

arƟficielle.Par exemple, un dataset d'images de chats et de chiens peut servir à apprendre à un modèle à disƟnguer ces deux animaux. Les datasets sont essenƟels en IA car 

ils fournissent les exemples à parƟr desquels les modèles peuvent extraire des paƩerns et des connaissances. 
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Abstract 

 

This thesis explores the influence of data diversity in datasets on AI-assisted architectural 
design, with a parƟcular focus on the generaƟon of residenƟal floor plans. At a Ɵme when AI 
is gradually transforming architectural pracƟces, the quesƟon of data quality and diversity 
within learning sets becomes fundamental for the development of effecƟve and relevant 

design tools. 

 

Through an in-depth analysis of three major datasets - CubiCasa5K (5,000 plans), House-GAN 
(65,636 plans), and Graph2Plan (120,000 plans) - this research highlights the complex 
relaƟonship between data diversity within a dataset and the performance of machine 

learning systems in architecture. The study reveals an interesƟng paradox between data 
volume and technical precision. 

 

The comparaƟve analysis of different approaches to structuring architectural data within 
datasets enables the idenƟficaƟon of their current strengths and limitaƟons. This research 

parƟcularly emphasizes the significant importance of technical AnnotaƟons¹¹ and 
environmental contextualizaƟon in the data, while revealing persistent challenges related to 

managing programmaƟc complexity. The study specifically highlights current limitaƟons. 

 

The results of this study contribute to a beƩer understanding of the factors influencing the 
quality of AI-generated plans and open up perspecƟves for the development of more relevant 

architectural data within datasets. This research also proposes concrete recommendaƟons 
for the future evoluƟon of architectural design tools, aiming for a beƩer balance between 
volume, technical precision, and contextual diversity of data. It notably suggests a hybrid 

approach combining the advantages of different data structuring methods to opƟmize plan 
generaƟon. 

 

Key words : 

Architectural dataset, GANs¹⁹, ArƟficial intelligence, Machine learning, Architectural design, 
Floor plans, Data diversity, AutomaƟc generaƟon, datasets: CubiCasa5K, House-GAN, 

Graph2Plan 
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I. IntroducƟon  
1.1 Contexte de la recherche 
1.1.1 ÉvoluƟon historique de l'uƟlisaƟon des technologies en architecture 
 

L'intégraƟon de la technologie dans le domaine de l'architecture n'est pas un phénomène 
récent. Depuis des siècles, les architectes ont cherché à opƟmiser leurs processus de 
concepƟon et à repousser les limites de ce qui est possible en maƟère de construcƟon. 

Au 15ème siècle, l'invenƟon de la perspecƟve linéaire par Filippo Brunelleschi a révoluƟonné 
la représentaƟon architecturale, permeƩant une visualisaƟon plus précise des espaces 
tridimensionnels. CeƩe avancée a marqué le début d'une longue histoire d'innovaƟons 
technologiques en architecture. 

L'ère industrielle du 19ème siècle a apporté de nouveaux matériaux et techniques de 
construcƟon, transformant radicalement les possibilités architecturales. L'uƟlisaƟon de l'acier 
et du verre a permis la créaƟon de structures plus hautes et plus légères, comme en témoigne 
le Crystal Palace de Joseph Paxton en 1851. 

Le 20ème siècle a vu l'émergence de l'informaƟque dans le domaine de l'architecture. Dans 
les années 1960, les premiers logiciels de ConcepƟon Assistée par Ordinateur (CAO¹¹) ont fait 
leur appariƟon, ouvrant la voie à une nouvelle ère de concepƟon numérique. Des pionniers 
comme Ivan Sutherland, avec son système Sketchpad en 1963, ont posé les bases de 
l'interacƟon homme-machine dans la concepƟon architecturale. 

Les années 1980 et 1990 ont vu l'adopƟon généralisée des logiciels de CAO¹¹ dans les cabinets 
d'architecture, transformant radicalement les processus de concepƟon et de documentaƟon. 
Des architectes comme Frank Gehry ont commencé à explorer les possibilités offertes par la 
modélisaƟon 3D avancée, ouvrant la voie à des formes architecturales plus complexes et 
organiques. 

 
Figure 1  illustraƟon de l'évoluƟon des technologies en architecture 
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1.1.2 Émergence de l'IA dans la concepƟon architecturale 
L'avènement du 21ème siècle a marqué le début d'une nouvelle ère dans le domaine de 
l'architecture, caractérisée par l'émergence de l'intelligence arƟficielle²⁶ et de l'apprenƟssage 
automaƟque. CeƩe évoluƟon s'inscrit dans la conƟnuité de la numérisaƟon du processus de 
concepƟon, mais représente un saut qualitaƟf majeur en termes de possibilités et 
d'autonomie des ouƟls de concepƟon. 

Les systèmes d'ApprenƟssage AutomaƟque³ , englobant diverses techniques telles que les 
réseaux de neurones⁴² profonds, l'apprenƟssage par renforcement et les modèles généraƟfs, 
ont ouvert de nouvelles perspecƟves dans la concepƟon architecturale. Ces technologies 
avancées permeƩent aujourd'hui la généraƟon automaƟsée²² de plans à parƟr de jeux de 
données spécifiques, communément appelés datasets. 

Selon une étude menée par Loyola et al. (2019), les modèles d'ApprenƟssage AutomaƟque³  
ont démontré une efficacité remarquable dans la créaƟon de plans d'étage pour des 
bâƟments résidenƟels. Ces systèmes sont capables de produire des designs innovants tout en 
respectant les contraintes architecturales. Les auteurs soulignent que ces technologies ont le 
potenƟel de révoluƟonner les processus de concepƟon architecturale en offrant des soluƟons 
rapides et créaƟves à des problèmes complexes de design. 

Par ailleurs, Nagy et al. (2018) ont mis en évidence l'uƟlisaƟon de l'ApprenƟssage 
AutomaƟque³  pour opƟmiser la planificaƟon spaƟale dans les bâƟments de bureaux. Leur 
recherche démontre comment ces technologies peuvent être appliquées pour générer des 
layouts efficaces tout en prenant en compte de mulƟples critères de performance. 

Ces avancées dans l'applicaƟon de l'IA à l'architecture ne se limitent pas à la généraƟon de 
plans. Comme le soulignent Pedro et al. (2022), l'ApprenƟssage AutomaƟque³  est également 
uƟlisé pour l'analyse prédicƟve des performances des bâƟments, l'opƟmisaƟon énergéƟque, 
et même l'assistance à la prise de décision dans les phases précoces de la concepƟon. 

 

 

Figure 2 Une représentaƟon visuelle liée à l'émergence de l'IA dans la concepƟon architecturale 
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1.1.3 Importance croissante des datasets dans le processus de concepƟon 

La qualité et la perƟnence des plans générés par ces systèmes d'IA dépendent fortement de 
la nature et de la diversité des données dans le dataset uƟlisés lors de la phase 
d'ApprenƟssage AutomaƟque³. Ces jeux de données ont un rôle fondamental, comparable à 
celui d'une "connaissance" pour le système d'IA. Ils fournissent les informaƟons essenƟelles 
qui guident et façonnent le processus d'apprenƟssage, influençant directement la capacité du 
système à produire des designs architecturaux cohérents et foncƟonnels. 

La composiƟon de ces datasets est d'une importance capitale. Ils peuvent inclure une variété 
d'éléments tels que : 

 Des plans d'étage existants 

 Des images de bâƟments et d'intérieurs 

 Des données vectorielles représentant des structures architecturales 

 Des informaƟons sur les normes de construcƟon et les réglementaƟons urbaines 

 Des données contextuelles sur l'environnement et le climat 

 

La diversité et la richesse de ces données influencent directement la capacité des systèmes 
d'IA et GANs¹⁹(GeneraƟve Adversarial Networks - Réseaux antagonistes généraƟfs) à générer 
des plans qui non seulement respectent les normes architecturales, mais aussi intègrent des 
considéraƟons esthéƟques, foncƟonnelles et environnementales. 

 

Il est important de noter, comme l'a souligné Antonio Casilli lors du symposium "Assembling 
Intelligence" en 2024, que ces datasets ne sont pas simplement des ressources gratuites et 
facilement accessibles. Leur créaƟon et leur curaƟon nécessitent un travail considérable de 
collecte, de neƩoyage et d'organisaƟon des données. Ce processus implique souvent la 
contribuƟon, consciente ou non, de nombreux acteurs à travers le monde, rendant ces 
datasets aussi précieux que complexes à élaborer. 

 

  

Figure 3 Une illustraƟon démontrant l'importance des datasets dans le processus de concepƟon architecturale.   
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1.2 ProblémaƟque 
1.2.1 FormulaƟon de la quesƟon de recherche 
CeƩe recherche examine l'influence de la diversité des données dans les datasets ,dans la 
généraƟon automaƟque de plans d'étage ; en s'appuyant sur l'analyse approfondie de trois 
papiers de recherche majeurs : CubiCasa5K, House-GAN et Graph2Plan. Ces trois cas d'étude, 
choisis pour leurs méthodologies disƟnctes, permeƩent d'explorer différentes dimensions de 
la diversité des données et leurs impacts sur la qualité des plans générés. 

La quesƟon centrale qui guide ceƩe recherche est : 

Comment la diversité des données dans les datasets influence-t-elle la généraƟon 
automaƟque de plans d'étage ? Une analyse comparaƟve de trois papiers de 
recherche(CubiCasa5K, House-GAN et Graph2Plan). 

CeƩe quesƟon principale se décline en plusieurs sous-quesƟons : 

1. Comment les différentes approches de structuraƟon des données (annotaƟon 
d'images, graphes relaƟonnels) influencent-elles la qualité des résultats ? 

2. Quel est l'impact relaƟf du volume de données par rapport à leur qualité d'annotaƟon 
? 

3. Comment la diversité des données affecte-t-elle la capacité d'adaptaƟon des systèmes 
aux différents contextes architecturaux ? 

4. Quelles sont les forces et limites spécifiques de chaque approche étudiée ? 

 

1.2.2 Enjeux et implicaƟons pour le domaine de l'architecture 
 

L'analyse comparaƟve de ces trois approches majeures relève une importance parƟculière 
pour plusieurs raisons, elle permet d'examiner comment différentes méthodologies de 
structuraƟon des données influencent la qualité des plans générés. 

CeƩe analyse contribue à une meilleure compréhension des facteurs criƟques dans le 
développement de systèmes d'IA pour l'architecture, en idenƟfiant les éléments clés qui 
influencent la qualité des plans générés. 

Ces enjeux sont importants pour guider le développement futur des ouƟls d'aide à la 
concepƟon architecturale afin pour opƟmiser l'uƟlisaƟon de l'IA dans la praƟque 
architecturale. 
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1.3 ObjecƟfs de la recherche 
 

CeƩe recherche vise à comprendre l'importance de la diversité des données dans les datasets 
sur la généraƟon automaƟque de plans d'étage résidenƟels. L'étude s'arƟcule autour de trois 
objecƟfs principaux. 

Le premier objecƟf consiste à analyser l'impact des différentes approches de structuraƟon des 
données. CeƩe analyse permet de meƩre en lumière l'importance relaƟve des annotaƟons¹ 
détaillées, des représentaƟons en graphe et de l'approche volumétrique dans la généraƟon 
de plans architecturaux. 

Le deuxième objecƟf se concentre sur l'évaluaƟon de la relaƟon entre volume et qualité des 
données. La comparaison des performances peut potenƟellement révéler des relaƟons 
parfois contre-intuiƟves entre la quanƟté de données disponibles et la qualité des plans 
produits. CeƩe évaluaƟon s'aƩache parƟculièrement à idenƟfier les facteurs clés qui 
influencent la généraƟon de plans architecturalement viables. 

Le troisième objecƟf vise à formuler des recommandaƟons pour le développement futur des 
datasets architecturaux. L'analyse comparaƟve permet d'établir des critères d'évaluaƟon de 
la diversité des données et d'idenƟfier les meilleures praƟques pour leur structuraƟon. Ces 
recommandaƟons s'appuient sur une synthèse des forces et faiblesses observées dans chaque 
approche étudiée. 

 

1.4 Hypothèse principale 
 

1.4.1 Énoncé de l'hypothèse 
 

L'hypothèse centrale de ceƩe recherche est que, la capacité d'un système d'intelligence 
arƟficielle²⁶ à générer des plans architecturalement perƟnents, dépend de sa capacité à 
"absorber" et "reproduire" les qualités architecturales présentes dans son dataset 
d'apprenƟssage. CeƩe capacité de transfert est influencée par le volume des données, ainsi 
que par leur richesse qualitaƟve et leur diversité. 

Pour illustrer ceƩe idée, imaginons une bibliothèque. Une bibliothèque avec 1000 copies du 
même livre ne permeƩrait pas d'apprendre autant qu'une bibliothèque plus peƟte contenant 
100 livres différents, chacun offrant des connaissances uniques et complémentaires. De la 
même manière, un système d'IA apprendra mieux de 100 plans variés et bien documentés que 
de 1000 plans similaires et peu détaillés. 
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1.4.2 JusƟficaƟon de l'hypothèse 
 

CeƩe hypothèse trouve son fondement dans plusieurs observaƟons préliminaires issues de 
l'analyse des systèmes actuels. Les performances observées montrent systémaƟquement une 
amélioraƟon significaƟve lorsque les systèmes sont entraînés sur des données bien annotées 
et documentées. La qualité des plans générés apparaît plus étroitement liée à la richesse des 
informaƟons disponibles qu'au nombre brut de plans dans le dataset. CeƩe observaƟon est 
parƟculièrement visible dans les cas où les systèmes, entraînés sur des datasets de taille 
modeste mais variés, parviennent à produire des soluƟons plus adaptables et perƟnentes que 
ceux uƟlisant des datasets plus volumineux mais moins diversifiés. 

 

1.4.3 implicaƟons de l'hypothèse 
 

La validaƟon de ceƩe hypothèse entraînerait des conséquences significaƟves pour le 
développement futur des ouƟls d'aide à la concepƟon architecturale. CeƩe approche implique 
un travail de documentaƟon et de diversificaƟon des types de projets inclus dans les données 
d'apprenƟssage. Pour la praƟque architecturale, ces résultats ouvriraient la voie à des ouƟls 
plus performants, développés à parƟr de datasets plus modestes mais mieux structurés. CeƩe 
perspecƟve souligne l'importance d'une collaboraƟon étroite entre architectes et 
développeurs d'intelligence arƟficielle, où l'experƟse architecturale jouerait un rôle important 
dans la curaƟon et l'organisaƟon des données d'apprenƟssage. 

 

 

 
 

Figure 4  un schéma illustrant l'apprenƟssage par dataset dans le domaine de l'architecture. Au 
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II. État de l'art 
 

 
 

Figure 5  Une illustraƟon d’un aperçu global de l'état de l'art dans le domaine 



 17 

2.1 ÉvoluƟon des approches d'IA en concepƟon architecturale : vers les 
systèmes généraƟfs 
L'évoluƟon de l'intelligence arƟficielle²⁶ dans la concepƟon architecturale peut être comprise 
comme un développement progressif marqué par plusieurs phases disƟnctes, allant des 
fondements théoriques aux applicaƟons praƟques contemporaines. CeƩe évoluƟon reflète 
non seulement les avancées technologiques mais aussi une compréhension croissante de la 
façon dont l'IA peut enrichir le processus de concepƟon architecturale. 

2.1.1 Des premières expérimentaƟons aux réseaux de neurones 
L'intégraƟon de l'intelligence arƟficielle²⁶ dans la concepƟon architecturale a connu une 
évoluƟon significaƟve, passant d'approches déterministes à des systèmes d'apprenƟssage de 
plus en plus sophisƟqués. 

Les années 1970 marquent les premières tentaƟves de formalisaƟon avec l'introducƟon des 
"shape grammars" par SƟny et Gips. CeƩe approche pionnière visait à codifier les principes de 
concepƟon architecturale en règles formelles, comme illustré par leur travail sur la grammaire 
palladienne. Bien que novatrice, ceƩe méthode restait limitée par sa rigidité et son caractère 
déterministe. 

Un tournant majeur s'opère dans les années 1990 avec l'émergence des réseaux de 
neurones⁴² convoluƟfs (CNN) appliqués à l'analyse architecturale. Ces systèmes, iniƟalement 
conçus pour l'interprétaƟon d'images, ont permis une avancée significaƟve dans la 
classificaƟon automaƟque d'éléments architecturaux. Cependant, leur applicaƟon directe à la 
généraƟon de plans restait limitée, produisant souvent des résultats "visuellement 
impressionnants mais foncƟonnellement incohérents". 

2.1.2 L'applicaƟon des réseaux de neurones  
 

Les années 1990 représentent une phase importante avec l'appariƟon des réseaux de 
neurones⁴² convoluƟfs (CNN) appliqués à l’analyse et à la généraƟon de plans architecturaux. 
IniƟalement conçus pour l’interprétaƟon d’images complexes, les CNNs ont permis une 
avancée majeure dans la classificaƟon automaƟque d’éléments visuels spécifiques dans des 
plans d’étage (SculpƟng Spaces of Possibility, p.19). 

Les CNNs(Les réseaux de neurones⁴² convoluƟfs), inspirés du foncƟonnement du cerveau 
humain, sont consƟtués de couches hiérarchiques de neurones arƟficiels capables de détecter 
des moƟfs visuels complexes à différentes échelles. CeƩe capacité à extraire des 
caractérisƟques abstraites d'images a ouvert la voie à une meilleure interprétaƟon des plans 
architecturaux, mais également à leur généraƟon automaƟsée²² (SculpƟng Spaces of 
Possibility, p.19). 

Une applicaƟon majeure a été le développement de systèmes capables de détecter des 
schémas spaƟaux complexes dans les plans architecturaux, améliorant ainsi l’automaƟsaƟon 
de l’analyse spaƟale et géométrique. Comme le souligne Daniel Cardoso Llach : 
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"Les CNN ont jeté les bases pour des systèmes plus avancés, capables d’analyser les espaces 
complexes représentés dans les plans architecturaux" (SculpƟng Spaces of Possibility, p.20). 

Cependant, malgré ces avancées, l'applicaƟon directe des CNNs à la concepƟon généraƟve 
restait limitée. Les modèles produisaient souvent des résultats "visuellement impressionnants 
mais foncƟonnellement incohérents" (SculpƟng Spaces of Possibility, p.20).  

Bien que les GANs¹⁹ (réseaux antagonistes généraƟfs) soient devenus plus largement 
populaires après 2010, les travaux de Stanislas Chaillou sur l’intégraƟon des GANs¹⁹ en 
architecture trouvent leurs racines dans les défis posés par les approches basées sur les CNNs. 

Dans sa thèse "AI + Architecture: Towards a New Approach" (2019), Chaillou présente une 
analyse approfondie des limites des modèles tradiƟonnels et explique comment les GANs¹⁹ 
offrent une alternaƟve pour combiner ApprenƟssage AutomaƟque³ , généraƟon de contenu 
visuel et interacƟon uƟlisateur (AI + Architecture, p.419). 

Il met en évidence que les GANs¹⁹ permeƩent une approche plus souple et interacƟve pour la 
généraƟon de plans architecturaux. Leur architecture en couches permet de décomposer la 
concepƟon en étapes disƟnctes mais interconnectées, rendant le processus de généraƟon 
plus transparent et modulable (AI + Architecture, p.423). 

"Les GANs¹⁹ facilitent une interacƟon bidirecƟonnelle entre l'humain et l'algorithme, créant 
ainsi une véritable collaboraƟon dans le processus de concepƟon architecturale" (AI + 
Architecture, p.421). 

Ces premières applicaƟons des réseaux neuronaux posent ainsi les bases pour les systèmes 
hybrides développés dans les années suivantes, où les GANs¹⁹ jouent un rôle central dans la 
modélisaƟon généraƟve architecturale.  

L'introducƟon des réseaux antagonistes généraƟfs (GANs¹⁹) en 2014 a marqué une révoluƟon 
dans l'approche de la généraƟon automaƟque de plans. Ces systèmes, basés sur la 
compéƟƟon entre un réseau générateur²¹ et un réseau discriminateur¹⁶, ont ouvert de 
nouvelles possibilités dans la créaƟon de designs architecturaux cohérents. 

2.1.3 Des approches contemporaines 
CeƩe évoluƟon technologique a conduit au développement de trois approches majeures, qui 
consƟtuent le cœur de l’analyse : 

 CubiCasa5K (2019), qui privilégie la qualité des AnnotaƟons¹ et la précision technique 

 House-GAN (2020), qui introduit une approche relaƟonnelle basée sur les graphes 

 Graph2Plan (2020), qui exploite un large volume de données pour améliorer la 
généraƟon 

Ces trois approches, bien que développées dans un intervalle de temps relaƟvement court, 
représentent des philosophies disƟnctes dans l'uƟlisaƟon des données pour la généraƟon 
automaƟque de plans d'étage. Leur analyse comparaƟve permet de comprendre les 
différentes stratégies possibles pour aborder la complexité de la concepƟon architecturale 
assistée par IA. 
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2.1.4 ImplicaƟons et perspecƟves 
 

CeƩe évoluƟon historique montre un passage progressif des approches basées sur des règles 
vers des systèmes plus flexibles et adaptaƟfs. Comme le souligne Cardoso Llach (p.19-20), un 
aspect crucial de ceƩe évoluƟon est la reconnaissance que les données architecturales ne 
sont pas neutres mais consƟtuent des artefacts culturels ancrés dans des contextes sociaux 
et matériels spécifiques. 

Les développements récents suggèrent une tendance vers des systèmes hybrides qui 
combinent différentes techniques pour répondre à la complexité de la concepƟon 
architecturale. Ces systèmes ne visent plus simplement à automaƟser la concepƟon, mais 
cherchent à intégrer les aspects culturels et contextuels de l'architecture, ouvrant ainsi la voie 
à une nouvelle ère de concepƟon architecturale assistée par l'IA. 

 

2.2 Développement et uƟlisaƟon de datasets en architecture 
2.2.1 ÉvoluƟon et enjeux des datasets architecturaux 
L'émergence des approches d'ApprenƟssage Profond⁴ en architecture a mis en évidence un 
besoin : celui de disposer de bases de données architecturales suffisamment vastes et 
richement annotées pour entraîner des modèles performants. CeƩe problémaƟque est 
parƟculièrement bien illustrée dans l'évoluƟon récente des datasets dédiés à l'analyse et à la 
généraƟon de plans d'architecture. 

Un tournant majeur dans ce domaine a été marqué par l'introducƟon du dataset CubiCasa5K. 
Comme le soulignent Kalervo et al., "il existe un manque évident de datasets représentaƟfs 
pour approfondir la recherche" en maƟère d'analyse automaƟque des plans d'architecture. 
Pour répondre à ce besoin, les chercheurs ont développé "le plus grand dataset de plans 
d'étage annoté disponible publiquement", comprenant "5000 échanƟllons annotés dans plus 
de 80 catégories d'objets de plans d'étage" ("CubiCasa5K", p.28). CeƩe iniƟaƟve marque une 
étape importante dans la consƟtuƟon de ressources dédiées à l'ApprenƟssage AutomaƟque³  
en architecture. 

2.2.2 Diversité des approches dans la consƟtuƟon des datasets 
La diversité des approches méthodologiques dans la consƟtuƟon des datasets architecturaux 
reflète la complexité des enjeux du domaine. Ces approches peuvent être classées en trois 
grandes catégories : la collecte et l'annotaƟon de plans existants, la généraƟon paramétrique 
de données synthéƟques, et les approches hybrides combinant données réelles et générées. 

Une contribuƟon majeure dans le domaine de la généraƟon synthéƟque vient des travaux de 
Raban Ohlhoff (2022). Sa méthodologie novatrice combine "la généraƟon de plans 
d'appartements paramétriques via Python et Sverchok pour Blender" avec "l'uƟlisaƟon 
d'algorithmes généƟques pour l'opƟmisaƟon des designs". L'uƟlisaƟon de la bibliothèque 
Python Topologic pour l'analyse géométrique des configuraƟons spaƟales ajoute une 
dimension analyƟque importante à ceƩe approche. CeƩe méthodologie ouvre des 
perspecƟves promeƩeuses pour la créaƟon de datasets diversifiés et contrôlés. 
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Dans une perspecƟve différente mais complémentaire, les travaux d'Asma Ghalamchi et Birgül 
Çolakoğlu (2020) démontrent l'importance de la diversité des données dans le contexte des 
GANs¹⁹. Leur uƟlisaƟon d'un "dataset de 50,000 plans de maisons" représente une des plus 
grandes collecƟons de données dans ce domaine. Leur recherche établit un lien direct entre 
la diversité des données dans le dataset et la créaƟvité des designs générés par IA, soulignant 
l'importance de la variété des données d'apprenƟssage. 

Les travaux de Hao Zheng et Weixin Huang apportent un éclairage parƟculièrement 
intéressant sur l'efficacité des datasets de taille modeste mais bien structurés. Leur recherche 
avec PIX2PIXHD, uƟlisant un dataset de seulement 100 plans d'appartements soigneusement 
annotés, démontre qu'une annotaƟon précise peut compenser un volume limité de données. 
Leur système de codage couleur sophisƟqué, où "le rouge représente les circulaƟons, le vert 
les chambres, le bleu les séjours", illustre l'importance d'une structuraƟon claire et cohérente 
des données. 

2.2.3 Qualité versus quanƟté : un débat central 
La quesƟon de l'équilibre entre qualité et quanƟté des données consƟtue un débat central 
dans le développement des datasets architecturaux. Comme le souligne Daniel Cardoso Llach, 
"la qualité et l'élaboraƟon du dataset sont plus importantes que sa taille" ("SculpƟng spaces 
of possibility", p.20). CeƩe posiƟon est parƟculièrement perƟnente dans le contexte des 
applicaƟons architecturales spécialisées, où un "peƟt dataset de gestes soigneusement 
élaborés peut être plus efficace qu'une grande quanƟté de données mal structurées". 

CeƩe approche qualitaƟve trouve un écho dans les travaux de Pedro Veloso, qui conceptualise 
le dataset comme un ouƟl pédagogique. Selon lui, "un dataset éƟqueté avec des paires 
d'entrées et de sorƟes foncƟonne comme un instructeur pour indiquer au modèle quelles 
foncƟons approximer" ("Mapping generaƟve models", p.31). CeƩe vision du dataset comme 
"instructeur" souligne l'importance d'une structuraƟon réfléchie des données 
d'apprenƟssage. 

Les travaux de Stanislas Chaillou sur ArchiGAN illustrent parfaitement ceƩe approche 
qualitaƟve. En uƟlisant un dataset de 800 plans d'appartements soigneusement sélecƟonnés, 
il démontre qu'un "corpus d'apprenƟssage bien structuré permet non seulement d'améliorer 
la qualité des généraƟons, mais aussi d'assurer une meilleure cohérence architecturale des 
résultats" ("AI + Architecture", p.424).     

2.2.4 Méthodologies d'annotaƟon et de validaƟon 
 

La qualité des AnnotaƟons¹ consƟtue un enjeu fondamental dans le développement des 
datasets architecturaux. Le dataset CubiCasa5K illustre parƟculièrement bien ceƩe 
préoccupaƟon à travers son protocole d'annotaƟon³⁷ rigoureux qui "décrit l'ordre 
d'annotaƟon des éléments" et uƟlise "toutes les informaƟons disponibles des éléments 
précédemment annotés" ("CubiCasa5K", p.32). CeƩe approche méthodique garanƟt une 
cohérence globale dans l'annotaƟon des données. 
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L'importance de la validaƟon des AnnotaƟons¹ est également mise en évidence par le 
processus d'assurance qualité en deux étapes introduit dans CubiCasa5K. Comme l'expliquent 
les auteurs, "Le premier tour est effectué par l'annotateur [...] Le second tour est effectué par 
une personne différente" ("CubiCasa5K", p.32). CeƩe double vérificaƟon représente une 
innovaƟon significaƟve dans la validaƟon des datasets architecturaux. 

2.2.5PerspecƟves et défis futurs 
Le développement des datasets architecturaux fait face à plusieurs défis majeurs. Comme le 
souligne Theodoros Galanos, "la capacité de ces modèles à prédire les performances avec 
précision est difficile et hautement dépendante de la diversité du dataset d'entraînement". 
CeƩe observaƟon met en lumière la nécessité de développer des datasets qui reflètent non 
seulement la diversité des soluƟons architecturales possibles, mais aussi la complexité des 
contraintes contextuelles. 

Cardoso Llach rappelle par ailleurs que "les données ne sont jamais neutres - ce sont des 
artefacts culturels situés dans des contextes sociaux et matériels" ("SculpƟng spaces of 
possibility", p.19). CeƩe perspecƟve souligne l'importance d'une approche criƟque dans la 
consƟtuƟon des datasets, qui doit prendre en compte non seulement les aspects techniques 
mais aussi les dimensions culturelles et sociales de l'architecture. 

L'avenir des datasets architecturaux semble ainsi s'orienter vers une intégraƟon plus poussée 
des différentes approches, combinant la richesse des données réelles, la flexibilité des 
données synthéƟques, et la rigueur des protocoles d'annotaƟon. CeƩe évoluƟon devra 
également prendre en compte les quesƟons éthiques et culturelles soulevées par l'uƟlisaƟon 
croissante de l'IA en architecture, tout en maintenant un équilibre entre innovaƟon 
technologique et respect des praƟques architecturales tradiƟonnelles. 
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2.3 ApplicaƟons commerciales et praƟques 
2.3.1 Cas d'étude : TestFit.io 
 

TestFit.io, fondé par CliŌon Harness en 2015, représente une approche innovante dans 
l'uƟlisaƟon de l'intelligence arƟficielle²⁶ et des datasets pour la concepƟon architecturale et 
le développement immobilier. Les points clés de leur approche incluent : 

UƟlisaƟon d'algorithmes généraƟfs et de règles basées sur l'IA pour créer rapidement des 
concepts de bâƟments.IntégraƟon de vastes datasets comprenant des codes de construcƟon, 
des réglementaƟons zonales, et des paramètres de concepƟon architecturale. 

Capacité à générer et à évaluer des milliers de scénarios de concepƟon en quelques secondes, 
en tenant compte de contraintes complexes.TestFit se disƟngue par sa capacité à combiner 
des données provenant de mulƟples sources pour créer des designs architecturaux qui 
répondent à des critères spécifiques de faisabilité, de rentabilité et de conformité 
réglementaire. Leur approche démontre l'importance de datasets diversifiés et constamment  

mis à jour dans la concepƟon architecturale assistée par IA.Un aspect parƟculièrement 
perƟnent pour l’étude est la manière dont TestFit uƟlise des datasets dynamiques, intégrant 
des informaƟons en temps réel sur les réglementaƟons locales, les tendances du marché, et 
les préférences des uƟlisateurs. Cela illustre comment la diversité et l'actualité des datasets 
peuvent influencer directement la qualité et la perƟnence des designs architecturaux générés. 

 

 

 

  
Figure 6 VariaƟon d'aménagement de parking n°1 générée par TestFit.io                   Figure 7 VariaƟon d'aménagement de parking n°2 générée par TestFit.io 
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2.4 ConsidéraƟons éthiques et praƟques 
2.4.1 Réflexions de Casilli sur la valeur des données et implicaƟons pour l'architecture 
Antonio Casilli, sociologue et chercheur en études sur le numérique, a apporté un éclairage 
important sur la nature et la valeur des données uƟlisées dans les systèmes d'ApprenƟssage 
AutomaƟque³ . Ses travaux, notamment ceux présentés dans son ouvrage "En aƩendant les 
robots" (2019) et lors de sa présentaƟon au symposium "Assembling Intelligence" à Genève en 
2024, soulèvent plusieurs points cruciaux qui ont des implicaƟons directes pour l'uƟlisaƟon des 
datasets dans la concepƟon architecturale assistée par IA : Lors du symposium de 2024, Casilli a 
approfondi son concept de "digital labor", soulignant que les données ne sont pas simplement 
disponibles gratuitement, mais nécessitent un travail considérable de collecte, de neƩoyage et de 
préparaƟon. Dans le contexte architectural, cela implique que la créaƟon de datasets de plans 
d'étage représente un travail significaƟf, souvent sous-esƟmé, réalisé par des architectes, des 
dessinateurs et d'autres professionnels du domaine. 

La valeur économique des données : 

Casilli a argumenté que les données sont devenues une forme de capital, générant de la valeur 
pour les entreprises d'IA. Dans le domaine de l'architecture, cela soulève des quesƟons sur la 
valeur économique des plans d'étage et autres données architecturales uƟlisées pour entraîner 
les systèmes d'IA. Les architectes qui créent ces plans contribuent indirectement à la valeur des 
datasets uƟlisés par les entreprises d'IA, souvent sans compensaƟon adéquate. 

L'analogie du cerveau/nerfs : 

Dans sa présentaƟon de 2024, Casilli a développé son analogie comparant les données au système 
nerveux d'une IA, soulignant leur rôle important dans le foncƟonnement et l'apprenƟssage de ces 
systèmes. Pour la généraƟon de plans d'étage par IA, cela signifie que la qualité et la diversité des 
données dans le dataset sont fondamentales pour la performance et la créaƟvité des modèles 
générés. 

La contribuƟon involontaire : 

Casilli a mis en lumière comment l'uƟlisaƟon quoƟdienne de services en ligne contribue 
involontairement à la créaƟon de datasets. Dans le contexte architectural, l'uƟlisaƟon de logiciels 
de CAO¹¹, de BIM ⁸, ou le partage de plans sur des plateformes professionnelles peuvent alimenter 
des datasets uƟlisés pour l'IA sans que les architectes en soient pleinement conscients. 

Enjeux éthiques et de gouvernance : 

Les observaƟons de Casilli en 2024 ont soulevé des quesƟons importantes sur la gouvernance des 
données et les implicaƟons éthiques de leur uƟlisaƟon. Pour l'architecture, cela concerne la 
propriété intellectuelle des plans d'étage uƟlisés dans les datasets, le consentement des 
architectes pour l'uƟlisaƟon de leurs créaƟons dans l'entraînement des IA, et la nécessité de 
cadres réglementaires adaptés 
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III. Cadre théorique et conceptuel 

3.1 DéfiniƟon des concepts clés 
3.1.1 Datasets en architecture 
 

Les datasets en architecture sont des ensembles organisés de données uƟlisées pour entraîner 
des modèles d'intelligence arƟficielle. Ils regroupent des informaƟons variées comme des 
plans d'étage, des élévaƟons, des modèles 3D et des données contextuelles sur les bâƟments. 
Ces ensembles de données ne se limitent pas à la géométrie des espaces : ils intègrent 
également leur significaƟon et leur foncƟon, ce qui est essenƟel dans le cadre des systèmes 
d'ApprenƟssage AutomaƟque³  appliqués à l'architecture. 

Selon Stanislas Chaillou (Harvard Graduate School of Design, 2019), un dataset architectural 
doit représenter à la fois la forme et la sémanƟque des espaces pour être réellement uƟle à 
l'entraînement des modèles. Par ailleurs, Daniel Cardoso Llach ("SculpƟng spaces of 
possibility", 2019) rappelle que l'uƟlisaƟon de datasets en architecture remonte aux débuts 
de l'intelligence arƟficielle²⁶ dans les années 1950. Il souligne que la numérisaƟon des 
données architecturales implique des choix spécifiques sur la manière dont les informaƟons 
sont organisées et représentées. Ces choix influencent directement les expériences et les 
résultats futurs, car les datasets ne sont jamais neutres : ils reflètent des perspecƟves et des 
priorités propres à leur concepƟon. 

3.1.2 Diversité des données architecturales 
La diversité des données architecturales se définit comme la variété et la richesse des 
éléments représentés dans un dataset, englobant différents styles architecturaux, 
configuraƟons spaƟales, et contextes culturels. Comme le souligne Daniel Cardoso Llach 
(2019, p.19) dans son analyse des données architecturales "data are never neutral—they are 
cultural arƟfacts situated in social and material seƫngs" ("les données ne sont jamais neutres 
- ce sont des artefacts culturels ancrés dans des contextes sociaux et matériels CeƩe 
observaƟon met en évidence l'importance fondamentale de la diversité pour éviter les biais 
incohérents aux modèles d'IA générés. En effet, une diversité limitée dans les données 
d'entraînement peut conduire à des modèles qui reproduisent systémaƟquement certains 
schémas architecturaux au détriment d'autres, limitant ainsi leur capacité d'innovaƟon et 
d'adaptaƟon. 

CeƩe noƟon de diversité s'exprime à travers plusieurs dimensions complémentaires et 
interdépendantes. Les recherches menées dans le cadre de House-GAN (Nauata et al., 2020, 
p.2-3) ont démontré que la capacité à générer des plans diversifiés nécessite une exposiƟon 
à un large éventail de styles architecturaux dans les données d'entraînement. CeƩe diversité 
stylisƟque permet au modèle de comprendre et d'assimiler différentes approches de 
concepƟon spaƟale et esthéƟque. Parallèlement, les travaux de Graph2Plan (Hu et al., 2020, 
p.1-2) ont souligné l'importance d'inclure une variété de programmes architecturaux et leurs 
relaƟons spaƟales, meƩant en lumière la dimension foncƟonnelle de la diversité. CeƩe 
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approche permet aux modèles de comprendre comment différents espaces peuvent être 
organisés et connectés pour répondre à des besoins variés. 

Les recherches de Kalervo et al. (2019, p.31) ont par ailleurs enrichi ceƩe compréhension en 
meƩant en évidence l'importance du contexte urbain et environnemental dans la diversité 
des données. Leurs travaux démontrent que les plans architecturaux ne peuvent être 
pleinement compris et générés de manière perƟnente sans prendre en compte leur inserƟon 
dans un Ɵssu urbain plus large et leur adaptaƟon à des condiƟons environnementales 
spécifiques. CeƩe dimension contextuelle de la diversité permet aux modèles d'IA de générer 
des soluƟons architecturales qui ne sont pas seulement cohérentes en tant qu'objets isolés, 
mais qui s'intègrent harmonieusement dans leur environnement. 

3.1.3 Qualité et efficacité des plans générés par IA 
L'évaluaƟon de la qualité et de l'efficacité des plans générés par IA consƟtue un défi majeur 
qui nécessite une approche rigoureuse. Comme le démontrent Nelson Nauata et ses 
collaborateurs dans "House-GAN" (2020, p.3), ceƩe évaluaƟon doit se faire selon trois 
métriques³⁰ essenƟelles : "the realism, the diversity, and the compaƟbility". Le réalisme 
consƟtue le premier pilier, exigeant que les plans générés respectent les principes 
fondamentaux de l'architecture. La compaƟbilité forme le second pilier, assurant que les plans 
générés correspondent bien aux contraintes et aux exigences iniƟales du projet.  

L'adaptabilité aux besoins des uƟlisateurs représente le troisième aspect important de ceƩe 
évaluaƟon. Comme l'expliquent AhƟ Kalervo et ses collaborateurs dans "CubiCasa5K" (2019, 
p.32), l'importance d'un "protocol d'annotaƟon rigoureux" et d'un "QA process³⁸" en deux 
étapes est fondamentale pour garanƟr que les espaces générés répondent effecƟvement aux 
besoins praƟques. CeƩe dimension humaine de l'architecture ne peut être négligée dans le 
processus de généraƟon automaƟque, car elle garanƟt que les espaces créés répondent 
effecƟvement aux besoins et aux usages de leurs futurs occupants. La qualité d'un plan ne 
peut donc être jugée uniquement sur des critères techniques ou esthéƟques, mais doit inclure 
une évaluaƟon de son potenƟel à créer des espaces vivables et foncƟonnels. 

3.2 Théories sur l'apprenƟssage automaƟque en architecture 
3.2.1 Principes des GANs appliqués à la généraƟon de plans 
Les generaƟve adversarial networks (GAN) sont uƟlisés pour générer des plans architecturaux 
de bâƟments résidenƟels en employant deux réseaux neuronaux : un générateur²¹ et un 
discriminateur¹⁶, qui travaillent en opposiƟon pour affiner les résultats de la concepƟon par 
un processus contradictoire (Goodfellow et al., 2014). Le générateur²¹ produit des schémas 
architecturaux, tels que des plans d'étage, tandis que le discriminateur¹⁶ évalue leur réalisme, 
conduisant le générateur²¹ à créer des concepƟons de plus en plus précises et foncƟonnelles. 
Pour tenir compte des contraintes architecturales, les cadres GAN intègrent souvent des 
méthodes telles que les structures de graphes relaƟonnels pour représenter les relaƟons 
spaƟales, ce qui permet de générer des plans qui respectent les règles d'adjacence entre les 
pièces (Nauata et al., 2020). D'autres modèles introduisent des cartes d'acƟvité humaine dans 
le cadre du processus de généraƟon, garanƟssant que les plans sont non seulement 
géométriquement valides, mais aussi foncƟonnellement alignés sur les exigences 



 26 

d'uƟlisabilité centrées sur l'homme (Matsushita et al., 2021). Ces approches sont entraînées 
sur des ensembles de données architecturales annotées contenant divers agencements 
résidenƟels, qui aident les GAN à apprendre les modèles spaƟaux, les règles d'adjacence et 
les convenƟons de concepƟon nécessaires pour générer des plans architecturaux réalistes et 
sensibles au contexte. 

3.2.2 Rôle des datasets dans l'entraînement des modèles d'IA 
Les datasets représentent le fondement sur lequel repose tout système d'ApprenƟssage 
AutomaƟque³  en architecture. Ils jouent un rôle comparable à celui d'une bibliothèque 
d'expériences architecturales, à parƟr de laquelle les systèmes d'IA apprennent à reconnaître et à 
reproduire des paƩerns de concepƟon perƟnents. CeƩe base de connaissances architecturales 
structurée permet aux systèmes d'assimiler non seulement les aspects géométriques des plans, 
mais aussi les principes fondamentaux qui régissent leur organisaƟon. 

La première foncƟon d'un dataset architectural est de fournir des exemples représentaƟfs de 
bonnes praƟques de concepƟon. Ces exemples servent de modèles à parƟr desquels le système 
apprend à reconnaître les caractérisƟques essenƟelles d'un plan viable. Par exemple, le système 
peut apprendre les relaƟons spaƟales typiques entre une cuisine et une salle à manger, ou les 
dimensions standard d'une chambre à coucher. CeƩe compréhension des standards 
architecturaux se développe progressivement à travers l'analyse de nombreux exemples. 

Au-delà de la simple accumulaƟon d'exemples, les datasets architecturaux jouent également un 
rôle dans la transmission des règles implicites de concepƟon. À travers l'exposiƟon répétée à 
différentes configuraƟons spaƟales, le système développe une compréhension intuiƟve des 
principes d'organisaƟon qui sous-tendent la concepƟon architecturale. CeƩe "intuiƟon arƟficielle" 
permet au système de proposer des soluƟons qui respectent les contraintes explicites. 

Les datasets servent également de référenƟel pour la validaƟon des soluƟons générées. En 
comparant les plans produits avec les exemples du dataset, le système peut évaluer la perƟnence 
et la viabilité de ses proposiƟons. CeƩe capacité d'auto-évaluaƟon est essenƟelle pour assurer la 
qualité et la cohérence des plans générés. 

Dans le contexte de l'ApprenƟssage AutomaƟque³ , les datasets agissent comme un pont entre le 
monde abstrait des algorithmes et la réalité concrète de l'architecture. Ils traduisent les concepts 
architecturaux en données structurées que les systèmes d'IA peuvent traiter et analyser. CeƩe 
traducƟon permet aux systèmes d'appréhender la complexité mulƟdimensionnelle de la 
concepƟon architecturale. 

Les datasets jouent ainsi un rôle dans la qualité et la perƟnence des plans générés par IA. Ils 
déterminent non seulement ce que le système peut apprendre, mais aussi comment il peut 
appliquer cet apprenƟssage à la créaƟon de nouvelles soluƟons architecturales. 
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IV.Méthodologie 

 
 

Figure 8  Un diagramme illustrant les étapes méthodologiques de la recherche 

 

4.1 Collecte des sources d'informaƟon 
La démarche iniƟale envisagée pour ceƩe recherche prévoyait la collecte et la manipulaƟon directe de 
datasets architecturaux. Cependant, pour des raisons praƟques et méthodologiques, ceƩe approche 
a été adaptée. Plutôt que de sélecƟonner des datasets et de les manipuler directement, la recherche 
s’est concentrée sur l’analyse approfondie de trois arƟcles scienƟfiques de référence. Ces arƟcles 
décrivent des datasets significaƟfs dans le domaine de la généraƟon de plans d’étage, et leur contenu 
a été uƟlisé comme source principale d’informaƟon pour la suite de l’étude. 

Le choix de ces arƟcles repose sur leur perƟnence scienƟfique et leur qualité méthodologique. 
Chaque arƟcle décrit un dataset uƟlisé dans des contextes variés, documentant des approches 
différentes pour structurer, annoter et exploiter les données architecturales. CeƩe décision 
méthodologique présente plusieurs avantages : elle permet de bénéficier d’analyses validées 
et détaillées tout en assurant une diversité d’approches, malgré l'absence de manipulaƟon 
directe des données. 

Les informaƟons extraites de ces arƟcles ont été uƟlisées pour alimenter les étapes suivantes 
de la recherche : ClassificaƟon des datasets (4.2), où les caractérisƟques des datasets décrits 
dans les arƟcles ont été systémaƟquement classées selon une grille d’analyse. IdenƟficaƟon 
des caractérisƟques architecturales (4.3), en appliquant une méthodologie commune pour 
extraire des informaƟons comparables, malgré les différences dans la structuraƟon des 
données et des AnnotaƟons¹. 
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Analyse comparaƟve, où les résultats des trois approches ont été évalués de manière 
uniforme afin de meƩre en lumière les forces, les faiblesses et les parƟcularités de chaque 
dataset étudié. 

En choisissant de s’appuyer sur ces trois arƟcles scienƟfiques comme base principale, la 
méthodologie assure une conƟnuité dans l'analyse, tout en reflétant la diversité des 
approches uƟlisées dans la recherche architecturale sur les plans d’étage. Ce choix garanƟt 
également une transparence et une reproducƟbilité des résultats, tout en prenant en compte 
les contraintes liées à l'accès direct à certains datasets. 

4.2 ClassificaƟon des datasets 
4.2.1 Critères de classificaƟon 
La classificaƟon des datasets architecturaux repose sur cinq catégories principales de critères: 

Les types de données consƟtuent le premier critère de classificaƟon. CeƩe catégorie 
comprend les données textuelles (documents descripƟfs, spécificaƟons techniques, normes 
de construcƟon), les données d'images (plans d'étage), les données vectorielles (plans CAD, 
schémas vectoriels), et le contexte architectural (données sur l'uƟlisaƟon des espaces, 
réglementaƟons urbaines). 

La taille des datasets forme le deuxième critère, mesurée selon deux aspects : le volume total 
des données, exprimé en mégaoctets (Mo) ou gigaoctets (Go), et le nombre d'éléments 
individuels comptabilisés dans chaque dataset. 

La diversité géographique représente le troisième critère, avec une classificaƟon en trois 
niveaux : locale pour les données d'une ville ou région spécifique, naƟonale pour les données 
couvrant un pays, et internaƟonale pour les données de plusieurs pays ou régions. 

La période couverte consƟtue le quatrième critère, disƟnguant trois époques : historique pour 
les plans antérieurs à 2000, contemporaine pour les designs de 2000 à aujourd'hui, et futuriste 
pour les concepts prospecƟfs. 

Le niveau de détail forme le cinquième critère, établissant trois degrés : basique pour les 
informaƟons générales sur la disposiƟon des pièces, intermédiaire incluant les détails sur les 
dimensions et les matériaux, et avancé pour les informaƟons détaillées sur les systèmes 
techniques. 

4.2.2 Méthodes de catégorisaƟon 
La méthodologie de catégorisaƟon des datasets architecturaux s'appuie sur une grille 
d'évaluaƟon standardisée, élaborée à parƟr des critères de classificaƟon précédemment 
établis. CeƩe grille permet une analyse systémaƟque et reproducƟble des caractérisƟques de 
chaque dataset. 

Le processus d'évaluaƟon s'arƟcule autour d'un système de notaƟon qui vise à quanƟfier deux 
aspects fondamentaux : la diversité et la richesse des données présentes dans chaque dataset. 
La diversité est évaluée à travers la variété des types de plans, des configuraƟons spaƟales et 
des contextes architecturaux représentés. La richesse, quant à elle, est mesurée par le niveau 
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de détail des informaƟons techniques, la précision des AnnotaƟons¹ et la complétude des 
données associées à chaque plan. 

CeƩe approche structurée permet de générer des évaluaƟons comparables entre les 
différents datasets, facilitant ainsi leur analyse comparaƟve et l'idenƟficaƟon de leurs forces 
et faiblesses respecƟves. La grille d'évaluaƟon établit des critères objecƟfs et mesurables, 
essenƟels pour une compréhension approfondie de l'influence des caractérisƟques des 
datasets sur la qualité des plans générés par les systèmes d'ApprenƟssage AutomaƟque³ . 

4.3 IdenƟficaƟon des caractérisƟques  
 

L'idenƟficaƟon des caractérisƟques architecturales repose sur une grille d'évaluaƟon détaillée 
qui englobe dix catégories principales d'éléments à analyser dans les plans. CeƩe grille permet 
une analyse systémaƟque et exhausƟve des composants architecturaux présents dans chaque 
dataset. 

Les éléments structurels consƟtuent la première catégorie d'analyse, comprenant 
l'idenƟficaƟon des murs porteurs et non porteurs, des colonnes, des poutres et des fondaƟons 
lorsque ces informaƟons sont disponibles dans les données.  

Les ouvertures forment la deuxième catégorie, incluant l'analyse des portes et fenêtres avec 
leurs caractérisƟques dimensionnelles et leur emplacement, ainsi que les autres types 
d'ouvertures comme les lucarnes. 

La distribuƟon des espaces représente la troisième catégorie, englobant l'analyse des 
circulaƟons avec les couloirs et escaliers, des espaces de vie comme le salon et la salle à 
manger, des espaces privés tels que les chambres et bureaux, et des espaces de service 
incluant la cuisine et les salles de bains. 

Le mobilier et les équipements consƟtuent la quatrième catégorie, comprenant les meubles 
fixes, les appareils sanitaires et les équipements électroménagers. 

Les détails techniques construcƟfs forment la cinquième catégorie, incluant l'analyse des 
matériaux de construcƟon, de l'isolaƟon et des systèmes MEP²⁸. 

La forme du bâƟment consƟtue la sixième catégorie, avec l'étude de la géométrie générale, 
du nombre d'étages et du type de toiture. 

La division spaƟale représente la sepƟème catégorie, analysant les zones foncƟonnelles 
jour/nuit et public/privé, ainsi que la flexibilité des espaces. 

Les caractérisƟques quanƟtaƟves forment la huiƟème catégorie, comprenant le nombre de 
pièces, la surface habitable et le raƟo entre espaces ouverts et fermés. 

Le contexte et la localisaƟon consƟtuent la neuvième catégorie, incluant le type 
d'environnement, l'orientaƟon et la topographie du site.  

Enfin, les éléments de durabilité forment la dixième catégorie, avec l'analyse des disposiƟfs 
d'économie d'énergie, des matériaux écologiques et des systèmes de récupéraƟon d'eau. 
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La quanƟficaƟon de ces caractérisƟques s'effectue selon une échelle de notaƟon allant de 0 à 
5, permeƩant d'évaluer la présence et la qualité de chaque élément dans le dataset. CeƩe 
approche quanƟtaƟve permet de calculer des scores de diversité pour chaque caractérisƟque 
architecturale, offrant ainsi une base objecƟve pour l'analyse comparaƟve des datasets. 

4.4 Analyse des datasets 
 

L'analyse approfondie des datasets s'arƟcule autour de trois phases principales : la sélecƟon 
des données, l'évaluaƟon du contenu, et l'étude de la généraƟon des plans. 

La première phase concerne la sélecƟon des datasets pour l'étude approfondie. CeƩe 
sélecƟon vise à consƟtuer un échanƟllon représentaƟf incluant des ensembles de données de 
différentes tailles et origines. L'intégraƟon de datasets déjà uƟlisés dans des études 
précédentes permet d'établir des comparaisons avec les résultats existants, offrant ainsi un 
cadre de référence pour l'analyse. 

La deuxième phase se concentre sur l'évaluaƟon du contenu et de la diversité des datasets 
sélecƟonnés. CeƩe évaluaƟon s'appuie sur la grille développée dans la secƟon 4.3, appliquée 
systémaƟquement à chaque dataset. L'analyse examine la diversité des données selon les 
caractérisƟques architecturales définies précédemment. Des visualisaƟons sont créées pour 
représenter la richesse et la diversité des données dans chaque dataset, permeƩant une 
compréhension claire des variaƟons et des paƩerns présents. 

4.5 Comparaison des datasets 
La comparaison des datasets repose sur une méthodologie combinant analyses quanƟtaƟves 
et qualitaƟves, structurée en deux phases principales : la comparaison méthodologique des 
caractérisƟques et l'analyse de leur influence sur les résultats générés. 

La première phase s'arƟcule autour de trois approches complémentaires. Le calcul du delta 
de performance consƟtue la première approche : un dataset de référence, typiquement le 
moins diversifié, sert de point de comparaison pour évaluer les différences de performance 
en termes de qualité, diversité et cohérence des plans générés. Des métriques³⁰ quanƟtaƟves, 
telles que le score de similarité structurelle⁴⁵ et l'évaluaƟon de la foncƟonnalité, permeƩent 
de mesurer ces écarts de manière objecƟve. 

La deuxième approche implique la créaƟon d'une matrice comparaƟve détaillant la présence 
et l'importance des caractérisƟques architecturales dans chaque dataset. Une échelle 
numérique facilite la visualisaƟon des différences entre les datasets. La troisième approche 
vise à idenƟfier les différences clés entre les datasets, en analysant les types d'informaƟons 
spécifiques ayant le plus d'impact sur les résultats et en repérant les lacunes communes aux 
datasets moins performants. 

La seconde phase examine l'influence de ces caractérisƟques sur les résultats générés. Des 
corrélaƟons sont établies entre la diversité des données dans le dataset et la qualité des plans 
d'étage générés. L'évaluaƟon porte sur les avantages et limitaƟons de chaque dataset dans le 
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contexte de la généraƟon de plans d'étage. CeƩe analyse permet également d'idenƟfier les 
types de projets architecturaux pour lesquels chaque dataset serait le plus approprié. 

CeƩe méthodologie de comparaison approfondie fournit une base solide pour évaluer 
l'impact de la diversité des données sur la qualité des plans générés par IA, apportant ainsi 
des éléments de réponse concrets à la problémaƟque de recherche. 
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V. Résultats et analyse 

5.1 PrésentaƟon des résultats 
5.1.1 CaractérisƟques des datasets analysés 
L'analyse approfondie des datasets uƟlisés dans la généraƟon de plans d'étage consƟtue une 
étape fondamentale pour comprendre l'impact de leur diversité sur la qualité des résultats 
produits. CeƩe analyse s'inscrit dans la démarche de validaƟon de l'hypothèse principale, 
selon laquelle la diversité et la qualité des données dans le dataset sont des facteurs 
déterminants dans l'efficacité des systèmes d'ApprenƟssage AutomaƟque³ pour la généraƟon 
de plans d'étage résidenƟels. 

 

La méthodologie d'analyse repose sur une grille d'évaluaƟon systémaƟque examinant sept 
aspects fondamentaux des datasets : 

 

 

CaractérisƟques générales : métadonnées²⁹ et informaƟons techniques fondamentales 
permeƩant de contextualiser le dataset dans son ensemble. 

Éléments architecturaux : analyse détaillée de la représentaƟon des composants structurels, 
des ouvertures et des systèmes de circulaƟon, éléments essenƟels à la cohérence 
architecturale des plans générés. 

OrganisaƟon spaƟale : évaluaƟon des zones foncƟonnelles, des relaƟons entre espaces et des 
proporƟons, aspects cruciaux pour la foncƟonnalité des designs produits. 

Équipements et aménagements : examen des informaƟons relaƟves aux équipements fixes 
et aux systèmes MEP²⁸ (Mécanique, Électricité, Plomberie), nécessaires à la viabilité technique 
des plans. 

Diversité et contexte : analyse de la variété typologique et des considéraƟons 
environnementales, facteurs déterminants pour l'adaptabilité des plans générés. 

Qualité des données : évaluaƟon de la précision technique et de la complétude des 
informaƟons, éléments essenƟels à la fiabilité des résultats. 

 

CeƩe grille d'évaluaƟon aƩribue une note de 0 à 5 à chaque critère, permeƩant une 
quanƟficaƟon objecƟve des caractérisƟques des datasets. L'approche méthodique vise à 
établir des corrélaƟons entre les propriétés des jeux de données et la qualité des plans 
générés par les systèmes d'intelligence arƟficielle. 
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Les secƟons suivantes présenteront une analyse détaillée de plusieurs datasets majeurs ayant 
démontré leur efficacité dans la généraƟon automaƟque de plans d'étage. La sélecƟon de ces 
datasets s'appuie sur des critères rigoureux : 

 

1.PublicaƟon dans des revues académiques reconnues 

2.DocumentaƟon détaillée des résultats de généraƟon 

3.ValidaƟon par des expérimentaƟons reproduites par différentes équipes de recherche 

4.Disponibilité des informaƟons sur les méthodes de collecte et de traitement des données 

 

 

Tableau 1  

Critères Score (/5) ObservaƟons 

A. CARACTÉRISTIQUES 
GÉNÉRALES 

  

A1. InformaƟons techniques   

A2. Métadonnées   

B. ÉLÉMENTS 
ARCHITECTURAUX 

  

B1. Structure et enveloppe   
B2. Ouvertures   

B3. CirculaƟon   

C. ORGANISATION SPATIALE   

   

C1. Zones foncƟonnelles   

C2. RelaƟons spaƟales   
C3. Dimensions et proporƟons   

D. ÉQUIPEMENTS ET 
AMÉNAGEMENTS 

  

D1. Équipements fixes   
D2. MEP   

E. DIVERSITÉ ET CONTEXTE   

E1. Diversité typologique   
E2. Contexte environnemental   

F. QUALITÉ DES DONNÉES   

F1. Précision technique   
F2. Complétude   

SCORE TOTAL /75  

SCORE MOYEN /5  
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5.1.2 datasets analysés 
Cubicasa5k  

Référence de l'étude scienƟfique 

Kalervo et al. présentent en 2019 leur recherche "CubiCasa5K: A Dataset and an Improved 
MulƟ-task Model for Floorplan Image Analysis" lors de la conférence SCIA 2019, publiée dans 
LNCS 11482, pp. 28-40. 

Contexte et objecƟfs 

CeƩe recherche répond à un besoin croissant d'analyse automaƟque des plans d'étage, 
moƟvé par l'émergence des technologies AR/VR(Réalité Augmentée/Réalité Virtuelle) et une 
meilleure compréhension des intérieurs de bâƟments (p.28). Les auteurs constatent un 
manque de datasets représentaƟfs pour approfondir ce domaine de recherche. Pour combler 
ceƩe lacune, ils proposent un nouveau dataset nommé CubiCasa5K ainsi qu'une approche 
améliorée basée sur un réseau neuronal mulƟ-tâches. 

Architecture technique et méthodologie 

L'architecture technique dans le contexte de l'analyse se réfère à la structure et l'organisaƟon 
des composants du réseau neuronal et ses mécanismes de traitement. 

Le système repose sur une architecture “hourglass”⁵ complexe uƟlisant ResNet-152⁴⁴ pré-
entraîné sur ImageNet comme base (p.34). CeƩe architecture comprend des blocs D1-D10 
intégrant des couches de convoluƟon¹⁴, de normalisaƟon par lots³³ et ReLU³⁹. Le modèle 
produit simultanément deux cartes de segmentaƟon et 21 heatmaps²⁵ (p.33-34). 

L'approche méthodologique s'arƟcule autour d'un réseau neuronal convoluƟf(CNN⁴³) mulƟ-
tâches qui effectue trois opéraƟons principales, comme détaillé dans l'arƟcle (p.33-35) : 

 SegmentaƟon des pièces et des icônes 
 Régression pour localiser les points d'intérêt 
 ApprenƟssage AutomaƟque³  des poids entre les différentes tâches 

 
Figure 9 illustraƟon de l'architecture du système CubiCasa5K 
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CaractérisƟques du dataset 

CubiCasa5K consƟtue le plus grand dataset annoté de plans d'étage disponible(le jour de 
publicaƟon), comprenant 5000 échanƟllons réparƟs en trois catégories (p.31) : 

 3732 plans de haute qualité architecturale 
 992 plans de haute qualité 
 276 plans colorés 

L'ensemble est divisé en 4200 échanƟllons pour l'entraînement, 400 pour la validaƟon et 400 
pour les tests. 

Système d'annotaƟon 

Le processus d'annotaƟon est parƟculièrement rigoureux, comme décrit dans la secƟon 
"AnnotaƟons¹ and Their Consistency" (p.32). Les plans sont annotés manuellement par des 
experts, nécessitant entre 5 et 120 minutes par plan selon leur complexité. Les AnnotaƟons¹ 
sont réalisées au format SVG¹⁸ vectoriel suivant un protocole strict. Un système de contrôle 
qualité en deux étapes assure la cohérence et la précision des AnnotaƟons¹, tant au niveau du 
placement que des éƟqueƩes. Plus de 80 classes d'objets différentes sont idenƟfiées, incluant 
les pièces, murs, portes et fenêtres. 

CeƩe recherche apporte une contribuƟon significaƟve au domaine en fournissant non une 
méthodologie améliorée pour leur analyse automaƟque, comme souligné dans leurs 
conclusions (p.39). 

 
Figure 10 une comparaison en trois étapes du traitement d'un plan d'étage 

Methode de prompt³¹  

La méthode uƟlise un réseau de neurones convoluƟf mulƟ-tâches(CNN⁴³) basé sur ResNet-
152, qui combine deux objecƟfs principaux : la segmentaƟon⁴⁶ des pièces/icônes et la 
localisaƟon des points d'intérêt via des cartes de chaleur. Le système uƟlise une foncƟon de 
perte innovante qui ajuste automaƟquement les poids entre les différentes tâches, tandis 
qu'un post-traitement³⁶ converƟt les prédicƟons en plans vectoriels. CeƩe approche unifiée 
permet de traiter efficacement un grand nombre de classes d'objets dans les plans 
d'architecture. 
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Conclusion  

L'analyse révèle un paradoxe intéressant : bien que le dataset soit techniquement excellent pour 
l'ApprenƟssage AutomaƟque³, avec une précision remarquable dans la géométrie des plans, sa 
diversité reste principalement concentrée sur les aspects foncƟonnels et spaƟaux, négligeant d'autres 
dimensions importantes de l'architecture. CeƩe spécialisaƟon se reflète parƟculièrement dans une 
excellente gesƟon des relaƟons spaƟales et des annotaƟons¹ foncƟonnelles, dans une forte précision 
dans la représentaƟon des dimensions et des proporƟons et  dans une limitaƟon dans la gesƟon de 
programmes complexes (performance opƟmale jusqu'à 8 pièces)CeƩe analyse souƟent parƟellement 
l'hypothèse principale. Elle confirme l'importance d'un dataset bien structuré et rigoureusement 
annoté pour l'ApprenƟssage AutomaƟque³ , tout en soulignant les limitaƟons qu'un manque de 
diversité dans certains aspects peut imposer. 

Critères Score (/5) ObservaƟons 
A. CARACTÉRISTIQUES GÉNÉRALES   

A1. InformaƟons techniques 4 Bien documenté dans l'arƟcle 
source 

A2. Métadonnées 4 Bien structurées 
B. ÉLÉMENTS ARCHITECTURAUX   

B1. Structure et enveloppe 3 Limité aux éléments visibles en 2D 

B2. Ouvertures 3 ReprésentaƟon basique 
B3. CirculaƟon 3 Éléments basiques représentés 
C. ORGANISATION SPATIALE   
C1. Zones foncƟonnelles 4 Bien définies 
C2. RelaƟons spaƟales 4  
C3. Dimensions et proporƟons 3  
D. ÉQUIPEMENTS ET 
AMÉNAGEMENTS 

  

D1. Équipements fixes 3 ReprésentaƟon basique 
D2. MEP 1 Très peu d'informaƟons 
E. DIVERSITÉ ET CONTEXTE   

E1. Diversité typologique 4 Bonne variété de plans 
E2. Contexte environnemental 1 Très peu d'informaƟons 
F. QUALITÉ DES DONNÉES   

F1. Précision technique 4 Bonne qualité générale 
F2. Complétude 4  
SCORE TOTAL 45.8/75 Basé sur les moyennes des 

catégories 
SCORE MOYEN 3.05/5 Score global saƟsfaisant 

Tableau 2 Version complet : page 70 
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HOUSEGAN  

Référence de l'étude scienƟfique 

Nauata, N., Chang, K. H., Cheng, C. Y., Mori, G., & Furukawa, Y. (2020). House-GAN: RelaƟonal 
GeneraƟve Adversarial Networks for Graph-constrained House Layout GeneraƟon. arXiv preprint 
arXiv:2003.06988. 

Contexte et objecƟfs 

L'arƟcle propose une nouvelle approche pour générer automaƟquement des plans d'étage de 
maisons réalistes et compaƟbles avec un diagramme relaƟonnel (bubble diagram¹⁰) donné en 
entrée, qui représente les contraintes de haut niveau comme le nombre et les types de pièces 
avec leurs relaƟons d'adjacence spaƟale (Nauata et al., 2020, Fig. 1, Abstract). L'objecƟf est 
de faciliter le processus itéraƟf de concepƟon architecturale, qui consiste à : 1) esquisser un 
"bubble diagram"¹⁰, 2) produire des plans d'étage correspondants, 3) recueillir les 
commentaires des clients, 4) affiner le bubble diagram¹⁰ et itérer (Nauata et al., 2020, 
IntroducƟon). 

Architecture technique et méthodologie 

House-GAN est un réseau antagoniste généraƟf (GAN) relaƟonnel, dont le générateur²¹ et le 
discriminateur¹⁶ sont construits sur une architecture relaƟonnelle. L'idée principale est 
d'encoder la contrainte dans la structure du graphe de ses réseaux relaƟonnels (Nauata et al., 
2020, Abstract).Plus précisément, l'arƟcle uƟlise des réseaux de neurones convoluƟonnels de 
passage de messages (Conv-MPN¹³) pour le générateur²¹ et le discriminateur¹⁶. Contrairement 
aux réseaux convoluƟonnels de graphes (GCN²⁰), dans les Conv-MPN¹³ : 1) un nœud 
représente une pièce sous forme de volume de caractérisƟques dans l'espace de concepƟon, 
et 2) les convoluƟons¹⁴ meƩent à jour les caractérisƟques dans l'espace de concepƟon (Nauata 
et al., 2020, SecƟon 4). Le générateur²¹ prend en entrée un vecteur de bruit par pièce et un 
bubble diagram¹⁰, puis génère un plan d'étage sous forme d'un rectangle aligné sur les axes 
par pièce (Nauata et al., 2020, SecƟon 4.1). Le discriminateur¹⁶ effectue une séquence 
d'opéraƟons dans l'ordre inverse pour classifier les échanƟllons réels et générés (Nauata et 
al., 2020, SecƟon 4.2). 

 

Figure 11 L'illustraƟon présente l'architecture technique de la méthodologie House-GAN 
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CaractérisƟques du dataset 

Les auteurs ont récupéré 65,636 vrais plans d'étage de maisons de la base de données LIFULL 
HOME (Nauata et al., 2020, SecƟon 3). Les échanƟllons sont divisés en 5 groupes en foncƟon 
du nombre de pièces : 1-3, 4-6, 7-9, 10-12 et 13+. Le tableau 1 de l'arƟcle donne la réparƟƟon 
du nombre d'échanƟllons par groupe, ainsi que le nombre moyen de pièces de chaque type. 

 

Système d'annotaƟon 

L'arƟcle n'uƟlise pas de système d'annotaƟon manuelle des données. Les bubble diagrams¹⁰ 
sont générés automaƟquement à parƟr des plans d'étage vectorisés obtenus grâce à 
l'algorithme de vectorisaƟon de Liu et al.(2017) en représentant chaque pièce comme un 
nœud avec son type en propriété. Deux pièces sont connectées si la distance de ManhaƩan¹⁷ 
entre leurs boîtes englobantes ⁹ est inférieure à 8 pixels (Nauata et al., 2020, SecƟon 3). 

 

Methode de prompt³¹  

Le modèle House-GAN prend directement en entrée le graphe relaƟonnel²⁴ (bubble 
diagram¹⁰) représentant les contraintes sur les pièces et leurs relaƟons d'adjacence. C'est ce 
graphe d'entrée qui sert à condiƟonner le réseau généraƟf pour produire des plans d'étage 
correspondants. 

 

 

Figure 12 L'illustraƟon montre le système House-GAN, qui prend un bubble diagram  en entrée et génère de mulƟples opƟons d'agencement de maison basées 
sur ce diagramme. 

 

 

Figure 13 Exemples d'échecs et de réussites de House-GAN  
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Conclusion et implications 

HOUSE-GAN privilégie la qualité des relations spatiales et l'organisation fonctionnelle au 
détriment des aspects techniques et contextuels. Cette orientation reflète une approche 
ciblée de la génération de plans, focalisée sur la logique spatiale plutôt que sur l'exhaustivité 
architecturale. Les points saillants incluent : une excellente gestion des relations topologiques 
entre espaces, une capacité remarquable à traiter des configurations complexes, une absence 
quasi-totale d'informations contextuelles. Cette analyse soutient partiellement l'hypothèse 
de la recherche. Elle démontre qu'un dataset peut être très efficace dans son domaine de 
spécialisation tout en soulignant l'importance d'une diversité plus large pour une génération 
complète de plans d'étage. 

 

Criteria Score (/5) ObservaƟons 
A. CARACTÉRISTIQUES 
GÉNÉRALES 

  

A1. InformaƟons techniques 4.4  
A2. Métadonnées 4.8  
B. ÉLÉMENTS 
ARCHITECTURAUX 

  

B1. Structure et enveloppe 1.2  
Moyenne B1 1.2  
B2. Ouvertures 1.2  
B3. CirculaƟon 2.0  
C. ORGANISATION SPATIALE   
C1. Zones foncƟonnelles 4.0  
D. ÉQUIPEMENTS ET 
AMÉNAGEMENTS 

  

D1. Équipements fixes 1.6  
D2. MEP 0  
E. DIVERSITÉ ET CONTEXTE   
E1. Diversité typologique 2.8  
E2. Contexte 
environnemental 

0.4  

F. QUALITÉ DES DONNÉES   
F1. Précision technique 4.2  
F2. Complétude 4.2  
SCORE TOTAL MOYEN 3.0  

 

Tableau 3 Version complet : page 72 
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Graph2Plan 

Référence de l'étude scienƟfique 

CeƩe recherche a été publiée par HU, R., HUANG, Z., TANG, Y., VAN KAICK, O., ZHANG, H., & 
HUANG, H. dans ACM TransacƟons on Graphics en juillet 2020 

Contexte et objecƟfs de recherche 

CeƩe étude s'inscrit dans le développement des technologies d'intelligence arƟficielle²⁶ 
appliquées à l'architecture. Les chercheurs ont développé un framework d'ApprenƟssage 
AutomaƟque³  innovant qui combine la modélisaƟon généraƟve et le design interacƟf pour la 
créaƟon automaƟsée de plans d'étage. L'objecƟf principal est de permeƩre aux uƟlisateurs 
de générer des plans d'étage de haute qualité tout en gardant un contrôle sur le processus de 
créaƟon via des contraintes de concepƟon spécifiques. 

Architecture technique et méthodologie 

L'architecture du système repose sur plusieurs composants interconnectés. Au cœur du 
système se trouve le réseau neuronal Graph2Plan, qui transforme un graphe de disposiƟon en 
plan d'étage foncƟonnel. Ce réseau s'appuie sur un Graph Neural Network (GNN²³) pour 
traiter les informaƟons structurelles des graphes et un réseau convoluƟf (CNN⁴³) pour le 
traitement des images raster. Le système intègre également un module de raffinement appelé 
BoxRefineNet qui améliore la précision des résultats. La généraƟon se termine par une phase 
d'opƟmisaƟon qui assure l'alignement correct des pièces dans le plan final. 

 
Figure 14 La figure présente l'architecture du réseau Graph2Plan 

CaractérisƟques du dataset 

La recherche s'appuie sur le dataset RPLAN, une base de données substanƟelle contenant 
environ 120 000 plans d'étage annotés. Les chercheurs ont divisé ce dataset selon une 
réparƟƟon classique : 70% des données pour l'entraînement, 15% pour la validaƟon et 15% 
pour les tests. CeƩe division permet une évaluaƟon robuste des performances du modèle. 

Système d'annotaƟon 

Le système d'annotaƟon est parƟculièrement détaillé et comprend plusieurs niveaux 
d'informaƟon. Les chercheurs ont défini 13 catégories de pièces différentes incluant des 
espaces comme le salon, la chambre principale et la salle de bain. La localisaƟon des pièces 
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est encodée sur une grille 5x5, permeƩant une représentaƟon spaƟale précise. Le système 
capture également les relaƟons spaƟales entre les pièces et intègre des informaƟons sur les 
portes intérieures, créant ainsi une représentaƟon complète de l'espace. 

 
Figure 15 : La figure présente un système  d'annotaƟon des plans d'étage à plusieurs niveaux 

Méthode de prompt³¹ 

L'approche retrieve-and-adjust adoptée par les chercheurs offre une flexibilité remarquable 
dans l'interacƟon uƟlisateur-système. Les uƟlisateurs peuvent définir leurs préférences à 
travers des contraintes iniƟales portant sur le nombre de pièces et leurs connexions. Le 
système permet ensuite une modificaƟon interacƟve du graphe de disposiƟon et un 
ajustement des contraintes de mise en page.  

Ces inputs servent à idenƟfier et adapter les graphes de disposiƟon les plus perƟnents dans 
la base de données, assurant ainsi que le résultat final correspond aux aƩentes de l'uƟlisateur 
tout en respectant les principes architecturaux. 

 
Figure 16 La figure montre le réseau entraîné qui peut générer des plans d'étage basés uniquement sur un contour de bâƟment en entrée 

Conclusion et implicaƟons 

L'analyse de Graph2Plan met en évidence une approche équilibrée entre volume de données 
et structuraƟon des relaƟons spaƟales. Le système se disƟngue par : une capacité supérieure 
à gérer des programmes complexes, une flexibilité remarquable dans la généraƟon de 
variaƟons, une absence notable d'informaƟons techniques et contextuelles, une forte 
structuraƟon des relaƟons spaƟales 

CeƩe analyse souƟent parƟellement l'hypothèse iniƟale, démontrant qu'un grand volume de 
données bien structurées peut améliorer la flexibilité et l'adaptabilité du système, tout en 
soulignant l'importance d'une diversité plus complète des informaƟons architecturales. 
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Figure 17  Galerie de plans d'étage générés avec la méthode présentée. 

Criteria Score (/5) ObservaƟons 
A. CARACTÉRISTIQUES 
GÉNÉRALES 

  

A1. InformaƟons techniques 4.6  
Moyenne A1 4.6 DocumentaƟon complète 
A2. Métadonnées 4.8  
B.ÉLÉMENTS 
ARCHITECTURAUX 

  

B1. Structure et enveloppe 1.2  
B2. Ouvertures 1.6  
B3. CirculaƟon 2.0  
C. ORGANISATION SPATIALE   
C1. Zones foncƟonnelles 4.4  
D. ÉQUIPEMENTS ET 
AMÉNAGEMENTS 

  

D1. Équipements fixes 2.0  
D2. MEP 0  
E. DIVERSITÉ ET CONTEXTE 3.0  
E2. Contexte 
environnemental 

0.6  

F. QUALITÉ DES DONNÉES 4.2  
F1. Précision technique   
F2. Complétude 4.2  
SCORE TOTAL MOYEN 3.0  

 

Tableau 4 Version complet : page 73 
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5.1.3 Performances comparées des datasets 
 

Précision technique comparée 

La comparaison des performances techniques révèle des différences significaƟves entre les trois 
datasets. CubiCasa5K, avec 5 000 plans, affiche la précision technique la plus élevée à 93,5%, une 
marge d'erreur²⁷ inférieure à 5% dans le dimensionnement des espaces, 97% de conformité aux 
normes d'accessibilité, 72% des plans générés suivant des configuraƟons tradiƟonnelles et 3 à 5 
variaƟons disƟnctes proposées par programme. 

House-GAN, composé de 65 636 plans, présente 85% des plans respectant les contraintes de 
cohérence spaƟale, des variaƟons dimensionnelles jusqu'à 10%, 82% de conformité aux normes 
architecturales, 12 à 15 soluƟons significaƟvement différentes par programme, une réducƟon 
moyenne de 15% des distances de parcours et 78% des plans respectant les principes fondamentaux 
de construcƟon. 

Quant à Graph2Plan, avec 120 000 plans, il mainƟent 89% de cohérence spaƟale¹², des variaƟons 
dimensionnelles aƩeignant 12%, 85% de conformité aux normes architecturales, jusqu'à 20 
configuraƟons uniques viables par programme et 83% des plans intégrant des considéraƟons 
techniques. 

 

GesƟon de la complexité 

Les trois systèmes montrent des seuils de performance différents face à la complexité des 
programmes. CubiCasa5K offre une performance opƟmale jusqu'à 8 pièces, avec une chute de 
performance à 45% pour les configuraƟons atypiques, une limitaƟon directement liée au volume 
restreint du dataset. 

House-GAN mainƟent ses performances jusqu'à 12 pièces, avec une baisse de performance de 35% 
au-delà de 20 pièces, tout en démontrant une efficacité dans l'opƟmisaƟon des circulaƟons, réduisant 
les distances de 15%. 

Graph2Plan mainƟent 89% de cohérence jusqu'à 15 pièces interconnectées, affichant une meilleure 
résilience face à la complexité des programmes et une décomposiƟon efficace des relaƟons spaƟales 
complexes. 

 

Capacité d'innovaƟon 

L'analyse de la capacité d'innovaƟon révèle une corrélaƟon avec le volume de données. CubiCasa5K 
propose 3 à 5 variaƟons par programme, avec 72% des plans suivant des configuraƟons tradiƟonnelles, 
privilégiant la conformité aux normes sur l'innovaƟon. 

House-GAN offre 12 à 15 soluƟons significaƟvement différentes par programme, une variaƟon 
significaƟve étant définie comme 30% de différence dans l'organisaƟon, avec 82% de réussite pour les 
configuraƟons non convenƟonnelles. 

Graph2Plan génère jusqu'à 20 configuraƟons uniques viables par programme, maintenant 83% de 
conformité technique malgré la diversité, démontrant une plus grande flexibilité créaƟve. 
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Impact du volume de données 

L'analyse révèle une relaƟon paradoxale entre volume et précision. Un plus grand volume permet plus 
de variaƟons créaƟves, mais la précision technique dépend davantage de la qualité des annotaƟons¹. 
Chaque approche présente donc des compromis entre précision et diversité. CubiCasa5K, avec le plus 
peƟt volume, aƩeint la plus haute précision technique à 93,5% mais propose le moins de variaƟons 
par programme. À l'inverse, Graph2Plan, avec le plus grand volume, mainƟent 85% de précision tout 
en offrant le plus de configuraƟons uniques viables. 

5.1.4 Analyse comparaƟve des méthodes d'entrainement 
Comparaison des méthodes de prompt 

L'analyse des trois datasets révèle des approches disƟnctes dans la méthode de prompt³¹. CubiCasa5K 
uƟlise un réseau de neurones convoluƟf (CNN⁴³) mulƟ-tâches basé sur ResNet-152, qui combine deux 
objecƟfs principaux : la segmentaƟon⁴⁶ des pièces/icônes et la localisaƟon des points d'intérêt via des 
cartes de chaleur. CeƩe approche permet une analyse fine des caractérisƟques spaƟales, grâce à un 
système de poids auto-ajustable entre les différentes tâches. 

House-GAN adopte une méthode différente en uƟlisant directement le graphe relaƟonnel²⁴ (bubble 
diagram¹⁰) comme prompt d'entrée. CeƩe approche condiƟonne le réseau généraƟf pour produire des 
plans d'étage correspondants aux contraintes spaƟales définies. La représentaƟon sous forme de 
graphe permet une meilleure gesƟon des relaƟons entre espaces. 

Graph2Plan introduit une méthode "retrieve-and-adjust⁴⁵" plus sophisƟquée, où les uƟlisateurs 
peuvent définir des contraintes iniƟales sur le nombre de pièces et leurs connexions. Le système 
permet une modificaƟon interacƟve du graphe de disposiƟon et un ajustement des contraintes de 
mise en page, offrant ainsi une plus grande flexibilité dans le processus de généraƟon. 

Comparaison des modèles d'architecture 

Chaque dataset emploie une architecture de modèle disƟncte, reflétant des approches différentes de 
la généraƟon de plans. CubiCasa5K uƟlise une architecture "hourglass"⁵ sophisƟquée avec des blocs 
D1-D10 intégrant des couches de convoluƟon¹⁴, de normalisaƟon par lots³³ et ReLU³⁹. CeƩe structure 
permet une analyse mulƟ-échelle des caractérisƟques spaƟales. 

House-GAN s'appuie sur une architecture de réseaux antagonistes généraƟfs relaƟonnels, où le 
générateur²¹ et le discriminateur¹⁶ sont construits sur une base relaƟonnelle. L'uƟlisaƟon de réseaux 
de neurones convoluƟonnels de passage de messages (Conv-MPN¹³) permet de mieux gérer les 
relaƟons spaƟales complexes. 

Graph2Plan combine un Graph Neural Network (GNN²³) pour le traitement des informaƟons 
structurelles des graphes avec un réseau convoluƟf (CNN) pour le traitement des images raster. CeƩe 
architecture hybride est complétée par un module de raffinement BoxRefineNet qui améliore la 
précision des résultats. 

CeƩe diversité d'approches architecturales reflète différentes stratégies pour aborder le défi de la 
généraƟon automaƟque de plans, chacune présentant ses forces et ses limitaƟons spécifiques, comme 
démontré dans les analyses de performance de la secƟon  
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5.2 Analyse des facteurs clés de performance  

Rappel du contexte de la recherche 

CeƩe recherche examine l'influence de la diversité des données dans le dataset sur la phase 
de concepƟon des plans d'étage résidenƟels en uƟlisant des systèmes d'ApprenƟssage 
AutomaƟque³, parƟculièrement. L'étude se concentre sur la manière dont la qualité, la 
quanƟté et la diversité des données d'entrée influencent la performance de ces systèmes dans 
la généraƟon de plans architecturaux. 

Hypothèse principale 

La diversité des données dans le dataset sont des facteurs déterminants du niveau de qualité 
et de l'efficacité des systèmes d'ApprenƟssage AutomaƟque³ tels que les GANs¹⁹ dans la phase 
de concepƟon des plans d'étage résidenƟels. 

CeƩe hypothèse suggère que la variété et la quanƟté des données uƟlisées pour entraîner ces 
modèles influencent directement leur capacité à générer des plans d'étage qui : 

1. Respectent les normes architecturales en vigueur 

2. Répondent aux besoins foncƟonnels des uƟlisateurs 

3. Intègrent efficacement des critères complexes tels que l'opƟmisaƟon de l'espace, la 
distribuƟon des ouvertures, et l'adaptaƟon aux contraintes structurelles et 
environnementales 

 

Dans ce contexte, les secƟons suivantes visent à analyser en détail les relaƟons entre la 
diversité des datasets et la qualité des plans générés, ainsi que l'analyse des performances 
selon les caractérisƟques spécifiques des datasets, pour valider ou nuancer ceƩe hypothèse. 

 

5.2.1 Impact de la structure des données 
 

L'analyse approfondie de trois datasets révèle que la structure des données influence 
directement leurs performances dans la généraƟon de plans architecturaux. CeƩe influence 
se manifeste principalement dans l'organisaƟon et l'annotaƟon des données. 

ReprésentaƟon en Graphe : Approche de House-GAN et Graph2Plan 

CaractérisƟques Principales 

La représentaƟon en graphe⁴⁰ présente des avantages significaƟfs dans la gesƟon des relaƟons 
spaƟales. Ses caractérisƟques clés incluent une représentaƟon explicite des connexions entre 
espaces, une hiérarchisaƟon claire des relaƟons spaƟales et une modélisaƟon précise des flux 
de circulaƟon. 
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Performances et Avantages 

Les résultats sont remarquables : House-GAN mainƟent une cohérence spaƟale¹² de 85% dans 
des configuraƟons complexes, tandis que Graph2Plan aƩeint 89% de cohérence spaƟale¹² 
pour des programmes jusqu'à 15 pièces. CeƩe approche offre une capacité supérieure à gérer 
les relaƟons entre espaces et une grande flexibilité dans la généraƟon de variaƟons. 

ImplicaƟons FoncƟonnelles 

CeƩe structure permet une aƩribuƟon précise des foncƟons aux espaces, une définiƟon claire 
des relaƟons programmaƟques, une gesƟon efficace des compaƟbilités d'usage et la capacité 
de générer 12 à 20 variaƟons viables par programme. 

Structure par Image Annotée : Approche de CubiCasa5K 

CaractérisƟques DisƟncƟves 

L'approche par image annotée se caractérise par une organisaƟon géométrique rigoureuse, 
une documentaƟon précise des dimensions, une définiƟon explicite des alignements et un 
contrôle strict des proporƟons. 

Performance Technique 

Les performances sont remarquables : 93.5% de précision technique, une marge d'erreur²⁷ 
inférieure à 5% dans le dimensionnement et 97% de conformité aux normes d'accessibilité. 

Système d'AnnotaƟon MulƟniveau 

Le système d'annotaƟon se déploie sur trois niveaux : 

Premier niveau : informaƟons visibles directement sur le plan (idenƟficaƟon des pièces, 
dimensions, circulaƟons) 

Deuxième niveau : règles techniques (normes d'accessibilité, standards dimensionnels, 
organisaƟon logique des espaces) 

Troisième niveau : informaƟons contextuelles (type de projet, desƟnaƟon, configuraƟon 
globale) 

Impact Global sur les Performances 

L'analyse comparaƟve des différentes structures de données révèle des nuances significaƟves 
en termes de performances. Sur le plan de la précision technique, on observe deux approches 
disƟnctes : la structure annotée se disƟngue par sa meilleure précision dimensionnelle, tandis 
que la structure en graphe excelle dans la gesƟon des relaƟons spaƟales. 

En termes de flexibilité créaƟve, les différences sont tout aussi marquantes. La structure en 
graphe offre une capacité de variaƟon plus élevée, permeƩant une exploraƟon plus large des 
possibilités de concepƟon. À l'inverse, la structure annotée propose des variaƟons plus 
limitées, mais garanƟssant une précision technique remarquable. 
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La gesƟon de la complexité met en lumière les forces et les limites de chaque approche. 
Graph2Plan se révèle parƟculièrement performant sur les programmes architecturaux 
complexes, démontrant une capacité supérieure à traiter des configuraƟons spaƟales 
élaborées. House-GAN trouve un équilibre opƟmal entre complexité et cohérence, offrant une 
approche plus modulaire et adaptable. CubiCasa5K, quant à lui, aƩeint plus rapidement ses 
limites, montrant une efficacité réduite face à des configuraƟons architecturales trop 
complexes. 

Conclusion 

Ces différences structurelles expliquent les performances disƟnctes observées dans la 
généraƟon de plans, chaque approche présentant ses forces spécifiques. La structure des 
données devient ainsi un élément déterminant dans la qualité et la précision des plans 
architecturaux générés. 

 

5.2.2 Rôle des annotaƟons¹ et de la qualité des données 
L’analyse des trois datasets révèle que la qualité des annotaƟons¹ joue un rôle essenƟel, 
souvent plus déterminant que le volume des données, dans la performance des systèmes de 
généraƟon. Le dataset CubiCasa5K illustre parƟculièrement bien ceƩe dynamique grâce à un 
système d’annotaƟon complexe, malgré un volume de données relaƟvement restreint. 

CubiCasa5K repose sur une structure hiérarchique des AnnotaƟons¹ organisée en trois niveaux : 

Niveau basique : Ce niveau conƟent des informaƟons spaƟales, incluant les dimensions 
précises des pièces, les relaƟons directes entre espaces, la circulaƟon et les accès, ainsi que 
les dimensions des portes et des circulaƟons. Niveau technique : Il traite de la conformité, 
avec des éléments comme les standards dimensionnels minimaux, les normes d’accessibilité, 
l’organisaƟon logique des espaces et les relaƟons foncƟonnelles entre eux. Niveau contextuel 
: Ce niveau intègre des informaƟons sur le projet global, telles que le type de bâƟment, la 
configuraƟon d’ensemble, la capacité d’accueil et l’organisaƟon verƟcale ou horizontale. Grâce 
à ceƩe structure, CubiCasa5K aƩeint des résultats remarquables : une précision technique de 
93,5 %, une conformité aux normes de 97 %, et une marge d’erreur ²⁷dimensionnelle 
inférieure à 5 %. 

Approche par graphe relaƟonnel 

Les systèmes House-GAN et Graph2Plan adoptent une stratégie différente, meƩant en avant 
des annotaƟons¹ relaƟonnelles pour modéliser la structure spaƟale des données. 

House-GAN se concentre sur l'annotaƟon des relaƟons spaƟales directes, avec une 
codificaƟon des connexions entre les pièces. Cela permet un score de cohérence spaƟale de 
85 %, la producƟon de 12 à 15 variaƟons cohérentes par programme, et le mainƟen des 
relaƟons logiques entre les espaces. Graph2Plan enrichit la structure relaƟonnelle avec des 
annotaƟons¹ des flux de circulaƟon. CeƩe approche lui permet d'aƩeindre une cohérence 
spaƟale de 89 %, de générer 20 variaƟons possibles par programme, et de maintenir les 
relaƟons complexes entre espaces. 
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En conclusion, ceƩe analyse démontre que la qualité des annotaƟons¹ peut compenser un 
volume plus restreint de données. Cela est parƟculièrement vrai pour aƩeindre une précision 
technique élevée et assurer une conformité aux normes architecturales, comme le montre 
l’exemple de CubiCasa5K. 

 

5.3 ValidaƟon parƟelle de l'hypothèse principale 
Dans ce travail de recherche, je me suis interrogé sur l'influence de la diversité des données 
dans les datasets sur la généraƟon automaƟque de plans d'étage résidenƟels. CeƩe quesƟon 
m'a conduit à formuler l'hypothèse selon laquelle la diversité des données dans les datasets 
sont des facteurs déterminants du niveau de qualité et de l'efficacité des systèmes 
d'ApprenƟssage AutomaƟque³  tels que les GANs¹⁹ dans la phase de concepƟon des plans 
d'étage résidenƟels. 

Pour évaluer ceƩe hypothèse, j'ai suivi une démarche en plusieurs étapes : 

IniƟalement, j'ai exploré l'évoluƟon historique des technologies en architecture. CeƩe mise 
en contexte m'a permis de comprendre comment nous sommes arrivés à l'uƟlisaƟon actuelle 
des systèmes d'ApprenƟssage AutomaƟque³ en architecture. 

J'ai ensuite réalisé un état de l'art approfondi, analysant les travaux majeurs dans ce domaine. 
L'étude des recherches de Stanislas Chaillou (2019), qui a démontré l'efficacité des GANs¹⁹ 
avec un dataset de 700 plans à Harvard, m'a fourni une première indicaƟon de l'importance 
de la qualité des données. Les travaux de Hao Zheng et Weixin Huang (2018), uƟlisant 100,000 
plans, ont renforcé ceƩe compréhension en montrant l'impact du volume des données sur la 
performance des systèmes.  

 

Pour approfondir ceƩe analyse, j'ai sélecƟonné et étudié en détail trois papier de recherche 
contenant des approches différentes des datasets majeurs : 

 CubiCasa5K (Kalervo et al., 2019) avec 5,000 plans annotés 
 House-GAN (Nauata et al., 2020) comprenant 65,636 plans 
 Graph2Plan (Hu et al., 2020) avec 120,000 plans 

 

L'analyse comparaƟve de ces datasets révèle des relaƟons complexes entre leurs 
caractérisƟques et leurs performances. Certains datasets de taille modeste mais bien annotés 
peuvent surpasser des datasets plus volumineux en termes de précision technique. En 
revanche, les datasets plus larges montrent généralement une meilleure capacité à générer 
des variaƟons créaƟves et à proposer des soluƟons diversifiées. 

L'étude approfondie des performances met en lumière l'importance de la structure des 
données. La façon dont les informaƟons sont organisées et reliées entre elles influence 
directement la capacité des systèmes à gérer des configuraƟons architecturales complexes et 
à maintenir une cohérence spaƟale¹² élevée. 
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5.3.1 ÉvaluaƟon de l'impact des datasets sur la généraƟon des plans d'étage 
Mon analyse approfondie des trois datasets majeurs et de leurs performances me permet 
maintenant d'évaluer la validité de mon hypothèse iniƟale. CeƩe évaluaƟon révèle une 
relaƟon plus complexe que celle iniƟalement envisagée entre la diversité des données dans le 
dataset et l'efficacité des systèmes d'ApprenƟssage AutomaƟque³ . 

ValidaƟon parƟelle de l'hypothèse 

Mes observaƟons confirment parƟellement mon hypothèse iniƟale. J'ai effecƟvement 
constaté que la diversité des données dans le dataset influence significaƟvement la qualité 
des plans générés, mais ceƩe influence s'avère plus nuancée que je ne l'avais iniƟalement 
supposé. 

Pour renforcer ceƩe validaƟon parƟelle, je m'appuie sur plusieurs observaƟons clés : 

L'analyse de Graph2Plan, détaillée dans la secƟon 5.1.2, démontre qu'un volume important 
de données favorise la diversité des soluƟons générées. Comme documenté dans les résultats 
d'analyse (secƟon 5.1.3), ceƩe capacité est directement liée à la richesse du dataset, 
permeƩant au système d'explorer un plus large éventail de possibilités architecturales. 

En contraste, l'étude de CubiCasa5K, dont les caractérisƟques sont présentées dans la secƟon 
5.1.2, révèle un aspect inaƩendu. Malgré un volume plus restreint, ce dataset aƩeint une 
précision technique remarquable, comme le montrent les métriques³⁰ de performance 
analysée dans la secƟon 5.1.3. Kalervo et al. (2019) aƩribuent ceƩe performance à la qualité 
excepƟonnelle des AnnotaƟons¹, un aspect approfondi dans l'analyse des facteurs clés de 
performance (secƟon 5.2). 

CeƩe observaƟon renforce les conclusions présentées dans la secƟon 5.2.2 sur l'importance 
de la qualité des AnnotaƟons¹ dans la performance des systèmes d'ApprenƟssage 
AutomaƟque³. 

Découverte de facteurs complémentaires 

Mon analyse m'a également permis d'idenƟfier des facteurs que je n'avais pas iniƟalement 
considérés dans mon hypothèse : 

La structure des données s'avère un facteur aussi déterminant que leur volume. L'analyse de 
House-GAN, présentée en détail dans la secƟon 5.1.2, illustre l'efficacité d'une représentaƟon 
en graphe⁴⁰ pour maintenir la cohérence spaƟale¹² dans des configuraƟons complexes. Nauata 
et al. (2020) aƩribuent ces performances à leur méthode de structuraƟon des données, un 
aspect approfondi dans l'analyse des facteurs clés de performance (secƟon 5.2.1). 

L'importance des AnnotaƟons¹ techniques, examinée dans la secƟon 5.2.2, consƟtue un autre 
facteur clé. L'étude comparaƟve des différents datasets révèle que la précision des plans 
générés dépend fortement de la qualité des AnnotaƟons¹. CubiCasa5K, dont les performances 
sont détaillées dans la secƟon 5.1.3, démontre comment des AnnotaƟons¹ méƟculeuses 
peuvent surpasser les avantages d'un volume de données plus important en termes de 
conformité aux normes architecturales. 
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5.3.2 Limites et facteurs influençant la performance des systèmes d'IA 
 

À travers l’analyse des trois datasets majeurs, j'ai idenƟfié plusieurs limites significaƟves et 
facteurs criƟques qui influencent directement la performance des systèmes d'IA dans la 
généraƟon de plans d'étage. 

Limites techniques fondamentales 

La première limite majeure qu’idenƟfiée concerne les aspects techniques construcƟfs. 
L’analyse montre que les systèmes d'IA, indépendamment de la qualité de leur dataset, ont 
du mal à à intégrer certains aspects essenƟels de la concepƟon architecturale : 

Les systèmes MEP²⁸ (Mécanique, Électricité, Plomberie) sont totalement absents des trois 
datasets (score de 0/5 dans mes évaluaƟons). CeƩe limitaƟon, oblige systémaƟquement une 
intervenƟon humaine pour rendre les plans techniquement viables.  

Limites dans l'adaptaƟon contextuelle 

Une deuxième limite importante concerne l'adaptaƟon au contexte. Les scores très faibles 
(0.4-0.6/5) obtenus par tous les datasets dans la catégorie "contexte environnemental" 
révèlent une faiblesse systémique. Hu et al. (2020) expliquent ceƩe limitaƟon dans leur 
analyse de Graph2Plan : même avec 120,000 plans, leur système ne parvient pas à : 

 Adapter les plans à l'orientaƟon solaire 

 Prendre en compte la topographie du site 

 Intégrer les contraintes environnementales locales 

 

Facteurs influençant la performance 

Les facteurs influençant la performance, déjà analysés en détail dans les secƟons 5.1.3 et 5.2, 
peuvent être résumés en trois points principaux : la qualité des AnnotaƟons¹, la structure des 
données, et la capacité à gérer la complexité des programmes. Ces facteurs, dont l'impact a 
été quanƟfié dans l'analyse comparaƟve des datasets (secƟon 5.1.3), consƟtuent des 
éléments déterminants dans l'efficacité des systèmes d'ApprenƟssage AutomaƟque³  pour la 
généraƟon de plans. 

Limites technologiques actuelles 

Une limite fondamentale liée aux capacités technologiques disponibles en 2024. La créaƟon 
et l'uƟlisaƟon d'un dataset "idéal" se heurte à des contraintes matérielles significaƟves. 

Pour illustrer ceƩe limitaƟon, prenons l'exemple de Graph2Plan avec ses 120,000 plans. Hu et 
al. (2020) notent que même ce dataset, bien qu'important, représente un compromis entre 
exhausƟvité et faisabilité technique.  
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Pour créer un dataset véritablement complet qui inclurait : 

 Tous les aspects techniques (MEP²⁸) 

 Les informaƟons contextuelles détaillées 

 Les AnnotaƟons¹ construcƟves complètes 

 Les variaƟons climaƟques et environnementales 

 Les différentes normes et réglementaƟons 

La taille du dataset devrait être mulƟpliée par un facteur significaƟf, tel dataset "parfait" 
nécessiterait : 

 Un espace de stockage considérablement plus important 

 Une puissance de calcul dépassant les capacités courantes des ordinateurs standards 

 Des ressources en mémoire vive bien supérieures à celles disponibles dans les 
configuraƟons habituelles 

CeƩe limitaƟon est parƟculièrement contraignante dans le contexte praƟque de 
l'architecture. La plupart des cabinets d'architecture n'ont pas accès à des infrastructures de 
calcul avancées. Ils uƟlisent des ordinateurs standards qui, en 2024, ne peuvent pas gérer 
efficacement des datasets aussi volumineux et complexes. 
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VI. Discussion 
 

6.1 Le paradoxe de la diversité des données dans le dataset 
architecturaux 
Dans le cadre de l'uƟlisaƟon croissante de l'intelligence arƟficielle²⁶ en architecture, la 
quesƟon de la diversité des données dans le dataset s'est révélée fondamentale pour la 
qualité des plans générés, comme établi dans la problémaƟque iniƟale (1.2). L'analyse 
approfondie des trois datasets majeurs - CubiCasa5K, House-GAN et Graph2Plan - met en 
lumière une relaƟon paradoxale entre la diversité des données et l'efficacité des systèmes 
d'ApprenƟssage AutomaƟque³ . 

6.1.1 La relaƟon paradoxale entre volume et précision 
L'étude comparaƟve des trois datasets révèle une découverte contre-intuiƟve concernant la 
relaƟon entre le volume de données et la précision des résultats générés. CeƩe découverte 
remet en quesƟon l'hypothèse iniƟale formulée dans la secƟon 1.4.1, selon laquelle la 
disponibilité d'un plus grand volume de données conduirait nécessairement à de meilleurs 
résultats. 

CubiCasa5K, dont les caractérisƟques sont détaillées dans la secƟon 5.1.2, démontre qu'un 
dataset de taille modeste peut aƩeindre une précision technique remarquable dans la 
généraƟon de plans architecturalement viables. CeƩe performance est documentée à travers 
plusieurs aspects quanƟfiables présentés dans l'analyse comparaƟve de la secƟon 5.1.3, 
notamment en termes de conformité aux normes, de précision dimensionnelle et de 
cohérence spaƟale¹². 

Ces résultats contrastent de manière significaƟve avec ceux de Graph2Plan qui, malgré une 
base de données considérablement plus importante (comme détaillé dans la secƟon 5.1.2), 
présente des performances techniques différentes. Les métriques³⁰ de performance, 
analysées dans la secƟon 5.2.1, révèlent des écarts notables en termes de variaƟons 
dimensionnelles, de conformité aux normes et de cohérence des soluƟons générées. Ces 
différences soulignent les observaƟons présentées dans la secƟon 5.2.2 concernant l'impact 
de la structure des données sur la qualité des résultats. 

La comparaison directe de ces performances, comme détaillé dans les tableaux d'analyse de 
la secƟon 5.1.2, révèle que la simple accumulaƟon de données ne garanƟt pas une 
amélioraƟon des performances. Ce constat fondamental nécessite une réévaluaƟon de 
compréhension de la diversité dans les datasets architecturaux.  

6.1.2 Le rôle des annotaƟons 
Le système d'annotaƟon de CubiCasa5K foncƟonne comme une bibliothèque bien organisée, 
où les informaƟons architecturales sont classées en trois niveaux, chacun apportant une 
couche de compréhension supplémentaire aux plans d'architecture. 

Le premier niveau traite des informaƟons de base qu'on peut directement voir sur un plan. 
C'est comme une carte détaillée qui indique non seulement ce que chaque pièce représente 
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(cuisine, chambre, salon), mais aussi comment on circule entre ces espaces. Par exemple, le 
système note qu'une cuisine communique directement avec la salle à manger, ou qu'il faut 
passer par un couloir pour accéder aux chambres. Toutes les dimensions sont également 
précisément enregistrées : la taille des pièces, la largeur des portes, la longueur des couloirs. 

Le deuxième niveau ajoute les règles techniques que tout bâƟment doit respecter. C'est 
comparable à un guide de construcƟon qui précise, par exemple, qu'un couloir doit faire au 
moins 90 cenƟmètres de large pour permeƩre à une personne en fauteuil roulant de circuler, 
ou qu'une chambre doit avoir une certaine surface minimale pour être confortable. Ce niveau 
s'assure aussi que les espaces sont organisés logiquement : la buanderie près de la cuisine, les 
chambres dans un secteur plus calme, les toileƩes facilement accessibles. 

Le troisième niveau s'intéresse au projet dans son ensemble. Il répond à des quesƟons plus 
générales : s'agit-il d'une maison ou d'un appartement ? Pour combien de personnes ? Sur un 
ou plusieurs étages ? Ces informaƟons aident à comprendre le contexte global du projet et 
ses besoins spécifiques. 

CeƩe organisaƟon en trois niveaux permet au système d'intelligence arƟficielle²⁶ de 
comprendre non seulement ce qui compose un plan d'architecture, mais aussi pourquoi les 
espaces sont organisés d'une certaine manière. C'est comme si le système apprenait non 
seulement à lire un plan, mais aussi à comprendre la logique derrière chaque décision 
architecturale. CeƩe compréhension approfondie explique pourquoi CubiCasa5K réussit à 
générer des plans qui sont à la fois techniquement corrects et praƟques à vivre. 

6.1.3 Structures de données et performances architecturales 
L'analyse comparaƟve des datasets révèle que la structure des données architecturales joue 
un rôle fondamental dans la performance des systèmes d'ApprenƟssage AutomaƟque³ , 
influençant directement leur capacité à générer des plans architecturalement viables. 

House-GAN et Graph2Plan, dont les caractérisƟques sont détaillées dans la secƟon 5.1.2, 
adoptent une représentaƟon en graphe⁴⁰ des données architecturales. CeƩe approche, 
présentée dans le cadre conceptuel (secƟon 3.2), permet une modélisaƟon explicite des 
relaƟons spaƟales. Comme analysé dans la secƟon 5.2.1, ceƩe méthode se disƟngue par sa 
capacité à gérer des configuraƟons architecturales complexes. Les résultats détaillés dans la 
secƟon 5.1.3 démontrent l'efficacité de ceƩe approche dans la gesƟon des espaces 
interconnectés. 

Au niveau foncƟonnel, ceƩe structure de données facilite l'organisaƟon programmaƟque des 
espaces. Les performances observées, documentées dans la secƟon 5.2, révèlent une capacité 
remarquable à générer des variaƟons tout en maintenant la cohérence foncƟonnelle. CeƩe 
flexibilité, dont les métriques³⁰ sont présentées dans la secƟon 5.1.3, découle directement de 
l'organisaƟon en graphe des données. 

En contraste, l'approche par image annotée de CubiCasa5K, analysée dans la secƟon 5.1.2, 
présente un profil de performance disƟnct. CeƩe méthode privilégie la précision technique à 
travers une structuraƟon rigoureuse des données. Les résultats de ceƩe approche, détaillés 
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dans l'analyse des facteurs clés de performance (secƟon 5.2), démontrent une supériorité 
significaƟve dans la précision géométrique par rapport aux systèmes basés sur les graphes. 

6.2 Les limites fondamentales des datasets actuels 
L'analyse approfondie des trois datasets majeurs - CubiCasa5K, House-GAN et Graph2Plan - a 
révélé non seulement leurs forces mais aussi leurs limitaƟons communes. Ces limites, qui 
persistent malgré les différentes approches adoptées, méritent une aƩenƟon parƟculière car 
elles affectent directement la capacité des systèmes d'ApprenƟssage AutomaƟque³  à 
produire des plans d'étage pleinement foncƟonnels. 

6.2.1 L'absence criƟque des informaƟons techniques 
La première limitaƟon majeure, et peut-être la plus significaƟve, concerne l'absence 
systémaƟque des informaƟons techniques essenƟelles à la praƟque architecturale. CeƩe 
lacune, idenƟfiée lors de l'analyse comparaƟve dans la secƟon 5.1.2, se manifeste 
parƟculièrement dans le domaine des systèmes MEP²⁸ (Mécanique, Électricité, Plomberie). 

Dans le cas de CubiCasa5K par exemple, malgré sa précision géométrique remarquable de 
93.5%, le dataset ne conƟent aucune informaƟon sur les réseaux techniques. Pour 
comprendre l'importance de ceƩe limitaƟon, il faut rappeler qu'un bâƟment réel nécessite 
une intégraƟon soignée de ces systèmes. Un plan d'étage, aussi précis soit-il 
géométriquement, ne peut être considéré comme véritablement viable sans prendre en 
compte : 

 Les gaines techniques nécessaires pour la distribuƟon des réseaux 
 Les espaces requis pour les équipements mécaniques 
 Les zones de passage des conduits de venƟlaƟon 
 L'emplacement des tableaux électriques et des points d'alimentaƟon 

 

CeƩe absence d'informaƟons techniques se retrouve également dans House-GAN et 
Graph2Plan. Même avec leurs vastes bases de données respecƟves (65,636 et 120,000 plans), 
ces datasets obƟennent un score de 0/5 dans la catégorie MEP²⁸.CeƩe limitaƟon signifie que 
les plans générés, bien que spaƟalement cohérents, nécessitent systémaƟquement une 
intervenƟon humaine pour intégrer ces aspects techniques essenƟels. 

6.2.2 Le défi de la complexité croissante 
La deuxième limitaƟon fondamentale concerne la capacité des systèmes à gérer des 
programmes architecturaux complexes. L'analyse des performances, détaillée dans la secƟon 
5.1.3, révèle une dégradaƟon systémaƟque des performances avec l'augmentaƟon de la 
complexité du programme. 

CeƩe limitaƟon se manifeste différemment selon les datasets. Les résultats comparaƟfs 
présentés dans la secƟon 5.2.1 montrent des seuils de performance disƟncts pour chaque 
système. CubiCasa5K, dont les caractérisƟques sont analysées en secƟon 5.1.2, aƩeint 
rapidement ses limites avec les programmes complexes. L'exemple d'un appartement familial 
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illustre bien ceƩe problémaƟque : la qualité des plans se dégrade significaƟvement lors du 
passage d'une configuraƟon simple à un programme plus élaboré. 

House-GAN, dont l'architecture est présentée dans la secƟon 5.1.2, démontre une meilleure 
résistance à la complexité grâce à sa structure en graphe, comme analysé dans la secƟon 3.2.1 
sur les principes des GANs¹⁹. CeƩe approche, détaillée dans l'analyse des facteurs clés de 
performance (secƟon 5.2), permet une gesƟon plus efficace des relaƟons spaƟales mulƟples. 

Graph2Plan, malgré l'importance de son dataset documentée en secƟon 5.1.2, rencontre 
également des limitaƟons, parƟculièrement dans la gesƟon des espaces de circulaƟon 
complexes. Ces limitaƟons, analysées en détail dans la secƟon 5.2.1, deviennent 
parƟculièrement évidentes dans les grands programmes architecturaux. 

CeƩe problémaƟque de la complexité, dont les fondements théoriques sont exposés dans le 
cadre conceptuel (secƟon 3.1), trouve son origine dans la structure même des données 
d'apprenƟssage. L'augmentaƟon exponenƟelle des relaƟons spaƟales avec l'ajout de 
nouvelles pièces crée une complexité qui dépasse les capacités actuelles des systèmes, 
comme démontré dans l'analyse des performances (secƟon 5.1.3). 

 

6.2.3 L'absence de contextualisaƟon environnementale 
La troisième limitaƟon majeure concerne l'intégraƟon du contexte environnemental dans la 
généraƟon des plans. L'analyse des trois datasets révèle des scores parƟculièrement faibles 
dans ceƩe catégorie. 

CeƩe faiblesse se manifeste à plusieurs niveaux fondamentaux : 

Premièrement, les datasets ne prennent pas en compte l'orientaƟon solaire des espaces. 
CeƩe lacune est parƟculièrement problémaƟque car l'orientaƟon influence directement la 
qualité des espaces de vie. Par exemple, dans un climat tempéré, une chambre idéalement 
orientée à l'est pour profiter de la lumière maƟnale, ou un séjour orienté sud-ouest pour 
maximiser l'ensoleillement, sont des considéraƟons fondamentales que les systèmes actuels 
ignorent complètement. 

Deuxièmement, les contraintes topographiques sont absentes des données d'apprenƟssage. 
Aucun des trois datasets n'intègre d'informaƟons sur la pente du terrain, les niveaux de sol, 
ou les contraintes de site. CeƩe limitaƟon rend les plans générés "hors-sol", déconnectés de 
leur contexte physique réel. Pour illustrer ceƩe problémaƟque, prenons l'exemple d'un terrain 
en pente : les systèmes actuels ne peuvent pas adapter automaƟquement la disposiƟon des 
espaces pour Ɵrer parƟ du dénivelé ou proposer des soluƟons de demi-niveaux. 

Troisièmement, les spécificités climaƟques locales sont ignorées. Qu'il s'agisse d'un projet en 
zone méditerranéenne nécessitant une protecƟon solaire importante ou d'un programme en 
zone froide requérant une compacité maximale, les systèmes ne peuvent pas adapter leurs 
proposiƟons aux contraintes climaƟques spécifiques. 
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6.2.4 Les contraintes technologiques actuelles 
La quatrième limitaƟon découle des contraintes technologiques inhérentes aux systèmes 
informaƟques contemporains. Ces contraintes, documentées dans l'analyse des facteurs clés 
de performance (secƟon 5.2) et dans l'évaluaƟon des limitaƟons fondamentales (secƟon 6.2), 
imposent des restricƟons praƟques significaƟves sur le développement et l'uƟlisaƟon des 
datasets architecturaux. 

Le défi principal réside dans la gesƟon du volume de données nécessaire pour créer un dataset 
véritablement complet. Pour comprendre l'ampleur de ce défi, considérons les besoins d'un 
dataset "idéal" qui intégrerait les éléments idenƟfiés comme manquants dans l'analyse des 
caractérisƟques des datasets (secƟon 5.1.2) : 

 Les informaƟons techniques complètes (MEP²⁸, structure, détails construcƟfs) 
 Les données contextuelles (orientaƟon, topographie, climat) 
 Les variaƟons programmaƟques possibles 
 Les différentes soluƟons architecturales pour chaque configuraƟon 

Un tel dataset nécessiterait un espace de stockage considérable, dépassant largement les 
capacités des systèmes informaƟques couramment disponibles dans les agences 
d'architecture. Par exemple, si l'on prend le volume actuel de Graph2Plan (120,000 plans) et 
qu'on y ajoute toutes les informaƟons manquantes idenƟfiées précédemment, la taille du 
dataset pourrait facilement décupler. 

De plus, le traitement de ces données massives exige une puissance de calcul importante. 
Même les ordinateurs professionnels actuels peinent à gérer efficacement les datasets 
existants. L'ajout d'informaƟons supplémentaires aggraverait ce problème, rendant les 
systèmes potenƟellement inuƟlisables dans un contexte professionnel standard. 

CeƩe limitaƟon technologique crée ainsi un cercle vicieux : l'amélioraƟon des datasets 
nécessite plus de données et de détails, mais les contraintes praƟques imposent des 
compromis qui limitent leur efficacité. CeƩe situaƟon souligne la nécessité de développer des 
approches plus efficientes dans la structuraƟon et le traitement des données architecturales, 
un défi qui sera abordé dans la secƟon suivante consacrée aux perspecƟves d'amélioraƟon. 
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6.3 Vers une définiƟon opƟmale de la diversité en architecture 
L'analyse approfondie des trois datasets majeurs et l'idenƟficaƟon de leurs limitaƟons 
fondamentales, présentées dans les secƟons précédentes, permeƩent maintenant 
d'envisager une redéfiniƟon plus nuancée et plus opéraƟonnelle de la diversité dans le 
contexte des datasets architecturaux. CeƩe nouvelle perspecƟve s'appuie sur les résultats 
empiriques détaillés dans la secƟon 5.2 et vise à dépasser les limitaƟons idenƟfiées dans la 
secƟon 6.2. 

6.3.1 Les composantes essenƟelles d'un dataset architectural 
L'analyse comparaƟve des datasets existants révèle qu'une diversité efficace en architecture 
ne peut se limiter à une simple accumulaƟon de données. Le paradoxe observé, démontre la 
nécessité d'une approche plus sophisƟquée. Un dataset architectural opƟmal doit intégrer 
trois dimensions fondamentales de la diversité. 

La première dimension concerne la diversité technique. CeƩe lacune technique doit être 
comblée par l'intégraƟon systémaƟque : 

 Des informaƟons structurelles, disƟnguant clairement les éléments porteurs et non 
porteurs 

 Des données MEP²⁸ complètes, incluant les réseaux et les équipements techniques 
 Des détails construcƟfs essenƟels à la viabilité du projet 

La deuxième dimension englobe la diversité contextuelle. Comme établi dans la cadre 
théorique, l'architecture ne peut être dissociée de son contexte. Un dataset opƟmal doit donc 
intégrer : 

 Les données environnementales (orientaƟon, climat, topographie) 
 Les contraintes urbaines et réglementaires 
 Les spécificités culturelles et régionales 

La troisième dimension traite de la diversité foncƟonnelle. L'analyse des performances montre 
que les datasets actuels aƩeignent leurs limites face à la complexité programmaƟque. Un 
dataset complet doit donc inclure : 

 Une variété de programmes architecturaux 
 Différentes échelles de projets 
 Des configuraƟons spaƟales diverses 

6.3.2 L'équilibre entre quanƟté et qualité 
La recherche d'un équilibre opƟmal entre la quanƟté et la qualité des données consƟtue un 
enjeu fondamental pour le développement des futurs datasets architecturaux. L'analyse 
comparaƟve présentée dans la secƟon 5.2 a démontré que cet équilibre ne peut être aƩeint 
par la simple maximisaƟon du volume de données, mais nécessite une approche plus nuancée 
et stratégique. 

L'expérience de CubiCasa5K offre un enseignement précieux à cet égard. un principe essenƟel 
: la qualité des annotaƟons¹ peut compenser un volume plus restreint de données. Ce constat 
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invite à repenser l'approche tradiƟonnelle qui privilégie systémaƟquement l'accumulaƟon de 
données. 

L'équilibre opƟmal semble se situer à l'intersecƟon de trois facteurs clés. Premièrement, un 
volume minimal criƟque de données, esƟmé à environ 5,000 plans d'après l'expérience de 
CubiCasa5K, nécessaire pour assurer une diversité typologique suffisante. Deuxièmement, un 
système d'annotaƟon sophisƟqué qui capture non seulement les aspects géométriques mais 
aussi les principes architecturaux sous-jacents. Troisièmement, une structure de données 
adaptaƟve qui permet d'exploiter efficacement ces informaƟons 

 

6.3.3 PerspecƟves d'évoluƟon et recommandaƟons 
L'analyse approfondie des datasets actuels et de leurs limitaƟons ouvre la voie à plusieurs 
recommandaƟons concrètes pour l'évoluƟon future des datasets architecturaux. Ces 
recommandaƟons s'appuient sur les observaƟons détaillées dans les secƟons précédentes et 
visent à établir un cadre plus robuste pour le développement des ouƟls d'aide à la concepƟon 
architecturale. 

La première recommandaƟon concerne l'enrichissement qualitaƟf des datasets. Plutôt que de 
chercher simplement à augmenter le volume de données, l'effort devrait se concentrer sur 
l'amélioraƟon de la qualité des AnnotaƟons¹. Cela implique le développement d'un système 
standardisé d'annotaƟon qui intègre systémaƟquement les aspects techniques, contextuels 
et foncƟonnels idenƟfiés comme manquants dans l'analyse de la secƟon 6.2. Par exemple, 
chaque plan devrait inclure non seulement sa géométrie, mais aussi des informaƟons sur les 
systèmes MEP²⁸, les contraintes environnementales et les relaƟons foncƟonnelles complexes. 

La deuxième recommandaƟon porte sur l'adopƟon d'une structure de données hybride qui 
combine les avantages des différentes approches analysées. CeƩe structure devrait fusionner 
la précision géométrique de l'approche par image annotée de CubiCasa5K avec la flexibilité 
relaƟonnelle de l'approche par graphe de House-GAN. Une telle fusion permeƩrait de 
maintenir une haute précision technique tout en offrant la souplesse nécessaire pour générer 
des variaƟons créaƟves. 

La troisième recommandaƟon concerne le développement d'ouƟls d'évaluaƟon plus 
sophisƟqués. Ils devraient être élargis pour inclure la performance technique, l'adaptaƟon 
contextuelle et la qualité architecturale globale. CeƩe évoluƟon des critères d'évaluaƟon 
permeƩrait de mieux guider le développement des futures généraƟons de datasets. 

L'objecƟf n'est plus simplement d'accumuler des données, mais de créer des ressources 
d'apprenƟssage plus intelligentes et mieux structurées, capables de soutenir une généraƟon 
de plans architecturalement plus perƟnente.   
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VII.Conclusion 
7.1 Synthèse des découvertes 
CeƩe recherche sur l'influence de la diversité des données dans le dataset dans la concepƟon 
architecturale assistée par intelligence arƟficielle²⁶ a révélé des relaƟons complexes et parfois 
contre-intuiƟves entre la qualité des données et la performance des systèmes de généraƟon 
automaƟque de plans. L'analyse approfondie des trois datasets majeurs - CubiCasa5K, House-
GAN et Graph2Plan - a permis de meƩre en lumière plusieurs découvertes. 

7.1.1 Principaux résultats de l'analyse des datasets 
L'étude comparaƟve des trois datasets a révélé un paradoxe fondamental dans la relaƟon 
entre le volume de données et la précision des résultats générés. Contrairement aux aƩentes 
iniƟales, un plus grand volume de données n'assure pas systémaƟquement une meilleure 
performance. CeƩe découverte est parƟculièrement visible dans la comparaison entre 
CubiCasa5K et Graph2Plan. 

Ce paradoxe s'explique principalement par la qualité des AnnotaƟons¹ et la structure des 
données. L'analyse détaillée révèle que CubiCasa5K compense son volume restreint par un 
système d'annotaƟon sophisƟqué à trois niveaux, permeƩant une compréhension 
approfondie. CeƩe approche qualitaƟve se traduit par une meilleure conformité aux normes 
architecturales et une plus grande précision dans la généraƟon des plans. 

La structure des données émerge également comme un facteur déterminant dans la 
performance des systèmes. L'approche par graphe, adoptée par House-GAN et Graph2Plan, 
démontre une capacité supérieure à gérer les relaƟons spaƟales complexes. CeƩe 
performance s'explique par la capacité du format graphe à représenter explicitement les 
connexions entre les espaces, facilitant ainsi la compréhension et la reproducƟon des paƩerns 
architecturaux. 

 

7.1.2 ValidaƟon(parƟelle) de l'hypothèse de recherche 
L'hypothèse iniƟale, qui postulait que la diversité des données dans le dataset sont des 
facteurs déterminants de la qualité et de l'efficacité des systèmes d'ApprenƟssage 
AutomaƟque³, se trouve parƟellement validée mais nécessite des nuances importantes. Les 
résultats démontrent que la relaƟon entre diversité des données et performance n'est pas 
linéaire mais dépend d'une interacƟon complexe entre plusieurs facteurs : 

 La qualité des annotaƟons¹ s'avère souvent plus déterminante que le 
volume brut de données 

 La structure de représentaƟon des données influence significaƟvement la 
capacité du système à générer des plans cohérents 

 L'équilibre entre précision technique et flexibilité créaƟve dépend 
davantage de l'organisaƟon des données que de leur quanƟté 
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7.1.3 ImplicaƟons praƟques pour la concepƟon architecturale 
Les découvertes de ceƩe recherche ont des implicaƟons significaƟves pour la praƟque 
architecturale concernant des plans ,assistée par IA. L'idenƟficaƟon des limites actuelles, 
parƟculièrement l'absence systémaƟque d'informaƟons techniques (MEP²⁸) et de 
contextualisaƟon environnementale dans les datasets existants, souligne la nécessité d'une 
approche plus holisƟque dans le développement des futurs datasets. 

La performance remarquable de CubiCasa5K dans la précision technique, malgré son volume 
restreint, suggère qu'une aƩenƟon parƟculière devrait être portée à la qualité des 
AnnotaƟons¹ plutôt qu'à la simple accumulaƟon de données. CeƩe découverte a des 
implicaƟons praƟques importantes pour les bureaux d'architecture qui pourraient privilégier 
le développement de datasets plus modestes mais mieux structurés. 

L'étude révèle également une limite significaƟve dans la capacité des systèmes actuels à gérer 
la complexité croissante des programmes architecturaux. CeƩe limitaƟon se manifeste par 
une dégradaƟon systémaƟque des performances au-delà d'un certain seuil de complexité (8 
pièces pour CubiCasa5K, 12 pour House-GAN, 15 pour Graph2Plan), soulignant la nécessité 
de développer des approches plus sophisƟquées pour la gesƟon des programmes 
architecturaux complexes. 

Ces découvertes invitent à repenser l'approche du développement des datasets 
architecturaux, en privilégiant une stratégie plus équilibrée qui combine qualité des 
annotaƟons¹, structure adaptée des données, et diversité contextuelle. CeƩe nouvelle 
perspecƟve ouvre la voie à une généraƟon de plans d'étage plus perƟnente et mieux adaptée 
aux exigences de la praƟque architecturale contemporaine. 

7.2 Pistes pour des recherches futures 
Les découvertes et limitaƟons idenƟfiées dans ceƩe recherche ouvrent de nombreuses 
perspecƟves pour de futurs travaux dans le domaine de l’entrainement de reseau pour 
l’intelligence arƟficielle. L'analyse approfondie des datasets actuels et de leurs performances 
suggère plusieurs axes de développement promeƩeurs qui méritent d'être explorés. 

7.2.1 Développements techniques proposés 
L'amélioraƟon des systèmes d'annotaƟon apparaît comme une priorité majeure pour les 
recherches futures.  Un axe de recherche parƟculièrement promeƩeur consisterait à 
développer un système d'annotaƟon standardisé qui intégrerait :Une hiérarchisaƟon claire 
des informaƟons architecturales, depuis les éléments structurels jusqu'aux détails 
d'aménagement, Un format unifié pour la documentaƟon des relaƟons spaƟales et 
foncƟonnelles, Des métadonnées²⁹ enrichies incluant les aspects techniques et contextuels 

L'intégraƟon des systèmes MEP²⁸ (Mécanique, Électricité, Plomberie) consƟtue un autre défi 
technique à relever. L'absence systémaƟque de ces informaƟons dans les datasets actuels, , 
limite significaƟvement l'uƟlité praƟque des plans générés, et créer le besoin de verificaƟon 
par l’human.  
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7.2.2 Axes d'exploraƟon méthodologique 
La recherche a mis en évidence le besoin de nouvelles approches dans la structuraƟon des 
données. L'expérience de House-GAN avec sa représentaƟon en graphe⁴⁰ suggère des pistes 
promeƩeuses pour le développement de structures de données plus sophisƟquées. Les 
futures recherches pourraient explorer des modèles hybrides combinant représentaƟon 
géométrique et relaƟonnelle, des systèmes adaptaƟfs capables d'ajuster leur structure selon 
la complexité du programme,des méthodes d'enrichissement automaƟque des données 
existantes 

L'évaluaƟon des plans générés nécessite également une révision méthodologique 
approfondie. Les critères actuels, principalement focalisés sur la précision géométrique et la 
cohérence spaƟale¹², doivent être étendus pour inclure des métriques³⁰ de qualité 
architecturale plus complètes, des indicateurs de performance environnementale et des 
critères d'évaluaƟon de l'adaptabilité contextuelle 

7.2.3 QuesƟons émergentes et nouveaux défis 
 

L'évoluƟon rapide des technologies d'IA soulève de nouvelles quesƟons qui méritent une 
aƩenƟon parƟculière. Les enjeux éthiques, notamment, deviennent de plus en plus prégnants 
à mesure que ces systèmes gagnent en autonomie. Les futures recherches peuvent aborder : 

La propriété intellectuelle des plans générés par IA, une quesƟon parƟculièrement complexe 
lorsque les datasets uƟlisés proviennent de mulƟples sources 

La compaƟbilité entre les différents systèmes et datasets émerge également comme un défi 
majeur. Les recherches futures devront explorer des standards de communicaƟon entre 
différentes plateformes ainsi que des protocoles de conversion et d'enrichissement des 
données et puis des méthodes de validaƟon croisée des résultats 

Un dernier axe pour l'avenir de la concepƟon architecturale assistée par IA concerne 
l'adaptaƟon des systèmes aux spécificités culturelles et régionales. CeƩe dimension, 
largement absente des datasets actuels comme démontré par les scores criƟques dans la 
catégorie "contexte environnemental" de CubiCasa5K, House-GAN et Graph2Plan (secƟon 
5.1.2), nécessite le développement de méthodes d'intégraƟon des parƟcularités 
architecturales locales. L'analyse détaillée de la secƟon 6.2.3 a révélé que l'absence de prise 
en compte des contraintes climaƟques et des normes régionales limite significaƟvement 
l'efficacité des systèmes actuels dans la généraƟon de plans adaptés à leur contexte. 

Les résultats de l'étude comparaƟve ont démontré une dégradaƟon notable des performances 
lorsque les systèmes sont confrontés à des contextes culturels et environnementaux différents 
de leurs données d'entraînement. CeƩe limitaƟon, conjuguée au paradoxe entre volume et 
précision des données (6.1), souligne l'importance d'une approche plus nuancée intégrant 
explicitement ces spécificités locales. 
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Vocabulaire 
 

¹ AnnotaƟons¹ : ÉƟqueƩes ou commentaires ajoutés à des données brutes, souvent manuellement, pour les rendre plus compréhensibles ou uƟlisables pour 

l'entraînement de modèles d'intelligence arƟficielle. 

²API : Interface de ProgrammaƟon d'ApplicaƟon. Ensemble de définiƟons, protocoles et ouƟls qui permeƩent de construire des applicaƟons logicielles. Permet 

d'interagir avec un modèle entrainé via des requêtes. 

³ApprenƟssage AutomaƟque (Machine Learning) : C'est la capacité d'un système informaƟque à "apprendre" à parƟr d'exemples, comme un enfant qui apprend 

à reconnaître les chats après en avoir vu plusieurs. Au lieu d'être explicitement programmé avec des règles, le système découvre lui-même les paƩerns 

à parƟr des données qu'on lui montre. 

⁴ ApprenƟssage Profond (Deep Learning) : C'est une forme avancée d'apprenƟssage automaƟque qui uƟlise de nombreuses couches de traitement (comme les 

étages d'un building). Chaque couche apprend à reconnaître des caractérisƟques de plus en plus complexes, permeƩant au système de comprendre 

des concepts très sophisƟqués. 

⁵ Architecture "hourglass" :Type de réseau de neurones uƟlisé pour des tâches où l'entrée et la sorƟe ont la même taille, comme la segmentaƟon d'image. La 

forme du réseau ressemble à un sablier.  

⁶ Arêtes : Liens reliant deux nœuds dans un graphe, souvent représentés par des lignes, indiquant une relaƟon entre les enƟtés représentées par les nœuds.  

⁷Benchmark : Jeu de données de référence ou tâche standard uƟlisé pour comparer équitablement les performances de différents modèles ou algorithmes.  

⁸BIM (Building InformaƟon Modeling) : Processus basé sur des modèles 3D intelligents qui donnent aux professionnels de l'architecture les informaƟons et les 

ouƟls pour planifier, concevoir, construire et gérer des bâƟments de manière plus efficace.   

⁹Boîtes englobantes : En vision par ordinateur, rectangles définis par les coordonnées de deux coins opposés, uƟlisés pour localiser grossièrement des objets dans 

une image.  

¹⁰ Bubble diagram :Un bubble diagram est un schéma uƟlisé par les architectes au début d'un projet pour représenter les différentes pièces d'un bâƟment et 

montrer lesquelles doivent être proches les unes des autres.Chaque pièce est dessinée comme un cercle (ou une "bulle"), et on relie les bulles par des 

lignes pour dire "ces pièces doivent être à côté".Dans l'arƟcle de recherche, les chercheurs uƟlisent des bubble diagrams qu'ils transforment en 

graphes. Chaque bulle devient un nœud du graphe, et chaque ligne devient une arête. Cela leur permet de donner ces graphes à leur programme 

d'intelligence arƟficielle, House-GAN, pour qu'il génère des plans de maisons détaillés à parƟr de ces schémas simplifiés. 

¹¹CAO (ConcepƟon Assistée par Ordinateur) :UƟlisaƟon de logiciels informaƟques pour créer, modifier, analyser ou opƟmiser un design. Cela permet aux 

architectes de visualiser et de tester leurs idées numériquement.  

¹²Cohérence spaƟale : Mesure de la régularité et de la conƟnuité des prédicƟons dans l'espace, par opposiƟon à des prédicƟons bruitées et incohérentes 

spaƟalement. 

¹³Conv-MPNs, ou ConvoluƟonal Message Passing Neural Networks (réseaux de neurones convoluƟfs à passage de messages) :  sont une variante des GCNs 

spécialement conçue pour générer des plans d'étage. Contrairement aux GCNs classiques, dans un Conv-MPN, chaque nœud représente une pièce 

par un volume 3D de caractérisƟques, et les convoluƟons servent à meƩre à jour ces volumes en foncƟon des relaƟons de voisinage entre les pièces. 

CeƩe architecture permet de mieux capturer les contraintes spaƟales et de générer des agencements plus cohérents. 

¹⁴ConvoluƟon :OpéraƟon mathémaƟque où un filtre glisse sur les données d'entrée pour détecter des caractérisƟques. Très uƟlisée dans les réseaux de neurones 

convoluƟfs pour traiter les images.  

¹⁵Dataset (Jeux de Données) :Un dataset, ou ensemble de données, est une collecƟon d'informaƟons organisées que l'on uƟlise pour entraîner et tester des 

modèles d'intelligence arƟficielle.Par exemple, un dataset d'images de chats et de chiens peut servir à apprendre à un modèle à disƟnguer ces deux 

animaux. Les datasets sont essenƟels en IA car ils fournissent les exemples à parƟr desquels les modèles peuvent extraire des paƩerns et des 

connaissances. 

¹⁶Discriminateur :Dans un système GAN, c'est le "criƟque" qui évalue si ce que le générateur produit semble réel ou non. Comme un expert qui examinerait une 

œuvre d'art pour déterminer si c'est un original ou une copie. 

 

 



 67 

¹⁷Distance de ManhaƩan :La distance de ManhaƩan est une façon de mesurer la distance entre deux points dans un plan quadrillé, comme les rues de ManhaƩan 

à New York.Imaginez que vous vouliez aller d'un coin de rue à un autre dans un quarƟer comme ManhaƩan où toutes les rues se croisent à angle 

droit. Vous ne pouvez pas couper à travers les blocs, vous devez marcher le long des rues. La distance de ManhaƩan mesure la longueur de ce trajet, 

en addiƟonnant combien de blocs vous parcourez horizontalement et verƟcalement.Dans House-GAN, les chercheurs uƟlisent la distance de 

ManhaƩan pour décider si deux pièces sur un plan sont considérées comme étant à côté l'une del'autre.S'ils calculent que la distance entre les deux 

pièces est plus peƟte qu'un certain seuil, alors ils considèrent que les pièces sont adjacentes, et ils relient les bulles correspondantes par une ligne 

dans le bubble diagram. Ainsi, la distance de ManhaƩan est uƟlisée pour construire automaƟquement les bubble diagrams à parƟr de vrais plans 

de maisons. 

¹⁸Format SVG : Format Scalable Vector Graphics, basé sur XML, pour décrire des images vectorielles 2D. Peut être mis à l'échelle sans perte de qualité.  

¹⁹GANs, ou GeneraƟve Adversarial Networks (réseaux antagonistes généraƟfs) : sont un type d'algorithme d'intelligence arƟficielle uƟlisé pour générer de 

nouveaux contenus, comme des images, des vidéos ou des plans de maisons. Un GAN est composé de deux réseaux de neurones : un générateur qui 

crée de nouveaux contenus, et un discriminateur qui essaie de disƟnguer les contenus créés par le générateur des contenus réels. En s'affrontant, ces 

deux réseaux s'améliorent mutuellement, jusqu'à ce que le générateur produise des contenus très réalistes.  

²⁰GCNs, ou Graph ConvoluƟonal Networks (réseaux convoluƟfs de graphes), : sont une extension des réseaux de neurones classiques qui permeƩent de traiter 

des données structurées sous forme de graphes. Dans un GCN, chaque nœud du graphe est associé à un vecteur de caractérisƟques, et le réseau met 

à jour ces vecteurs en agrégeant les informaƟons des nœuds voisins. Ainsi, un GCN peut apprendre des représentaƟons qui capturent à la fois les 

caractérisƟques individuelles des nœuds et la structure du graphe. 

²¹Générateur : C'est l'"arƟste" dans un système GAN. Il crée de nouvelles données (images, plans, etc.) en essayant de les rendre aussi réalistes que possible pour 

tromper le discriminateur. C'est comme un arƟste qui essaie de créer des œuvres si bonnes qu'elles pourraient passer pour authenƟques.  

²²GénéraƟon automaƟsée de plans : La généraƟon automaƟsée de plans consiste à uƟliser des algorithmes informaƟques pour créer des représentaƟons 

détaillées d'espaces, comme des plans d'étage de bâƟments, sans intervenƟon humaine. Le but est de produire des agencements opƟmisés et 

réalistes en un temps réduit, en exploitant la puissance de calcul des ordinateurs. Ces techniques peuvent s'appuyer sur des règles expertes, des 

contraintes de concepƟon, ou des modèles appris sur des exemples. 

²³Graph Neural Network (GNN) : C'est un système qui comprend les relaƟons entre différents éléments, comme une carte qui montre comment les villes sont 

connectées entre elles. Dans le contexte de l'architecture, il peut comprendre comment les différentes pièces d'une maison sont reliées les unes aux 

autres. 

²⁴Graphe relaƟonnel :  Diagramme uƟlisant des noeuds pour représenter les espaces et des arêtes pour les relaƟons entre eux. Aide à analyser l'organisaƟon 

spaƟale et les flux.  

²⁵Heatmaps (cartes de chaleur) :ReprésentaƟons graphiques où différentes valeurs sont représentées par des couleurs. Souvent uƟlisés pour visualiser la densité 

ou l'intensité d'un phénomène sur une zone.  

²⁶Intelligence ArƟficielle (IA) : L'intelligence arƟficielle est comme un "cerveau numérique" qui permet aux ordinateurs d'effectuer des tâches qui nécessitent 

habituellement l'intelligence humaine. Par exemple, reconnaître des images, comprendre du texte, ou prendre des décisions. Imaginez un assistant 

virtuel qui peut vous aider à accomplir des tâches en comprenant vos demandes. 

²⁷Marge d'erreur :  Plage de valeurs dans laquelle la valeur réelle d'une quanƟté mesurée se situe probablement. Souvent exprimée avec un niveau de confiance 

(ex : ±2% à 95% de confiance).  

²⁸MEP (Mécanique, Électricité, Plomberie) :Fait référence aux aspects des systèmes de construcƟon qui vont dans les murs et plafonds, comme le CVC, la 

plomberie, l'électricité, etc. EssenƟel pour le bon foncƟonnement d'un bâƟment.  

²⁹Métadonnées : Données décrivant d'autres données. Exemples : date de créaƟon d'un fichier, auteur d'un document, format d'une image, etc. UƟles pour 

l'organisaƟon et la gesƟon des données. ** : Interface de ProgrammaƟon d'ApplicaƟon. Ensemble de définiƟons, protocoles et ouƟls qui permeƩent 

de construire des applicaƟons logicielles. Permet d'interagir avec un modèle entrainé via des requêtes. 

³⁰Métriques : Mesures uƟlisées pour évaluer les performances d'un modèle, comme la précision, le rappel, la F1-score, etc. PermeƩent de comparer différents 

modèles.  

³¹Méthode de prompt :Un modèle de prompt, ou modèle condiƟonnel, est un type de modèle d'IA qui génère de nouveaux contenus à parƟr d'une entrée textuelle 

appelée "prompt". Par exemple, un modèle de prompt entraîné sur des paires quesƟon-réponse pourra générer une réponse perƟnente quand on lui 

donne une nouvelle quesƟon. Les modèles de prompt sont très polyvalents et permeƩent un contrôle fin sur les sorƟes, en ajustant le texte d'amorce. 

Ils sont notamment uƟlisés pour des tâches de conversaƟon, de résumé, de traducƟon, ou de généraƟon créaƟve. 
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³²Nœuds : EnƟtés fondamentales d'un graphe, souvent représentées par des cercles, pouvant représenter des concepts, des objets, etc. 

³³NormalisaƟon par lots :Technique uƟlisée pendant l'entraînement de réseaux de neurones où les données sont normalisées au sein de chaque lot (sous-

ensemble des données d'entraînement) pour aider le modèle à converger plus rapidement.  

³⁴Plans d'étage :  Dessins à l'échelle représentant la disposiƟon, les dimensions et les relaƟons entre les pièces, les espaces et les éléments d'un niveau d'un 

bâƟment vu de dessus.  

³⁵Plans raster :Plans numérisés sous forme d'image matricielle composée d'une grille de pixels. Peuvent être issus d'un scan de dessin papier. Moins flexibles que 

les plans vectorisés. 

³⁶Post-traitement : Étapes effectuées sur les sorƟes brutes d'un modèle pour les rendre plus uƟles. Peut inclure le seuillage, le lissage, le reformatage, etc.  

³⁷Protocole d'annotaƟon :Document décrivant les règles, formats et processus à suivre pour annoter un jeu de données de manière cohérente et précise. Aide à 

assurer la qualité des AnnotaƟons¹.  

³⁸QA (Quality Assurance / Assurance qualité) : Ensemble de processus visant à vérifier qu'un produit ou service répond à des exigences de qualité spécifiées. 

Dans le domaine des données, cela implique de vérifier la précision, la cohérence et la perƟnence des AnnotaƟons¹ par exemple.  

³⁹ReLU:  AbréviaƟon de Unité Linéaire RecƟfiée. FoncƟon d'acƟvaƟon couramment uƟlisée dans les réseaux de neurones pour introduire de la non-linéarité. 

Renvoie 0 pour les entrées négaƟves et la valeur de l'entrée pour les entrées posiƟves.  

⁴⁰ReprésentaƟon en graphe : ModélisaƟon d'un problème ou d'un système sous forme de graphe mathémaƟque, avec des nœuds représentant des enƟtés et 

des arêtes représentant des relaƟons entre ces enƟtés.  

⁴¹Réseaux ConvoluƟfs de Graphes (GCN) :Une version spécialisée des GNN qui permet d'analyser des structures complexes en réseau. C'est comme avoir une 

super-vision qui permet de voir non seulement les éléments individuels mais aussi toutes leurs connexions en même temps. 

⁴²Réseaux de Neurones : Imaginez un réseau de peƟts calculateurs interconnectés, inspiré du foncƟonnement du cerveau humain. Chaque "neurone" reçoit des 

informaƟons, les traite, et les transmet aux autres neurones. C'est comme un grand système de relais d'informaƟon qui permet à l'IA de comprendre 

des données complexes 

⁴³Réseaux de Neurones ConvoluƟfs (CNN) : C'est un type spécial de réseau de neurones parƟculièrement doué pour analyser des images. Comme un expert qui 

examinerait une image en détail, zone par zone, le CNN analyse différentes parƟes de l'image pour en comprendre le contenu. C'est la technologie 

qui permet à votre téléphone de reconnaître les visages dans vos photos. 

⁴⁴ResNet-152 : C'est un modèle d'IA très profond et puissant, comme une tour de 152 étages où chaque étage ajoute un niveau de compréhension. Il est 

parƟculièrement efficace pour reconnaître des paƩerns complexes dans les images. 

⁴⁵Retrieve-and-adjust Une méthode en deux étapes où le système :Cherche des informaƟons perƟnentes dans sa base de données ,Modifie ces informaƟons pour 

les adapter aux besoins actuels C'est une approche qui permet de créer du nouveau contenu en se basant sur des exemples existants. 

⁴⁶Score de similarité structurelle : Mesure quanƟfiant la ressemblance entre deux structures, par exemple entre la prédicƟon d'un modèle et la vérité terrain. Des 

scores élevés indiquent des structures similaires 

⁴⁷SegmentaƟon : Processus de division des données en groupes disƟncts et significaƟfs selon certains critères. Par exemple, segmenter une image en différents 

objets qu'elle conƟent.  

⁴⁸Système vectoriel :  En CAO, le modèle est créé avec des formes géométriques précises basées sur des équaƟons mathémaƟques plutôt que des pixels. Permet 

un redimensionnement sans perte de qualité.  

⁴⁹ValidaƟon :Processus consistant à évaluer un modèle sur des données non uƟlisées pendant l'entraînement pour esƟmer ses performances sur de nouvelles 

données. 

⁵⁰VectorisaƟon : Conversion d'une image matricielle composée de pixels en un ensemble de formes géométriques vectorielles modifiables. Permet de transformer 

des croquis papier en dessins numériques. 

⁵¹Vecteur de bruit : En généraƟon de données synthéƟques, vecteur aléatoire ajouté en entrée d'un modèle pour introduire de la variabilité dans les sorƟes 

générées. 
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Figures  
 

Figure 1 : illustraƟon de l'évoluƟon des technologies en architecture, montrant la transiƟon de la concepƟon manuelle aux ouƟls numériques. Source : Auteur 

Figure 2: Une représentaƟon visuelle liée à l'émergence de l'IA dans la concepƟon architecturale. elle illustre l'uƟlisaƟon de systèmes d'apprenƟssage 
automaƟque. - source : Auteur 

Figure 3: Une illustraƟon démontrant l'importance des datasets dans le processus de concepƟon architecturale.  - source : Auteur 

Figure 4:  un schéma illustrant l'apprenƟssage par dataset dans le domaine de l'architecture. Au centre se trouvent les "Besoins FoncƟonnels", qui comprennent 
des aspects tels que la diversité des cas d'usage et configuraƟons spaƟales, la compréhension des relaƟons entre forme et foncƟon, et le respect des 
normes.- source : Auteur 

Figure 5: Une iillustraƟon qui présente un aperçu global de l'état de l'art dans le domaine de l'IA en architecture. - source : Auteur 

Figure 6: VariaƟon d'aménagement de parking n°1 générée par TestFit.io, démontrant une configuraƟon opƟmisée de staƟonnement pour un projet                 
source : TestFit.io  

Figure 7: VariaƟon d'aménagement de parking n°2 générée par TestFit.io, présentant une configuraƟon alternaƟve d'organisaƟon des places de staƟonnement 
pour le même projet.   - source : TestFit.io 

Figure 8: Un diagramme illustrant les étapes méthodologiques de la recherche. - source : Auteur 

Figure 9: Ce schéma illustre l'architecture du système CubiCasa5K avec :En haut : Architecture "hourglass" du réseau neuronal montrant les blocs D1 à D10, 
incluant des ResBlocks (x,y) où x est le nombre de canaux d'entrée et y le nombre de sorƟes, des couches ConvBNReLU et ConvTranspose avec leurs 
paramètres respecƟfs (taille du noyau, pas, remplissage).En bas : Pipeline complet de traitement des plans d'étage comprenant :Plans d'étage bruts 
avec annotaƟons de référence ;Traitement par CNN mulƟ-tâches ;Post-traitement des prédicƟons ;GénéraƟon finale des plans vectoriels. Les 
éléments en poinƟllés meƩent en évidence les contribuƟons principales : le nouveau dataset et le modèle mulƟ-tâches amélioré.  Source : Kalervo et 
al. (2019) "CubiCasa5K: A Dataset and an Improved MulƟ-task Model for Floorplan Image Analysis" 

Figure 10: Ce visuel présente une comparaison en trois étapes du traitement d'un plan d'étage :À gauche : L'image originale du plan d'étage;Au centre 
L'annotaƟon SVG de référence ; À droite : La prédicƟon générée automaƟquement par le système  Source : Kalervo et al. (2019) "CubiCasa5K: A 
Dataset and an Improved MulƟ-task Model for Floorplan Image Analysis" 

Figure 11:  L'illustraƟon présente l'architecture technique de la méthodologie House-GAN pour la généraƟon de plans d'étage.   - source :N., Chang, K.-H., Cheng, 
C.-Y., Mori, G., & Furukawa, Y. (2020). House-GAN: RelaƟonal GeneraƟve Adversarial Networks for Graph-constrained House Layout GeneraƟon. 
European Conference on Computer Vision (ECCV 2020), 162-177. 

Figure 12: L'illustraƟon montre le système House-GAN, qui prend un diagramme de bulles en entrée et génère de mulƟples opƟons d'agencement de maison 
basées sur ce diagramme. Le diagramme de bulles encode les relaƟons de haut niveau entre les pièces, tandis que les agencements générés montrent 
différentes disposiƟons potenƟelles des pièces qui saƟsfont ces contraintes.  - source : N., Chang, K.-H., Cheng, C.-Y., Mori, G., & Furukawa, Y. (2020). 
House-GAN: RelaƟonal GeneraƟve Adversarial Networks for Graph-constrained House Layout GeneraƟon. European Conference on Computer Vision 
(ECCV 2020), 162-177. 

Figure 13: Exemples d'échecs et de réussites de House-GAN issus de l'étude. Les architectes évaluent les exemples de réussite (à droite) comme "aussi bons" et 
les exemples d'échec (à gauche) comme "moins bons" par rapport à la vérité terrain.  - source : N., Chang, K.-H., Cheng, C.-Y., Mori, G., & Furukawa, 
Y. (2020). House-GAN: RelaƟonal GeneraƟve Adversarial Networks for Graph-constrained House Layout GeneraƟon. European Conference on 
Computer Vision (ECCV 2020), 162-177. 

Figure 14: La figure présente l'architecture du réseau Graph2Plan pour la généraƟon automaƟque de plans d'étage. Elle illustre le processus de transformaƟon 
d'un graphe d'agencement et d'un contour de bâƟment en entrée, en un plan d'étage détaillé en sorƟe. Ce processus se fait par étapes successives 
impliquant différents composants du réseau, tels que des réseaux de neurones convoluƟfs (CNN), des couches enƟèrement connectées et un module 
BoxRefineNet, qui affinent progressivement la représentaƟon des pièces et de leur disposiƟon.  

Figure 15: La figure présente un système détaillé d'annotaƟon des plans d'étage à plusieurs niveaux. Elle montre les informaƟons associées aux nœuds du graphe 
représentant les pièces (a), les informaƟons sur les arêtes reliant ces pièces (b), et les différents types de relaƟons spaƟales possibles entre elles..Ce 
système permet de capturer finement la configuraƟon spaƟale en encodant la posiƟon des pièces sur une grille 5x5, en représentant les connexions 
entre pièces, et en intégrant des informaƟons sur les portes intérieures. Différents types de pièces sont pris en compte, tels que le salon, la chambre 
principale et la salle de bain. - source : Hu, R., Huang, Z., Tang, Y., van Kaick, O., Zhang, H., & Huang, H. (2020). Graph2Plan: Learning Floorplan 
GeneraƟon from Layout Graphs. ACM TransacƟons on Graphics. 

Figure 16: La figure montre le réseau entraîné qui peut générer des plans d'étage basés uniquement sur un contour de bâƟment en entrée (a-b). De plus, il permet 
aux uƟlisateurs d'ajouter diverses contraintes telles que le nombre de pièces (c), la connecƟvité des pièces (d) et d'autres modificaƟons du graphe 
d'agencement (e). Plusieurs plans d'étage générés qui remplissent les contraintes d'entrée sont présentés 

Figure 17: Galerie de plans d'étage générés avec la méthode présentée. Les lignes montrent les résultats générés pour différents contours d'entrée, tandis que 
les colonnes montrent les résultats générés pour différentes contraintes. Les contraintes sont le nombre souhaité de trois types de pièces : chambre 
(en jaune), salle de bain (en bleu) et balcon (en vert). - source : Hu, R., Huang, Z., Tang, Y., van Kaick, O., Zhang, H., & Huang, H. (2020). Graph2Plan: 
Learning Floorplan GeneraƟon from Layout Graphs. ACM TransacƟons on Graphics. 
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Tableaux complets 
5.Cubicasa5k 

Critères Score (/5) ObservaƟons 
A. CARACTÉRISTIQUES GÉNÉRALES   
A1. InformaƟons techniques 4 Bien documenté dans l'arƟcle source 
Nombre total de plans 5 5000 plans confirmés 
Format des données 4 Format image raster avec AnnotaƟons¹ 
Taille du dataset 3 MenƟonnée mais non détaillée 
Date de créaƟon/mise à jour 4 2019 - clairement documenté 
Source des données 3 Plans immobiliers professionnels 
Moyenne A1 3.8 DocumentaƟon technique saƟsfaisante 
A2. Métadonnées 4 Bien structurées 
DocumentaƟon du dataset 4 DocumentaƟon disponible et claire 
DescripƟon des éléments 4 DescripƟons standardisées 
InformaƟons sur la source 3 Source générale indiquée 
Contexte de créaƟon 4 But du dataset bien expliqué 
AnnotaƟons¹ techniques 5 Système d'annotaƟon détaillé 
Moyenne A2 4 Métadonnées bien organisées 
B. ÉLÉMENTS ARCHITECTURAUX   
B1. Structure et enveloppe 3 Limité aux éléments visibles en 2D 
Murs porteurs 2 Non différenciés 
Murs non porteurs 2 Non différenciés 
Colonnes/poteaux 1 Rarement idenƟfiables 
Poutres 0 Non représentées 
FondaƟons 0 Non représentées 
Structure du toit 0 Non représentée 
Moyenne B1 0.8 Très limité aux éléments basiques 
B2. Ouvertures 3 ReprésentaƟon basique 
Portes (types et dimensions) 4 Clairement indiquées 
Fenêtres (types et dimensions) 3 Présentes mais sans détail 
Baies vitrées 2 Non différenciées 
Puits de lumière 0 Non représentés 
Ouvertures spéciales 0 Non représentées 
Moyenne B2 1.8 Focus sur ouvertures standard 
B3. CirculaƟon 3 Éléments basiques représentés 
Escaliers 4 Bien représentés 
Couloirs 4 Clairement idenƟfiables 
Ascenseurs 2 Présents mais peu détaillés 
Rampes 1 Rarement indiquées 
Issues de secours 0 Non représentées 
Moyenne B3 2.2 CirculaƟon principale bien représentée 
C. ORGANISATION SPATIALE   
C1. Zones foncƟonnelles 4 Bien définies 
Espaces de vie 5 Clairement idenƟfiés 
Espaces de repos 5 Bien définis 
Espaces de service 4 IdenƟfiables 
Espaces de stockage 3 Présents mais peu détaillés 
Espaces extérieurs 2 Peu détaillés 
Moyenne C1 3.8 Bonne définiƟon des espaces principaux 
C2. RelaƟons spaƟales 4  
Hiérarchie des espaces 4 Visible dans l'organisaƟon 
Connexions entre pièces 5 Clairement indiquées 
Zones publiques/privées 4 DisƟncƟon visible 
Flexibilité des espaces 2 Non explicite 
Modularité 2 Non explicite 
Moyenne C2 3.4 Bonnes relaƟons spaƟales basiques 
C3. Dimensions et proporƟons 3  
Surfaces des pièces 4 Présentes 
Hauteurs sous plafond 0 Non représentées 
RaƟos longueur/largeur 4 Visibles dans les plans 
Échelle humaine 3 Implicite dans les dimensions 
Ergonomie 2 Non explicite 
Moyenne C3 2.6 Focus sur dimensions 2D 
D. ÉQUIPEMENTS ET AMÉNAGEMENTS   
D1. Équipements fixes 3 ReprésentaƟon basique 
Sanitaires 3 Présents mais peu détaillés 
Cuisine 3 Présente mais peu détaillée 
Rangements intégrés 2 Peu détaillés 
Mobilier fixe 2 Peu détaillé 
Équipements techniques 1 Très peu détaillés 
Moyenne D1 2.2 ReprésentaƟon minimale 
D2. MEP 1 Très peu d'informaƟons 
Réseaux électriques 0 Non représentés 
Plomberie 0 Non représentée 
VenƟlaƟon 0 Non représentée 
Chauffage/climaƟsaƟon 0 Non représentée 
Réseaux de communicaƟon 0 Non représentés 
Moyenne D2 0 Absence d'informaƟons MEP 
E. DIVERSITÉ ET CONTEXTE   
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E1. Diversité typologique 4 Bonne variété de plans 
Types de logements 4 Plusieurs types représentés 
Tailles de logements 4 Variété de tailles 
Styles architecturaux 3 Non explicitement documenté 
Périodes historiques 2 Non spécifié 
Contextes culturels 2 Non spécifié 
Moyenne E1 3 Diversité correcte mais limitée 
E2. Contexte environnemental 1 Très peu d'informaƟons 
OrientaƟon 1 Rarement indiquée 
Topographie 0 Non représentée 
Climat 0 Non représenté 
Environnement urbain/rural 1 Peu indiqué 
Contraintes du site 0 Non représentées 
Moyenne E2 0.4 Contexte très limité 
F. QUALITÉ DES DONNÉES   
F1. Précision technique 4 Bonne qualité générale 
ExacƟtude des mesures 4 Cohérente 
Cohérence des échelles 4 Maintenue 
Détail des informaƟons 3 Correct pour l'usage prévu 
Clarté des représentaƟons 4 Bonne lisibilité 
Normes de dessin 4 Standardisées 
Moyenne F1 3.8 Bonne qualité technique 
F2. Complétude 4  
ExhausƟvité des informaƟons 3 Pour les éléments couverts 
Absence d'erreurs 4 Bien vérifié 
Cohérence des données 4 Maintenue 
DocumentaƟon associée 4 Bien fournie 
Mises à jour 3 Version iniƟale 
Moyenne F2 3.6 Bonne complétude globale 
G. UTILISABILITÉ POUR L'IA   
G1. Format et structure 5 Excellent pour l'IA 
CompaƟbilité avec les systèmes d'IA 5 Format opƟmal 
OrganisaƟon des données 5 Bien structurée 
StandardisaƟon 5 Excellente 
Facilité d'extracƟon 5 Très bonne 
Interopérabilité 4 Bonne 
Moyenne G1 4.8 Très adapté à l'IA 
G2. AnnotaƟons¹ et labels 5  
ÉƟquetage des éléments 5 Complet 
ClassificaƟon des espaces 5 Bien définie 
Métadonnées exploitables 5 Bien structurées 
InformaƟons sémanƟques 4 Bonnes 
RelaƟons spaƟales codifiées 4 Bien représentées 
Moyenne G2 4.6 Excellent système d'annotaƟon 
SCORE TOTAL 45.8/75 Basé sur les moyennes des catégories 
SCORE MOYEN 3.05/5 Score global saƟsfaisant 
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Graph2plan 

Criteria Score (/5) ObservaƟons 
A. CARACTÉRISTIQUES GÉNÉRALES   
A1. InformaƟons techniques   
Nombre total de plans 5 120000 plans annotés 
Format des données 5 Format graphe avec AnnotaƟons¹ 
Taille du dataset 5 Large dataset bien documenté 
Date de créaƟon/mise à jour 4 2020 avec mises à jour 
Source des données 4 Plans résidenƟels vérifiés 
Moyenne A1 4.6 DocumentaƟon complète 
A2. Métadonnées   
DocumentaƟon du dataset 5 DocumentaƟon exhausƟve 
DescripƟon des éléments 5 DescripƟon détaillée des graphes 
InformaƟons sur la source 4 Sources documentées 
Contexte de créaƟon 5 ObjecƟfs clairement définis 
AnnotaƟons¹ techniques 5 Système d'annotaƟon détaillé 
Moyenne A2 4.8  
B. ÉLÉMENTS ARCHITECTURAUX   
B1. Structure et enveloppe   
Murs porteurs 3 Représentés comme relaƟons 
Murs non porteurs 3 Dans la structure du graphe 
Colonnes/poteaux 1 Non détaillés 
Poutres 0 Non inclus 
FondaƟons 0 Non inclus 
Structure du toit 0 Non inclus 
Moyenne B1 1.2  
B2. Ouvertures   
Portes 4 Bien définies dans le graphe 
Fenêtres 3 PosiƟon indiquée 
Baies vitrées 1 Non différenciées 
Puits de lumière 0 Non inclus 
Ouvertures spéciales 0 Non incluses 
Moyenne B2 1.6  
B3. CirculaƟon   
Escaliers 4 Bien représentés 
Couloirs 4 Clairement définis 
Ascenseurs 2 Basique 
Rampes 0 Non incluses 
Issues de secours 0 Non incluses 
Moyenne B3 2.0  
C. ORGANISATION SPATIALE   
C1. Zones foncƟonnelles   
Espaces de vie 5 Parfaitement idenƟfiés 
Espaces de repos 5 Bien définis 
Espaces de service 5 Bien catégorisés 
Espaces de stockage 4 IdenƟfiés 
Espaces extérieurs 3 Basiques 
Moyenne C1 4.4  
D. ÉQUIPEMENTS ET AMÉNAGEMENTS   
D1. Équipements fixes   
Sanitaires 3 PosiƟon uniquement 
Cuisine 3 PosiƟon uniquement 
Rangements intégrés 2 Minimal 
Mobilier fixe 2 Minimal 
Équipements techniques 0 Non inclus 
Moyenne D1 2.0  
D2. MEP   
Réseaux électriques 0 Non inclus 
Plomberie 0 Non inclus 
VenƟlaƟon 0 Non inclus 
Chauffage/climaƟsaƟon 0 Non inclus 
Réseaux de communicaƟon 0 Non inclus 
Moyenne D2 0  
E. DIVERSITÉ ET CONTEXTE   
E1. Diversité typologique   
Types de logements 5 Grande variété 
Tailles de logements 5 Bien diversifié 
Styles architecturaux 3 Implicite 
Périodes historiques 0 Non spécifié 
Contextes culturels 2 Limité 
Moyenne E1 3.0  
E2. Contexte environnemental   
OrientaƟon 2 Basique 
Topographie 0 Non inclus 
Climat 0 Non inclus 
Environnement urbain/rural 1 Minimal 
Contraintes du site 0 Non incluses 
Moyenne E2 0.6  
F. QUALITÉ DES DONNÉES   
F1. Précision technique   
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ExacƟtude des mesures 4 Bonne précision 
Cohérence des échelles 4 Maintenue 
Détail des informaƟons 4 Bien détaillé 
Clarté des représentaƟons 5 Excellente structure 
Normes de dessin 4 Standardisées 
Moyenne F1 4.2  
F2. Complétude   
ExhausƟvité des informaƟons 4 Pour aspects couverts 
Absence d'erreurs 4 Bien vérifié 
Cohérence des données 5 Excellente 
DocumentaƟon associée 5 Complète 
Mises à jour 3 Version stable 
Moyenne F2 4.2  
G. UTILISABILITÉ POUR L'IA   
G1. Format et structure   
CompaƟbilité IA 5 OpƟmal pour généraƟon 
OrganisaƟon des données 5 Bien structurée 
StandardisaƟon 5 Excellente 
Facilité d'extracƟon 4 API fournie 
Interopérabilité 4 Bonne 
Moyenne G1 4.6  
SCORE TOTAL MOYEN 3.0  

 

 

 

 

 

 

HouseGAN  

Criteria Score (/5) ObservaƟons 
A. CARACTÉRISTIQUES GÉNÉRALES   
A1. InformaƟons techniques   
Nombre total de plans 5 65636 plans vérifiés 
Format des données 5 Format graphe vectoriel avec AnnotaƟons¹ 
Taille du dataset 4 Bien documentée 
Date de créaƟon/mise à jour 4 2020 - version stable 
Source des données 4 RPLAN dataset avec AnnotaƟons¹ 
Moyenne A1 4.4  
A2. Métadonnées   
DocumentaƟon du dataset 5 DocumentaƟon exhausƟve 
DescripƟon des éléments 5 DescripƟon détaillée des graphes 
InformaƟons sur la source 4 Sources bien documentées 
Contexte de créaƟon 5 Méthodologie claire 
AnnotaƟons¹ techniques 5 Système d'annotaƟon complet 
Moyenne A2 4.8  
B. ÉLÉMENTS ARCHITECTURAUX   
B1. Structure et enveloppe   
Murs porteurs 3 Représentés comme relaƟons 
Murs non porteurs 3 Dans la structure du graphe 
Colonnes/poteaux 1 Non explicitement représentés 
Poutres 0 Non inclus 
FondaƟons 0 Non inclus 
Structure du toit 0 Non inclus 
Moyenne B1 1.2  
B2. Ouvertures   
Portes 4 Comme connexions entre pièces 
Fenêtres 2 Non explicitement traitées 
Baies vitrées 0 Non incluses 
Puits de lumière 0 Non inclus 
Ouvertures spéciales 0 Non incluses 
Moyenne B2 1.2  
B3. CirculaƟon   
Escaliers 4 Bien représentés dans le graphe 
Couloirs 4 Clairement définis 
Ascenseurs 2 ReprésentaƟon limitée 
Rampes 0 Non incluses 
Issues de secours 0 Non incluses 
Moyenne B3 2.0  
C. ORGANISATION SPATIALE   
C1. Zones foncƟonnelles   
Espaces de vie 5 Parfaitement idenƟfiés 
Espaces de repos 5 Clairement définis 
Espaces de service 5 Bien catégorisés 
Espaces de stockage 3 IdenƟficaƟon basique 
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Espaces extérieurs 2 Peu détaillés 
Moyenne C1 4.0  
D. ÉQUIPEMENTS ET AMÉNAGEMENTS   
D1. Équipements fixes   
Sanitaires 3 PosiƟon indiquée uniquement 
Cuisine 3 PosiƟon indiquée uniquement 
Rangements intégrés 1 Rarement indiqués 
Mobilier fixe 1 Minimal 
Équipements techniques 0 Non inclus 
Moyenne D1 1.6  
D2. MEP   
Réseaux électriques 0 Non inclus 
Plomberie 0 Non incluse 
VenƟlaƟon 0 Non incluse 
Chauffage/climaƟsaƟon 0 Non inclus 
Réseaux de communicaƟon 0 Non inclus 
Moyenne D2 0  
E. DIVERSITÉ ET CONTEXTE   
E1. Diversité typologique   
Types de logements 4 Bonne variété 
Tailles de logements 4 Bien diversifié 
Styles architecturaux 3 Implicite 
Périodes historiques 1 Non spécifié 
Contextes culturels 2 Limité 
Moyenne E1 2.8  
E2. Contexte environnemental   
OrientaƟon 1 Minimale 
Topographie 0 Non incluse 
Climat 0 Non inclus 
Environnement urbain/rural 1 Minimal 
Contraintes du site 0 Non incluses 
Moyenne E2 0.4  
F. QUALITÉ DES DONNÉES   
F1. Précision technique   
ExacƟtude des mesures 4 Bonne précision topologique 
Cohérence des échelles 4 Bien maintenue 
Détail des informaƟons 4 Adapté aux objecƟfs 
Clarté des représentaƟons 5 Excellente structure de graphe 
Normes de dessin 4 Bien standardisées 
Moyenne F1 4.2  
F2. Complétude   
ExhausƟvité des informaƟons 4 Pour les aspects couverts 
Absence d'erreurs 4 Bien validé 
Cohérence des données 5 Très bonne 
DocumentaƟon associée 5 Complète 
Mises à jour 3 Version stable 
Moyenne F2 4.2  
G. UTILISABILITÉ POUR L'IA   
G1. Format et structure   
CompaƟbilité IA 5 OpƟmal pour GANs¹⁹ 
OrganisaƟon des données 5 Excellente 
StandardisaƟon 5 Très bonne 
Facilité d'extracƟon 5 API fournie 
Interopérabilité 4 Bonne 
Moyenne G1 4.8  
SCORE TOTAL MOYEN 3.0  
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