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Avant-propos

Mon parcours en architecture, initié a I'ENSA Paris La Villette puis enrichi par une année de
master a KU Leuven a Bruxelles avant mon retour a ENSA, m'a progressivement amené a
m'intéresser a l'intersection entre I'architecture et l'intelligence artificielle. Cette curiosité est
née d'une volonté de comprendre et de maitriser les nouvelles technologies qui transforment
notre profession.

L'émergence de l'intelligence artificielle?® dans le domaine de I'architecture représentait pour
moi un territoire inexploré, un défi intellectuel stimulant. Mon choix de me concentrer sur ce
sujet était motivé par le désir d'acquérir une compréhension approfondie de ces outils tout
en les reliant directement a ma pratique architecturale. Ma spécialisation dans I'architecture
résidentielle pendant mes études m'a naturellement conduit a m'intéresser a la génération
automatique de plans d'étage par I'lA, et plus particulierement par les réseaux antagonistes
génératifs (GANs™).

Au fil de mes recherches, ma curiosité initiale s'est transformée en une quéte plus précise :
comprendre les mécanismes qui déterminent la qualité des plans générés par I'lA. Cette
exploration m'a mené vers I'étude des jeux de données (datasets) et de leur influence sur le
processus de génération, révélant des relations complexes et parfois paradoxales entre la
diversité des données et la qualité des résultats.

La relative nouveauté du sujet a constitué a la fois un défi et une opportunité. Le manque de
recherches directement liées a ma problématique m'a poussé a adopter une approche
transversale, puisant dans diverses sources pour construire une compréhension cohérente du
sujet. Cette démarche m'a permis de développer une perspective unique sur la relation entre
données et conception architecturale.

Une des découvertes les plus marquantes de ce travail fut de constater que la qualité des
plans générés ne dépend pas uniquement du volume de données disponibles, mais d'une
interaction complexe entre plusieurs facteurs. Cette révélation a profondément influencé ma
compréhension du potentiel et des limites de I'lA en architecture.

Je souhaite maintenant partager les résultats de cette recherche, espérant qu'ils
contribueront a une meilleure compréhension de |'utilisation de I'lA dans la conception
architecturale et ouvriront de nouvelles perspectives pour I'évolution de notre profession.
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Résumé

Ce mémoire explore I'influence de la diversité des données dans les datasets dans la conception
architecturale assistée par intelligence artificielle, en se concentrant particulierement sur la
génération de plans d'étage résidentiels. I'lA transforme progressivement les pratiques
architecturales, la question de la qualité et de la diversité des données au sein des jeux
d'apprentissage devient fondamentale pour le développement d'outils de conception efficaces
et pertinents.

A travers une analyse approfondie de trois papiers de recherche concernant les datasets
majeurs - CubiCasa5K (5 000 plans), House-GAN (65 636 plans) et Graph2Plan (120 000 plans)
- cette recherche met en lumiere la relation complexe entre la diversité des données au sein
d'un méme dataset et la performance des systémes d'Apprentissage Automatique® en
architecture. L'étude révéle notamment un paradoxe intéressant entre le volume des données
et leur précision technique.

L'analyse comparative des différentes approches de structuration des données architecturales
au sein des datasets permet d'identifier leurs forces et limitations actuelles. Cette recherche
souligne notamment ['importance significative des Annotations’ techniques et de la
contextualisation environnementale dans les données, tout en révélant les défis persistants
liés a la gestion de la complexité programmatique. L'étude met également en évidence les
limites actuelles.

Les résultats de cette étude contribuent a une meilleure compréhension des facteurs
influengant la qualité des plans générés par IA et ouvrent des perspectives pour le
développement de données architecturales plus pertinentes au sein des datasets. Cette
recherche propose également des recommandations concrétes pour l'évolution future des
outils d'aide a la conception architecturale, visant un meilleur équilibre entre volume, précision
technique et diversité contextuelle des données. Elle suggere notamment une approche
hybride combinant les avantages des différentes méthodes de structuration des données pour
optimiser la génération de plans.

Mots-clés :

Dataset(jeux de données), GANs', Intelligence artificielle, Apprentissage Automatique® ,
Conception architecturale(plans de batiments résidentiels), Diversité des données,
Génération automatique, Datasets : CubiCasa5K, House-GAN, Graph2Plan

Dataset (Jeux de Données) :Un dataset, ou ensemble de données, est une collection d'informations organisées que I'on utilise pour entrainer et tester des modeles d'intelligence
artificielle.Par exemple, un dataset d'images de chats et de chiens peut servir a apprendre a un modeéle a distinguer ces deux animaux. Les datasets sont essentiels en IA car

ils fournissent les exemples a partir desquels les modeles peuvent extraire des patterns et des connaissances.




Abstract

This thesis explores the influence of data diversity in datasets on Al-assisted architectural
design, with a particular focus on the generation of residential floor plans. At a time when Al
is gradually transforming architectural practices, the question of data quality and diversity
within learning sets becomes fundamental for the development of effective and relevant
design tools.

Through an in-depth analysis of three major datasets - CubiCasa5K (5,000 plans), House-GAN
(65,636 plans), and Graph2Plan (120,000 plans) - this research highlights the complex
relationship between data diversity within a dataset and the performance of machine

learning systems in architecture. The study reveals an interesting paradox between data
volume and technical precision.

The comparative analysis of different approaches to structuring architectural data within
datasets enables the identification of their current strengths and limitations. This research
particularly emphasizes the significant importance of technical Annotations™ and
environmental contextualization in the data, while revealing persistent challenges related to
managing programmatic complexity. The study specifically highlights current limitations.

The results of this study contribute to a better understanding of the factors influencing the
quality of Al-generated plans and open up perspectives for the development of more relevant
architectural data within datasets. This research also proposes concrete recommendations
for the future evolution of architectural design tools, aiming for a better balance between
volume, technical precision, and contextual diversity of data. It notably suggests a hybrid
approach combining the advantages of different data structuring methods to optimize plan
generation.

Key words :

Architectural dataset, GANs', Artificial intelligence, Machine learning, Architectural design,
Floor plans, Data diversity, Automatic generation, datasets: CubiCasa5K, House-GAN,
Graph2Plan
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l. Introduction

1.1 Contexte de la recherche

1.1.1 Evolution historique de |'utilisation des technologies en architecture

L'intégration de la technologie dans le domaine de l'architecture n'est pas un phénomene
récent. Depuis des siecles, les architectes ont cherché a optimiser leurs processus de
conception et a repousser les limites de ce qui est possible en matiére de construction.

Au 15eme siecle, l'invention de la perspective linéaire par Filippo Brunelleschi a révolutionné
la représentation architecturale, permettant une visualisation plus précise des espaces
tridimensionnels. Cette avancée a marqué le début d'une longue histoire d'innovations
technologiques en architecture.

L'ere industrielle du 19éme siecle a apporté de nouveaux matériaux et techniques de
construction, transformant radicalement les possibilités architecturales. L'utilisation de I'acier
et du verre a permis la création de structures plus hautes et plus légeres, comme en témoigne
le Crystal Palace de Joseph Paxton en 1851.

Le 20eme siecle a vu I'émergence de l'informatique dans le domaine de l'architecture. Dans
les années 1960, les premiers logiciels de Conception Assistée par Ordinateur (CAO™) ont fait
leur apparition, ouvrant la voie a une nouvelle ére de conception numérique. Des pionniers
comme Ivan Sutherland, avec son systeme Sketchpad en 1963, ont posé les bases de
I'interaction homme-machine dans la conception architecturale.

Les années 1980 et 1990 ont vu |'adoption généralisée des logiciels de CAO" dans les cabinets
d'architecture, transformant radicalement les processus de conception et de documentation.
Des architectes comme Frank Gehry ont commencé a explorer les possibilités offertes par la
modélisation 3D avancée, ouvrant la voie a des formes architecturales plus complexes et
organiques.

20éme Siecle (1960) 21éme Siecle
15éme Siecle _
Emergence de l'informatique apprentissage Automatique
Linvention de la _——
perspective { Premiers logiciels ‘ Intelligence Artificiel
N )
Nouveau matériaux Adoption des'logiciels dans les cabinets
nouveaux techniques de construction transformation des processus de conception et de
documentation
19éme Siecle

20éme Siecle (1980-90)

Figure 1 illustration de ['évolution des technologies en architecture
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1.1.2 Emergence de I'lA dans la conception architecturale

L'avenement du 21éme siécle a marqué le début d'une nouvelle ére dans le domaine de
I'architecture, caractérisée par I'émergence de l'intelligence artificielle?® et de I'apprentissage
automatique. Cette évolution s'inscrit dans la continuité de la numérisation du processus de
conception, mais représente un saut qualitatif majeur en termes de possibilités et
d'autonomie des outils de conception.

Les systémes d'Apprentissage Automatique® , englobant diverses techniques telles que les
réseaux de neurones*? profonds, |'apprentissage par renforcement et les modeéles génératifs,
ont ouvert de nouvelles perspectives dans la conception architecturale. Ces technologies
avancées permettent aujourd'hui la génération automatisée?? de plans a partir de jeux de
données spécifiques, communément appelés datasets.

Selon une étude menée par Loyola et al. (2019), les modeéles d'Apprentissage Automatique®
ont démontré une efficacité remarquable dans la création de plans d'étage pour des
batiments résidentiels. Ces systemes sont capables de produire des designs innovants tout en
respectant les contraintes architecturales. Les auteurs soulignent que ces technologies ont le
potentiel de révolutionner les processus de conception architecturale en offrant des solutions
rapides et créatives a des problémes complexes de design.

Par ailleurs, Nagy et al. (2018) ont mis en évidence |'utilisation de I'Apprentissage
Automatique® pour optimiser la planification spatiale dans les batiments de bureaux. Leur
recherche démontre comment ces technologies peuvent étre appliquées pour générer des
layouts efficaces tout en prenant en compte de multiples criteres de performance.

Ces avancées dans l'application de I'lA a I'architecture ne se limitent pas a la génération de
plans. Comme le soulignent Pedro et al. (2022), I'Apprentissage Automatique® est également
utilisé pour I'analyse prédictive des performances des batiments, I'optimisation énergétique,
et méme l'assistance a la prise de décision dans les phases précoces de la conception.

Réseaux de neurones
Batiments de bureaux

Apprentissage Profond Batiments Résidentiels

Modeéles generatifs Optimisation énergétique

Apprentissage par Renforcement Conception Urbaine

Intelligence Techmiques /
Artificielle en D'apprenti m Domaines d'impact
Architecture ‘

Generation des plans
Optimisation spatiale
Analyse Predictive

Aide a la decision

Figure 2 Une représentation visuelle liée & I'émergence de I'lA dans la conception architecturale
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1.1.3 Importance croissante des datasets dans le processus de conception

La qualité et la pertinence des plans générés par ces systemes d'lA dépendent fortement de
la nature et de la diversité des données dans le dataset utilisés lors de la phase
d'Apprentissage Automatique?. Ces jeux de données ont un réle fondamental, comparable a
celui d'une "connaissance" pour le systeme d'lA. lls fournissent les informations essentielles
qui guident et faconnent le processus d'apprentissage, influengant directement la capacité du
systeme a produire des designs architecturaux cohérents et fonctionnels.

La composition de ces datasets est d'une importance capitale. lls peuvent inclure une variété
d'éléments tels que :

e Des plans d'étage existants

o Desimages de batiments et d'intérieurs

o Des données vectorielles représentant des structures architecturales

¢ Des informations sur les normes de construction et les réglementations urbaines

o Des données contextuelles sur I'environnement et le climat

La diversité et la richesse de ces données influencent directement la capacité des systemes
d'lA et GANs'(Generative Adversarial Networks - Réseaux antagonistes génératifs) a générer
des plans qui non seulement respectent les normes architecturales, mais aussi integrent des
considérations esthétiques, fonctionnelles et environnementales.

Il est important de noter, comme I|'a souligné Antonio Casilli lors du symposium "Assembling
Intelligence" en 2024, que ces datasets ne sont pas simplement des ressources gratuites et
facilement accessibles. Leur création et leur curation nécessitent un travail considérable de
collecte, de nettoyage et d'organisation des données. Ce processus implique souvent la
contribution, consciente ou non, de nombreux acteurs a travers le monde, rendant ces
datasets aussi précieux que complexes a élaborer.

Datasets

(jeux de données)

Intelligence Artificielle composition des données Enjeux Ethique

Figure 3 Une illustration démontrant I'importance des datasets dans le processus de conception architecturale.
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1.2 Problématique

1.2.1 Formulation de la question de recherche

Cette recherche examine l'influence de la diversité des données dans les datasets ,dans la
génération automatique de plans d'étage ; en s'appuyant sur l'analyse approfondie de trois
papiers de recherche majeurs : CubiCasa5K, House-GAN et Graph2Plan. Ces trois cas d'étude,
choisis pour leurs méthodologies distinctes, permettent d'explorer différentes dimensions de
la diversité des données et leurs impacts sur la qualité des plans générés.

La question centrale qui guide cette recherche est :

Comment la diversité des données dans les datasets influence-t-elle la génération
automatique de plans d'étage ? Une analyse comparative de trois papiers de
recherche(CubiCasa5K, House-GAN et Graph2Plan).

Cette question principale se décline en plusieurs sous-questions :

1. Comment les différentes approches de structuration des données (annotation
d'images, graphes relationnels) influencent-elles la qualité des résultats ?

2. Quel est I'impact relatif du volume de données par rapport a leur qualité d'annotation
?

3. Comment la diversité des données affecte-t-elle la capacité d'adaptation des systemes
aux différents contextes architecturaux ?

4. Quelles sont les forces et limites spécifiques de chaque approche étudiée ?

1.2.2 Enjeux et implications pour le domaine de l'architecture

L'analyse comparative de ces trois approches majeures reléve une importance particuliere
pour plusieurs raisons, elle permet d'examiner comment différentes méthodologies de
structuration des données influencent la qualité des plans générés.

Cette analyse contribue a une meilleure compréhension des facteurs critiques dans le
développement de systémes d'lA pour l'architecture, en identifiant les éléments clés qui
influencent la qualité des plans générés.

Ces enjeux sont importants pour guider le développement futur des outils d'aide a la
conception architecturale afin pour optimiser |'utilisation de I'lA dans la pratique
architecturale.
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1.3 Objectifs de la recherche

Cette recherche vise a comprendre I'importance de la diversité des données dans les datasets
sur la génération automatique de plans d'étage résidentiels. L'étude s'articule autour de trois
objectifs principaux.

Le premier objectif consiste a analyser I'impact des différentes approches de structuration des
données. Cette analyse permet de mettre en lumiére I'importance relative des annotations'
détaillées, des représentations en graphe et de I'approche volumétrique dans la génération
de plans architecturaux.

Le deuxieme objectif se concentre sur |'évaluation de la relation entre volume et qualité des
données. La comparaison des performances peut potentiellement révéler des relations
parfois contre-intuitives entre la quantité de données disponibles et la qualité des plans
produits. Cette évaluation s'attache particulierement a identifier les facteurs clés qui
influencent la génération de plans architecturalement viables.

Le troisieme objectif vise a formuler des recommandations pour le développement futur des
datasets architecturaux. L'analyse comparative permet d'établir des criteres d'évaluation de
la diversité des données et d'identifier les meilleures pratiques pour leur structuration. Ces
recommandations s'appuient sur une synthése des forces et faiblesses observées dans chaque
approche étudiée.

1.4 Hypothese principale

1.4.1 Enoncé de I'hypothése

L'hypothese centrale de cette recherche est que, la capacité d'un systéme d'intelligence
artificielle?® a générer des plans architecturalement pertinents, dépend de sa capacité a
"absorber" et "reproduire" les qualités architecturales présentes dans son dataset
d'apprentissage. Cette capacité de transfert est influencée par le volume des données, ainsi
gue par leur richesse qualitative et leur diversité.

Pour illustrer cette idée, imaginons une bibliotheque. Une bibliotheque avec 1000 copies du
méme livre ne permettrait pas d'apprendre autant qu'une bibliothéque plus petite contenant
100 livres différents, chacun offrant des connaissances uniques et complémentaires. De la
méme maniére, un systéeme d'lA apprendra mieux de 100 plans variés et bien documentés que
de 1000 plans similaires et peu détaillés.
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1.4.2 Justification de I'hypothése

Cette hypothese trouve son fondement dans plusieurs observations préliminaires issues de
I'analyse des systemes actuels. Les performances observées montrent systématiquement une
amélioration significative lorsque les systemes sont entrainés sur des données bien annotées
et documentées. La qualité des plans générés apparait plus étroitement liée a la richesse des
informations disponibles qu'au nombre brut de plans dans le dataset. Cette observation est
particulierement visible dans les cas ou les systemes, entrainés sur des datasets de taille
modeste mais variés, parviennent a produire des solutions plus adaptables et pertinentes que
ceux utilisant des datasets plus volumineux mais moins diversifiés.

1.4.3 implications de I'hypothése

La validation de cette hypothése entrainerait des conséquences significatives pour le
développement futur des outils d'aide a la conception architecturale. Cette approche implique
un travail de documentation et de diversification des types de projets inclus dans les données
d'apprentissage. Pour la pratique architecturale, ces résultats ouvriraient la voie a des outils
plus performants, développés a partir de datasets plus modestes mais mieux structurés. Cette
perspective souligne l'importance d'une collaboration étroite entre architectes et
développeurs d'intelligence artificielle, ou I'expertise architecturale jouerait un réle important
dans la curation et I'organisation des données d'apprentissage.

Apprentissage par variété
d'exemples

Adaptation aux contraintes
Reproduction (structulles et environmentales)
des normes

Distribution des ouvertures
integration des
standards optimisation spatiale

Exposition a un large éventail Apprentissage de patterns
d'exemples conformes architecturaux récurrents
Respect des normes Critéres Complexes
' .
L'apprentissage par )|

4

Dataset

Besoins Fonctionnels

Diversité des cas d'usage et
configuration spatiales

~._ compréhension des
relations

relation entre
forme et fonction

Figure 4 un schéma illustrant 'apprentissage par dataset dans le domaine de I'architecture. Au
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Figure 5 Une illustration d’un apercu global de I'état de I'art dans le domaine




2.1 Evolution des approches d'IA en conception architecturale : vers les
systemes génératifs

L'évolution de l'intelligence artificielle?® dans la conception architecturale peut étre comprise
comme un développement progressif marqué par plusieurs phases distinctes, allant des
fondements théoriques aux applications pratiques contemporaines. Cette évolution reflete
non seulement les avancées technologiques mais aussi une compréhension croissante de la
facon dont I'lA peut enrichir le processus de conception architecturale.

2.1.1 Des premiéres expérimentations aux réseaux de neurones

L'intégration de l'intelligence artificielle?® dans la conception architecturale a connu une
évolution significative, passant d'approches déterministes a des systemes d'apprentissage de
plus en plus sophistiqués.

Les années 1970 marquent les premiéres tentatives de formalisation avec l'introduction des
"shape grammars" par Stiny et Gips. Cette approche pionniere visait a codifier les principes de
conception architecturale en regles formelles, comme illustré par leur travail sur la grammaire
palladienne. Bien que novatrice, cette méthode restait limitée par sa rigidité et son caractere
déterministe.

Un tournant majeur s'opére dans les années 1990 avec |'émergence des réseaux de
neurones*? convolutifs (CNN) appliqués a I'analyse architecturale. Ces systémes, initialement
congus pour l'interprétation d'images, ont permis une avancée significative dans la
classification automatique d'éléments architecturaux. Cependant, leur application directe a la
génération de plans restait limitée, produisant souvent des résultats "visuellement
impressionnants mais fonctionnellement incohérents".

2.1.2 L'application des réseaux de neurones

Les années 1990 représentent une phase importante avec |'apparition des réseaux de
neurones*? convolutifs (CNN) appliqués a I'analyse et a la génération de plans architecturaux.
Initialement congus pour linterprétation d’images complexes, les CNNs ont permis une
avancée majeure dans la classification automatique d’éléments visuels spécifiques dans des
plans d’étage (Sculpting Spaces of Possibility, p.19).

Les CNNs(Les réseaux de neurones*® convolutifs), inspirés du fonctionnement du cerveau
humain, sont constitués de couches hiérarchiques de neurones artificiels capables de détecter
des motifs visuels complexes a différentes échelles. Cette capacité a extraire des
caractéristiques abstraites d'images a ouvert la voie a une meilleure interprétation des plans
architecturaux, mais également a leur génération automatisée?? (Sculpting Spaces of
Possibility, p.19).

Une application majeure a été le développement de systemes capables de détecter des
schémas spatiaux complexes dans les plans architecturaux, améliorant ainsi I'automatisation
de I'analyse spatiale et géométrique. Comme le souligne Daniel Cardoso Llach :
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"Les CNN ont jeté les bases pour des systemes plus avancés, capables d’analyser les espaces
complexes représentés dans les plans architecturaux" (Sculpting Spaces of Possibility, p.20).

Cependant, malgré ces avancées, |'application directe des CNNs a la conception générative
restait limitée. Les modeles produisaient souvent des résultats "visuellement impressionnants
mais fonctionnellement incohérents" (Sculpting Spaces of Possibility, p.20).

Bien que les GANs™ (réseaux antagonistes génératifs) soient devenus plus largement
populaires aprés 2010, les travaux de Stanislas Chaillou sur l'intégration des GANs'™ en
architecture trouvent leurs racines dans les défis posés par les approches basées sur les CNNs.

Dans sa these "Al + Architecture: Towards a New Approach" (2019), Chaillou présente une
analyse approfondie des limites des modeles traditionnels et explique comment les GANs'™
offrent une alternative pour combiner Apprentissage Automatique?® , génération de contenu
visuel et interaction utilisateur (Al + Architecture, p.419).

Il met en évidence que les GANs' permettent une approche plus souple et interactive pour la
génération de plans architecturaux. Leur architecture en couches permet de décomposer la
conception en étapes distinctes mais interconnectées, rendant le processus de génération
plus transparent et modulable (Al + Architecture, p.423).

"Les GANs™ facilitent une interaction bidirectionnelle entre I'humain et I'algorithme, créant
ainsi une véritable collaboration dans le processus de conception architecturale” (Al +
Architecture, p.421).

Ces premieres applications des réseaux neuronaux posent ainsi les bases pour les systemes
hybrides développés dans les années suivantes, ou les GANs'™ jouent un réle central dans la
modélisation générative architecturale.

L'introduction des réseaux antagonistes génératifs (GANs') en 2014 a marqué une révolution
dans l'approche de la génération automatique de plans. Ces systemes, basés sur la
compétition entre un réseau générateur?’ et un réseau discriminateur'®, ont ouvert de
nouvelles possibilités dans la création de designs architecturaux cohérents.

2.1.3 Des approches contemporaines
Cette évolution technologique a conduit au développement de trois approches majeures, qui
constituent le coeur de I'analyse :

e CubiCasa5K (2019), qui privilégie la qualité des Annotations’ et |la précision technique
e House-GAN (2020), qui introduit une approche relationnelle basée sur les graphes

e Graph2Plan (2020), qui exploite un large volume de données pour améliorer la
génération

Ces trois approches, bien que développées dans un intervalle de temps relativement court,

représentent des philosophies distinctes dans l'utilisation des données pour la génération

automatique de plans d'étage. Leur analyse comparative permet de comprendre les

différentes stratégies possibles pour aborder la complexité de la conception architecturale
assistée par IA.
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2.1.4 Implications et perspectives

Cette évolution historique montre un passage progressif des approches basées sur des regles
vers des systémes plus flexibles et adaptatifs. Comme le souligne Cardoso Llach (p.19-20), un
aspect crucial de cette évolution est la reconnaissance que les données architecturales ne
sont pas neutres mais constituent des artefacts culturels ancrés dans des contextes sociaux
et matériels spécifiques.

Les développements récents suggeérent une tendance vers des systemes hybrides qui
combinent différentes techniques pour répondre a la complexité de la conception
architecturale. Ces systemes ne visent plus simplement a automatiser la conception, mais
cherchent a intégrer les aspects culturels et contextuels de I'architecture, ouvrant ainsi la voie
a une nouvelle ere de conception architecturale assistée par I'lA.

2.2 Développement et utilisation de datasets en architecture

2.2.1 Evolution et enjeux des datasets architecturaux

L'émergence des approches d'Apprentissage Profond* en architecture a mis en évidence un
besoin : celui de disposer de bases de données architecturales suffisamment vastes et
richement annotées pour entrainer des modeles performants. Cette problématique est
particulierement bien illustrée dans I'évolution récente des datasets dédiés a I'analyse et a la
génération de plans d'architecture.

Un tournant majeur dans ce domaine a été marqué par l'introduction du dataset CubiCasa5K.
Comme le soulignent Kalervo et al., "il existe un manque évident de datasets représentatifs
pour approfondir la recherche” en matiere d'analyse automatique des plans d'architecture.
Pour répondre a ce besoin, les chercheurs ont développé "le plus grand dataset de plans
d'étage annoté disponible publiquement", comprenant "5000 échantillons annotés dans plus
de 80 catégories d'objets de plans d'étage" ("CubiCasa5K", p.28). Cette initiative marque une
étape importante dans la constitution de ressources dédiées a I'Apprentissage Automatique?
en architecture.

2.2.2 Diversité des approches dans la constitution des datasets

La diversité des approches méthodologiques dans la constitution des datasets architecturaux
reflete la complexité des enjeux du domaine. Ces approches peuvent étre classées en trois
grandes catégories : la collecte et I'annotation de plans existants, la génération paramétrique
de données synthétiques, et les approches hybrides combinant données réelles et générées.

Une contribution majeure dans le domaine de la génération synthétique vient des travaux de
Raban Ohlhoff (2022). Sa méthodologie novatrice combine "la génération de plans
d'appartements paramétriques via Python et Sverchok pour Blender" avec "l'utilisation
d'algorithmes génétiques pour l'optimisation des designs". L'utilisation de la bibliotheque
Python Topologic pour |'analyse géométrigue des configurations spatiales ajoute une
dimension analytique importante a cette approche. Cette méthodologie ouvre des
perspectives prometteuses pour la création de datasets diversifiés et controlés.
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Dans une perspective différente mais complémentaire, les travaux d'Asma Ghalamchi et Birgiil
Colakoglu (2020) démontrent I'importance de la diversité des données dans le contexte des
GANs™. Leur utilisation d'un "dataset de 50,000 plans de maisons" représente une des plus
grandes collections de données dans ce domaine. Leur recherche établit un lien direct entre
la diversité des données dans le dataset et la créativité des designs générés par IA, soulignant
I'importance de la variété des données d'apprentissage.

Les travaux de Hao Zheng et Weixin Huang apportent un éclairage particulierement
intéressant sur |'efficacité des datasets de taille modeste mais bien structurés. Leur recherche
avec PIX2PIXHD, utilisant un dataset de seulement 100 plans d'appartements soigneusement
annotés, démontre qu'une annotation précise peut compenser un volume limité de données.
Leur systéme de codage couleur sophistiqué, ol "le rouge représente les circulations, le vert
les chambres, le bleu les séjours", illustre l'importance d'une structuration claire et cohérente
des données.

2.2.3 Qualité versus quantité : un débat central

La question de I'équilibre entre qualité et quantité des données constitue un débat central
dans le développement des datasets architecturaux. Comme le souligne Daniel Cardoso Llach,
"la qualité et I'élaboration du dataset sont plus importantes que sa taille" ("Sculpting spaces
of possibility", p.20). Cette position est particulierement pertinente dans le contexte des
applications architecturales spécialisées, ou un "petit dataset de gestes soigneusement
élaborés peut étre plus efficace qu'une grande quantité de données mal structurées".

Cette approche qualitative trouve un écho dans les travaux de Pedro Veloso, qui conceptualise
le dataset comme un outil pédagogique. Selon lui, "un dataset étiqueté avec des paires
d'entrées et de sorties fonctionne comme un instructeur pour indiquer au modele quelles
fonctions approximer" ("Mapping generative models", p.31). Cette vision du dataset comme
"instructeur" souligne l'importance d'une structuration réfléchie des données
d'apprentissage.

Les travaux de Stanislas Chaillou sur ArchiGAN illustrent parfaitement cette approche
qualitative. En utilisant un dataset de 800 plans d'appartements soigneusement sélectionnés,
il démontre qu'un "corpus d'apprentissage bien structuré permet non seulement d'améliorer
la qualité des générations, mais aussi d'assurer une meilleure cohérence architecturale des
résultats" ("Al + Architecture", p.424).

2.2.4 Méthodologies d'annotation et de validation

La qualité des Annotations’ constitue un enjeu fondamental dans le développement des
datasets architecturaux. Le dataset CubiCasa5K illustre particulierement bien cette
préoccupation a travers son protocole d'annotation®” rigoureux qui "décrit I'ordre
d'annotation des éléments" et utilise "toutes les informations disponibles des éléments
précédemment annotés" ("CubiCasa5K", p.32). Cette approche méthodique garantit une
cohérence globale dans I'annotation des données.
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L'importance de la validation des Annotations’ est également mise en évidence par le
processus d'assurance qualité en deux étapes introduit dans CubiCasa5K. Comme |'expliquent
les auteurs, "Le premier tour est effectué par I'annotateur [...] Le second tour est effectué par
une personne différente" ("CubiCasa5K", p.32). Cette double vérification représente une
innovation significative dans la validation des datasets architecturaux.

2.2.5Perspectives et défis futurs

Le développement des datasets architecturaux fait face a plusieurs défis majeurs. Comme le
souligne Theodoros Galanos, "la capacité de ces modeles a prédire les performances avec
précision est difficile et hautement dépendante de la diversité du dataset d'entrainement".
Cette observation met en lumiere la nécessité de développer des datasets qui refletent non
seulement la diversité des solutions architecturales possibles, mais aussi la complexité des

contraintes contextuelles.

Cardoso Llach rappelle par ailleurs que "les données ne sont jamais neutres - ce sont des
artefacts culturels situés dans des contextes sociaux et matériels" ("Sculpting spaces of
possibility", p.19). Cette perspective souligne |'importance d'une approche critique dans la
constitution des datasets, qui doit prendre en compte non seulement les aspects techniques
mais aussi les dimensions culturelles et sociales de |'architecture.

L'avenir des datasets architecturaux semble ainsi s'orienter vers une intégration plus poussée
des différentes approches, combinant la richesse des données réelles, la flexibilité des
données synthétiques, et la rigueur des protocoles d'annotation. Cette évolution devra
également prendre en compte les questions éthiques et culturelles soulevées par I'utilisation
croissante de I'lA en architecture, tout en maintenant un équilibre entre innovation
technologique et respect des pratiques architecturales traditionnelles.

——
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2.3 Applications commerciales et pratiques
2.3.1 Cas d'étude : TestFit.io

TestFit.io, fondé par Clifton Harness en 2015, représente une approche innovante dans
I'utilisation de l'intelligence artificielle?® et des datasets pour la conception architecturale et
le développement immobilier. Les points clés de leur approche incluent :

Utilisation d'algorithmes génératifs et de régles basées sur I'lA pour créer rapidement des
concepts de batiments.Intégration de vastes datasets comprenant des codes de construction,
des réglementations zonales, et des parameétres de conception architecturale.

Capacité a générer et a évaluer des milliers de scénarios de conception en quelques secondes,
en tenant compte de contraintes complexes.TestFit se distingue par sa capacité a combiner
des données provenant de multiples sources pour créer des designs architecturaux qui
répondent a des critéeres spécifiques de faisabilité, de rentabilité et de conformité
réglementaire. Leur approche démontre l'importance de datasets diversifiés et constamment

mis a jour dans la conception architecturale assistée par IA.Un aspect particulierement
pertinent pour I'étude est la maniére dont TestFit utilise des datasets dynamiques, intégrant
des informations en temps réel sur les réglementations locales, les tendances du marché, et
les préférences des utilisateurs. Cela illustre comment la diversité et I'actualité des datasets
peuvent influencer directement la qualité et la pertinence des designs architecturaux générés.
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Figure 6 Variation d'aménagement de parking n°1 générée par TestFit.io Figure 7 Variation d'aménagement de parking n°2 générée par TestFit.io

22

—
 —



2.4 Considérations éthiques et pratiques

2.4.1 Réflexions de Casilli sur la valeur des données et implications pour I'architecture

Antonio Casilli, sociologue et chercheur en études sur le numérique, a apporté un éclairage
important sur la nature et la valeur des données utilisées dans les systemes d'Apprentissage
Automatique® . Ses travaux, notamment ceux présentés dans son ouvrage "En attendant les
robots" (2019) et lors de sa présentation au symposium "Assembling Intelligence" a Genéve en
2024, soulévent plusieurs points cruciaux qui ont des implications directes pour |'utilisation des
datasets dans la conception architecturale assistée par IA : Lors du symposium de 2024, Casilli a
approfondi son concept de "digital labor", soulighant que les données ne sont pas simplement
disponibles gratuitement, mais nécessitent un travail considérable de collecte, de nettoyage et de
préparation. Dans le contexte architectural, cela implique que la création de datasets de plans
d'étage représente un travail significatif, souvent sous-estimé, réalisé par des architectes, des
dessinateurs et d'autres professionnels du domaine.

La valeur économique des données :

Casilli a argumenté que les données sont devenues une forme de capital, générant de la valeur
pour les entreprises d'lA. Dans le domaine de I'architecture, cela souléve des questions sur la
valeur économique des plans d'étage et autres données architecturales utilisées pour entrainer
les systemes d'lA. Les architectes qui créent ces plans contribuent indirectement a la valeur des
datasets utilisés par les entreprises d'lA, souvent sans compensation adéquate.

L'analogie du cerveau/nerfs :

Dans sa présentation de 2024, Casilli a développé son analogie comparant les données au systeme
nerveux d'une IA, soulignant leur réle important dans le fonctionnement et I'apprentissage de ces
systemes. Pour la génération de plans d'étage par IA, cela signifie que la qualité et la diversité des
données dans le dataset sont fondamentales pour la performance et la créativité des modeles
générés.

La contribution involontaire :

Casilli a mis en lumiere comment |'utilisation quotidienne de services en ligne contribue
involontairement a la création de datasets. Dans le contexte architectural, I'utilisation de logiciels
de CAO", de BIM?, ou le partage de plans sur des plateformes professionnelles peuvent alimenter
des datasets utilisés pour I'IA sans que les architectes en soient pleinement conscients.

Enjeux éthiques et de gouvernance :

Les observations de Casilli en 2024 ont soulevé des questions importantes sur la gouvernance des
données et les implications éthiques de leur utilisation. Pour |'architecture, cela concerne la
propriété intellectuelle des plans d'étage utilisés dans les datasets, le consentement des
architectes pour l'utilisation de leurs créations dans I'entrainement des IA, et la nécessité de
cadres réglementaires adaptés

——
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lll. Cadre théorique et conceptuel

3.1 Définition des concepts clés

3.1.1 Datasets en architecture

Les datasets en architecture sont des ensembles organisés de données utilisées pour entrainer
des modeles d'intelligence artificielle. lls regroupent des informations variées comme des
plans d'étage, des élévations, des modeles 3D et des données contextuelles sur les batiments.
Ces ensembles de données ne se limitent pas a la géométrie des espaces : ils integrent
également leur signification et leur fonction, ce qui est essentiel dans le cadre des systemes
d'Apprentissage Automatique® appliqués a l'architecture.

Selon Stanislas Chaillou (Harvard Graduate School of Design, 2019), un dataset architectural
doit représenter a la fois la forme et la sémantique des espaces pour étre réellement utile a
I'entrainement des modeles. Par ailleurs, Daniel Cardoso Llach ("Sculpting spaces of
possibility", 2019) rappelle que I'utilisation de datasets en architecture remonte aux débuts
de l'intelligence artificielle?® dans les années 1950. Il souligne que la numérisation des
données architecturales implique des choix spécifiques sur la maniéere dont les informations
sont organisées et représentées. Ces choix influencent directement les expériences et les
résultats futurs, car les datasets ne sont jamais neutres : ils refletent des perspectives et des
priorités propres a leur conception.

3.1.2 Diversité des données architecturales

La diversité des données architecturales se définit comme la variété et la richesse des
éléments représentés dans un dataset, englobant différents styles architecturaux,
configurations spatiales, et contextes culturels. Comme le souligne Daniel Cardoso Llach
(2019, p.19) dans son analyse des données architecturales "data are never neutral—they are
cultural artifacts situated in social and material settings" ("les données ne sont jamais neutres
- ce sont des artefacts culturels ancrés dans des contextes sociaux et matériels Cette
observation met en évidence l'importance fondamentale de la diversité pour éviter les biais
incohérents aux modeles d'IA générés. En effet, une diversité limitée dans les données
d'entrainement peut conduire a des modeles qui reproduisent systématiquement certains
schémas architecturaux au détriment d'autres, limitant ainsi leur capacité d'innovation et
d'adaptation.

Cette notion de diversité s'exprime a travers plusieurs dimensions complémentaires et
interdépendantes. Les recherches menées dans le cadre de House-GAN (Nauata et al., 2020,
p.2-3) ont démontré que la capacité a générer des plans diversifiés nécessite une exposition
a un large éventail de styles architecturaux dans les données d'entrainement. Cette diversité
stylistique permet au modele de comprendre et d'assimiler différentes approches de
conception spatiale et esthétique. Paralleélement, les travaux de Graph2Plan (Hu et al., 2020,
p.1-2) ont souligné I'importance d'inclure une variété de programmes architecturaux et leurs
relations spatiales, mettant en lumiere la dimension fonctionnelle de la diversité. Cette
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approche permet aux modeles de comprendre comment différents espaces peuvent étre
organisés et connectés pour répondre a des besoins variés.

Les recherches de Kalervo et al. (2019, p.31) ont par ailleurs enrichi cette compréhension en
mettant en évidence l'importance du contexte urbain et environnemental dans la diversité
des données. Leurs travaux démontrent que les plans architecturaux ne peuvent étre
pleinement compris et générés de maniere pertinente sans prendre en compte leur insertion
dans un tissu urbain plus large et leur adaptation a des conditions environnementales
spécifiques. Cette dimension contextuelle de la diversité permet aux modeles d'lA de générer
des solutions architecturales qui ne sont pas seulement cohérentes en tant qu'objets isolés,
mais qui s'intégrent harmonieusement dans leur environnement.

3.1.3 Qualité et efficacité des plans générés par IA

L'évaluation de la qualité et de |'efficacité des plans générés par IA constitue un défi majeur
qui nécessite une approche rigoureuse. Comme le démontrent Nelson Nauata et ses
collaborateurs dans "House-GAN" (2020, p.3), cette évaluation doit se faire selon trois
métriques®® essentielles : "the realism, the diversity, and the compatibility". Le réalisme
constitue le premier pilier, exigeant que les plans générés respectent les principes
fondamentaux de I'architecture. La compatibilité forme le second pilier, assurant que les plans
générés correspondent bien aux contraintes et aux exigences initiales du projet.

L'adaptabilité aux besoins des utilisateurs représente le troisieme aspect important de cette
évaluation. Comme l|'expliquent Ahti Kalervo et ses collaborateurs dans "CubiCasa5K" (2019,
p.32), l'importance d'un "protocol d'annotation rigoureux" et d'un "QA process®®" en deux
étapes est fondamentale pour garantir que les espaces générés répondent effectivement aux
besoins pratiques. Cette dimension humaine de I'architecture ne peut étre négligée dans le
processus de génération automatique, car elle garantit que les espaces créés répondent
effectivement aux besoins et aux usages de leurs futurs occupants. La qualité d'un plan ne
peut donc étre jugée uniqguement sur des critéres techniques ou esthétiques, mais doit inclure
une évaluation de son potentiel a créer des espaces vivables et fonctionnels.

3.2 Théories sur l'apprentissage automatique en architecture

3.2.1 Principes des GANs appliqués a la génération de plans

Les generative adversarial networks (GAN) sont utilisés pour générer des plans architecturaux
de batiments résidentiels en employant deux réseaux neuronaux : un générateur?' et un
discriminateur', qui travaillent en opposition pour affiner les résultats de la conception par
un processus contradictoire (Goodfellow et al., 2014). Le générateur?' produit des schémas
architecturaux, tels que des plans d'étage, tandis que le discriminateur'® évalue leur réalisme,
conduisant le générateur?' a créer des conceptions de plus en plus précises et fonctionnelles.
Pour tenir compte des contraintes architecturales, les cadres GAN intégrent souvent des
méthodes telles que les structures de graphes relationnels pour représenter les relations
spatiales, ce qui permet de générer des plans qui respectent les régles d'adjacence entre les
pieces (Nauata et al., 2020). D'autres modeles introduisent des cartes d'activité humaine dans
le cadre du processus de génération, garantissant que les plans sont non seulement
géométriquement valides, mais aussi fonctionnellement alignés sur les exigences
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d'utilisabilité centrées sur I'homme (Matsushita et al., 2021). Ces approches sont entrainées
sur des ensembles de données architecturales annotées contenant divers agencements
résidentiels, qui aident les GAN a apprendre les modeles spatiaux, les regles d'adjacence et
les conventions de conception nécessaires pour générer des plans architecturaux réalistes et
sensibles au contexte.

3.2.2 Réle des datasets dans I'entrainement des modéles d'IA
Les datasets représentent le fondement sur lequel repose tout systéme d'Apprentissage
Automatique® en architecture. Ils jouent un role comparable a celui d'une bibliotheque

d'expériences architecturales, a partir de laquelle les systemes d'IA apprennent a reconnaitre et a
reproduire des patterns de conception pertinents. Cette base de connaissances architecturales
structurée permet aux systemes d'assimiler non seulement les aspects géométriques des plans,
mais aussi les principes fondamentaux qui régissent leur organisation.

La premiére fonction d'un dataset architectural est de fournir des exemples représentatifs de
bonnes pratiques de conception. Ces exemples servent de modeéles a partir desquels le systeme
apprend a reconnaitre les caractéristiques essentielles d'un plan viable. Par exemple, le systeme
peut apprendre les relations spatiales typiques entre une cuisine et une salle a manger, ou les
dimensions standard d'une chambre a coucher. Cette compréhension des standards
architecturaux se développe progressivement a travers |'analyse de nombreux exemples.

Au-dela de la simple accumulation d'exemples, les datasets architecturaux jouent également un
role dans la transmission des régles implicites de conception. A travers I'exposition répétée a
différentes configurations spatiales, le systeme développe une compréhension intuitive des
principes d'organisation qui sous-tendent la conception architecturale. Cette "intuition artificielle"
permet au systeme de proposer des solutions qui respectent les contraintes explicites.

Les datasets servent également de référentiel pour la validation des solutions générées. En
comparant les plans produits avec les exemples du dataset, le systéme peut évaluer la pertinence
et la viabilité de ses propositions. Cette capacité d'auto-évaluation est essentielle pour assurer la
gualité et la cohérence des plans générés.

Dans le contexte de I'Apprentissage Automatique?, les datasets agissent comme un pont entre le
monde abstrait des algorithmes et la réalité concrete de |'architecture. Ils traduisent les concepts
architecturaux en données structurées que les systémes d'lA peuvent traiter et analyser. Cette
traduction permet aux systemes d'appréhender la complexité multidimensionnelle de Ia
conception architecturale.

Les datasets jouent ainsi un rbéle dans la qualité et la pertinence des plans générés par IA. lls
déterminent non seulement ce que le systeme peut apprendre, mais aussi comment il peut
appliquer cet apprentissage a la création de nouvelles solutions architecturales.
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IV.Méthodologie

Méthodologie

Comparaison des Identification des
datasets Analyse des datasets caractéristiques
architecturales

Figure 8 Un diagramme illustrant les étapes méthodologiques de la recherche

4.1 Collecte des sources d'information

La démarche initiale envisagée pour cette recherche prévoyait la collecte et la manipulation directe de
datasets architecturaux. Cependant, pour des raisons pratiques et méthodologiques, cette approche
a été adaptée. Plutot que de sélectionner des datasets et de les manipuler directement, la recherche
s’est concentrée sur I'analyse approfondie de trois articles scientifiques de référence. Ces articles
décrivent des datasets significatifs dans le domaine de la génération de plans d’étage, et leur contenu
a été utilisé comme source principale d’information pour la suite de I'étude.

Le choix de ces articles repose sur leur pertinence scientifique et leur qualité méthodologique.
Chaque article décrit un dataset utilisé dans des contextes variés, documentant des approches
différentes pour structurer, annoter et exploiter les données architecturales. Cette décision
méthodologique présente plusieurs avantages : elle permet de bénéficier d’analyses validées
et détaillées tout en assurant une diversité d’approches, malgré I'absence de manipulation
directe des données.

Les informations extraites de ces articles ont été utilisées pour alimenter les étapes suivantes
de la recherche : Classification des datasets (4.2), ou les caractéristiques des datasets décrits
dans les articles ont été systématiquement classées selon une grille d’analyse. Identification
des caractéristiques architecturales (4.3), en appliquant une méthodologie commune pour
extraire des informations comparables, malgré les différences dans la structuration des
données et des Annotations’.
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Analyse comparative, ou les résultats des trois approches ont été évalués de maniere
uniforme afin de mettre en lumiére les forces, les faiblesses et les particularités de chaque
dataset étudié.

En choisissant de s’appuyer sur ces trois articles scientifiques comme base principale, la
méthodologie assure une continuité dans l'analyse, tout en reflétant la diversité des
approches utilisées dans la recherche architecturale sur les plans d’étage. Ce choix garantit
également une transparence et une reproductibilité des résultats, tout en prenant en compte
les contraintes liées a |'acces direct a certains datasets.

4.2 Classification des datasets

4.2.1 Critéres de classification
La classification des datasets architecturaux repose sur cinq catégories principales de critéres:

Les types de données constituent le premier critere de classification. Cette catégorie
comprend les données textuelles (documents descriptifs, spécifications techniques, normes
de construction), les données d'images (plans d'étage), les données vectorielles (plans CAD,
schémas vectoriels), et le contexte architectural (données sur |'utilisation des espaces,
réglementations urbaines).

La taille des datasets forme le deuxiéme critére, mesurée selon deux aspects : le volume total
des données, exprimé en mégaoctets (Mo) ou gigaoctets (Go), et le nombre d'éléments
individuels comptabilisés dans chaque dataset.

La diversité géographique représente le troisieme critere, avec une classification en trois
niveaux : locale pour les données d'une ville ou région spécifique, nationale pour les données
couvrant un pays, et internationale pour les données de plusieurs pays ou régions.

La période couverte constitue le quatrieme critére, distinguant trois époques : historique pour
les plans antérieurs a 2000, contemporaine pour les designs de 2000 a aujourd'hui, et futuriste
pour les concepts prospectifs.

Le niveau de détail forme le cinquieme critéere, établissant trois degrés : basique pour les
informations générales sur la disposition des pieces, intermédiaire incluant les détails sur les
dimensions et les matériaux, et avancé pour les informations détaillées sur les systemes
techniques.

4.2.2 Méthodes de catéqorisation

La méthodologie de catégorisation des datasets architecturaux s'appuie sur une grille
d'évaluation standardisée, élaborée a partir des criteres de classification précédemment
établis. Cette grille permet une analyse systématique et reproductible des caractéristiques de
chaque dataset.

Le processus d'évaluation s'articule autour d'un systéme de notation qui vise a quantifier deux
aspects fondamentaux : la diversité et la richesse des données présentes dans chaque dataset.
La diversité est évaluée a travers la variété des types de plans, des configurations spatiales et
des contextes architecturaux représentés. La richesse, quant a elle, est mesurée par le niveau

28

——
| —



de détail des informations techniques, la précision des Annotations’ et la complétude des
données associées a chaque plan.

Cette approche structurée permet de générer des évaluations comparables entre les
différents datasets, facilitant ainsi leur analyse comparative et l'identification de leurs forces
et faiblesses respectives. La grille d'évaluation établit des critéres objectifs et mesurables,
essentiels pour une compréhension approfondie de l'influence des caractéristiques des
datasets sur la qualité des plans générés par les systémes d'Apprentissage Automatique® .

4.3 Identification des caractéristiques

L'identification des caractéristiques architecturales repose sur une grille d'évaluation détaillée
qui englobe dix catégories principales d'éléments a analyser dans les plans. Cette grille permet
une analyse systématique et exhaustive des composants architecturaux présents dans chaque
dataset.

Les éléments structurels constituent la premiére catégorie d'analyse, comprenant
I'identification des murs porteurs et non porteurs, des colonnes, des poutres et des fondations
lorsque ces informations sont disponibles dans les données.

Les ouvertures forment la deuxieme catégorie, incluant I'analyse des portes et fenétres avec
leurs caractéristiques dimensionnelles et leur emplacement, ainsi que les autres types
d'ouvertures comme les lucarnes.

La distribution des espaces représente la troisieme catégorie, englobant I'analyse des
circulations avec les couloirs et escaliers, des espaces de vie comme le salon et la salle a
manger, des espaces privés tels que les chambres et bureaux, et des espaces de service
incluant la cuisine et les salles de bains.

Le mobilier et les équipements constituent la quatrieme catégorie, comprenant les meubles
fixes, les appareils sanitaires et les équipements électroménagers.

Les détails techniques constructifs forment la cinquiéme catégorie, incluant I'analyse des
matériaux de construction, de l'isolation et des systémes MEP?2,

La forme du batiment constitue la sixieme catégorie, avec |'étude de la géométrie générale,
du nombre d'étages et du type de toiture.

La division spatiale représente la septieme catégorie, analysant les zones fonctionnelles
jour/nuit et public/privé, ainsi que la flexibilité des espaces.

Les caractéristiques quantitatives forment la huitieme catégorie, comprenant le nombre de
pieces, la surface habitable et le ratio entre espaces ouverts et fermés.

Le contexte et la localisation constituent la neuviéme catégorie, incluant le type
d'environnement, I'orientation et |la topographie du site.

Enfin, les éléments de durabilité forment la dixieme catégorie, avec I'analyse des dispositifs
d'économie d'énergie, des matériaux écologiques et des systemes de récupération d'eau.
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La quantification de ces caractéristiques s'effectue selon une échelle de notation allant de 0 a
5, permettant d'évaluer la présence et la qualité de chaque élément dans le dataset. Cette
approche quantitative permet de calculer des scores de diversité pour chaque caractéristique
architecturale, offrant ainsi une base objective pour |'analyse comparative des datasets.

4.4 Analyse des datasets

L'analyse approfondie des datasets s'articule autour de trois phases principales : la sélection
des données, I'évaluation du contenu, et I'étude de la génération des plans.

La premiere phase concerne la sélection des datasets pour I'étude approfondie. Cette
sélection vise a constituer un échantillon représentatif incluant des ensembles de données de
différentes tailles et origines. L'intégration de datasets déja utilisés dans des études
précédentes permet d'établir des comparaisons avec les résultats existants, offrant ainsi un
cadre de référence pour l'analyse.

La deuxiéme phase se concentre sur I'évaluation du contenu et de la diversité des datasets
sélectionnés. Cette évaluation s'appuie sur la grille développée dans la section 4.3, appliquée
systématiquement a chaque dataset. L'analyse examine la diversité des données selon les
caractéristiques architecturales définies précédemment. Des visualisations sont créées pour
représenter la richesse et la diversité des données dans chaque dataset, permettant une
compréhension claire des variations et des patterns présents.

4.5 Comparaison des datasets

La comparaison des datasets repose sur une méthodologie combinant analyses quantitatives
et qualitatives, structurée en deux phases principales : la comparaison méthodologique des
caractéristiques et I'analyse de leur influence sur les résultats générés.

La premiere phase s'articule autour de trois approches complémentaires. Le calcul du delta
de performance constitue la premiére approche : un dataset de référence, typiqguement le
moins diversifié, sert de point de comparaison pour évaluer les différences de performance
en termes de qualité, diversité et cohérence des plans générés. Des métriques3® quantitatives,
telles que le score de similarité structurelle*® et |'évaluation de la fonctionnalité, permettent
de mesurer ces écarts de maniére objective.

La deuxieme approche implique la création d'une matrice comparative détaillant la présence
et l'importance des caractéristiques architecturales dans chaque dataset. Une échelle
numérique facilite la visualisation des différences entre les datasets. La troisieme approche
vise a identifier les différences clés entre les datasets, en analysant les types d'informations
spécifiques ayant le plus d'impact sur les résultats et en repérant les lacunes communes aux
datasets moins performants.

La seconde phase examine l'influence de ces caractéristiques sur les résultats générés. Des
corrélations sont établies entre la diversité des données dans le dataset et la qualité des plans
d'étage générés. L'évaluation porte sur les avantages et limitations de chaque dataset dans le
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contexte de la génération de plans d'étage. Cette analyse permet également d'identifier les
types de projets architecturaux pour lesquels chaque dataset serait le plus approprié.

Cette méthodologie de comparaison approfondie fournit une base solide pour évaluer
I'impact de la diversité des données sur la qualité des plans générés par IA, apportant ainsi
des éléments de réponse concrets a la problématique de recherche.
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V. Résultats et analyse

5.1 Présentation des résultats

5.1.1 Caractéristiques des datasets analysés

L'analyse approfondie des datasets utilisés dans la génération de plans d'étage constitue une
étape fondamentale pour comprendre l'impact de leur diversité sur la qualité des résultats
produits. Cette analyse s'inscrit dans la démarche de validation de I'hypothese principale,
selon laquelle la diversité et la qualité des données dans le dataset sont des facteurs
déterminants dans I'efficacité des systémes d'Apprentissage Automatique® pour la génération
de plans d'étage résidentiels.

La méthodologie d'analyse repose sur une grille d'évaluation systématique examinant sept
aspects fondamentaux des datasets :

Caractéristiques générales : métadonnées?® et informations techniques fondamentales
permettant de contextualiser le dataset dans son ensemble.

Eléments architecturaux : analyse détaillée de la représentation des composants structurels,
des ouvertures et des systemes de circulation, éléments essentiels a la cohérence
architecturale des plans générés.

Organisation spatiale : évaluation des zones fonctionnelles, des relations entre espaces et des
proportions, aspects cruciaux pour la fonctionnalité des designs produits.

Equipements et aménagements : examen des informations relatives aux équipements fixes
et aux systémes MEP28 (Mécanique, Electricité, Plomberie), nécessaires a la viabilité technique
des plans.

Diversité et contexte : analyse de la variété typologique et des considérations
environnementales, facteurs déterminants pour I'adaptabilité des plans générés.

Qualité des données : évaluation de la précision technique et de la complétude des
informations, éléments essentiels a la fiabilité des résultats.

Cette grille d'évaluation attribue une note de 0 a 5 a chaque critere, permettant une
quantification objective des caractéristiques des datasets. L'approche méthodique vise a
établir des corrélations entre les propriétés des jeux de données et la qualité des plans
générés par les systemes d'intelligence artificielle.
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Les sections suivantes présenteront une analyse détaillée de plusieurs datasets majeurs ayant
démontré leur efficacité dans la génération automatique de plans d'étage. La sélection de ces

datasets s'appuie sur des critéres rigoureux :

1.Publication dans des revues académiques reconnues

2.Documentation détaillée des résultats de génération

3.Validation par des expérimentations reproduites par différentes équipes de recherche

4.Disponibilité des informations sur les méthodes de collecte et de traitement des données

Critéres

Score (/5)

Observations

A CARACTERISTIQUES
GENERALES

Al. Informations techniques

A2. Métadonnées

B. ELEMENTS
ARCHITECTURAUX

B1. Structure et enveloppe
B2. Ouvertures

B3. Circulation
C. ORGANISATION SPATIALE

C1. Zones fonctionnelles
C2. Relations spatiales
C3. Dimensions et proportions

D. EQUIPEMENTS ET
AMENAGEMENTS

D1. Equipements fixes
D2. MEP
E. DIVERSITE ET CONTEXTE

E1. Diversité typologique
E2. Contexte environnemental

F. QUALITE DES DONNEES

F1. Précision technique
F2. Complétude

SCORE TOTAL
SCORE MOYEN

Tableau 1

/75

/5
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5.1.2 datasets analysés
Cubicasa5k

Référence de I'étude scientifique

Kalervo et al. présentent en 2019 leur recherche "CubiCasa5K: A Dataset and an Improved
Multi-task Model for Floorplan Image Analysis" lors de la conférence SCIA 2019, publiée dans
LNCS 11482, pp. 28-40.

Contexte et objectifs

Cette recherche répond a un besoin croissant d'analyse automatique des plans d'étage,
motivé par I'émergence des technologies AR/VR(Réalité Augmentée/Réalité Virtuelle) et une
meilleure compréhension des intérieurs de batiments (p.28). Les auteurs constatent un
mangque de datasets représentatifs pour approfondir ce domaine de recherche. Pour combler
cette lacune, ils proposent un nouveau dataset nommé CubiCasa5K ainsi qu'une approche
améliorée basée sur un réseau neuronal multi-taches.

Architecture technigue et méthodologie

L'architecture technique dans le contexte de I'analyse se réfere a la structure et I'organisation
des composants du réseau neuronal et ses mécanismes de traitement.

Le systéme repose sur une architecture “hourglass”® complexe utilisant ResNet-1524* pré-
entrainé sur ImageNet comme base (p.34). Cette architecture comprend des blocs D1-D10
intégrant des couches de convolution™, de normalisation par lots3® et ReLU3°. Le modele
produit simultanément deux cartes de segmentation et 21 heatmaps®® (p.33-34).

L'approche méthodologique s'articule autour d'un réseau neuronal convolutif(CNN*?) multi-
taches qui effectue trois opérations principales, comme détaillé dans l'article (p.33-35) :

e Segmentation des piéces et des icones
e Régression pour localiser les points d'intérét
e Apprentissage Automatique® des poids entre les différentes taches

[D1] ConvBNReLU(3,64,7,2,3)

[D2] MaxPool(2) + 4x ResBlock(64,256)
(D3] MaxPool(2) + 3x ResBlock(256,256)
[D4] MaxPool(2) + 5x ResBlock(256,512)
[D5] 3x ResBlock(256,512)

[D6] ConvTranspose(512,512,2,2)
[D7] ConvBNReLU(512,512,1)

[D8] ConvBNReLU(512,256,1)

[D9] ConvBNReLU(256,n0ut,1)

[DP10] ConvTranspose (nOut,nout,4,4)
(+) Addition

~
s
~

Floorplan

Postprocessor

Room and Icon Polygons

Room, Icon, and Junction Predictions
CAD Tool
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Multi-Task CNN + Un
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Figure 9 illustration de I'architecture du systéme CubiCasa5K
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Caractéristiques du dataset

CubiCasa5K constitue le plus grand dataset annoté de plans d'étage disponible(le jour de
publication), comprenant 5000 échantillons répartis en trois catégories (p.31) :

e 3732 plans de haute qualité architecturale
e 992 plans de haute qualité
e 276 plans colorés

L'ensemble est divisé en 4200 échantillons pour I'entrainement, 400 pour la validation et 400
pour les tests.

Systeme d'annotation

Le processus d'annotation est particulierement rigoureux, comme décrit dans la section
"Annotations’ and Their Consistency" (p.32). Les plans sont annotés manuellement par des
experts, nécessitant entre 5 et 120 minutes par plan selon leur complexité. Les Annotations’
sont réalisées au format SVG'™ vectoriel suivant un protocole strict. Un systéme de controle
qualité en deux étapes assure la cohérence et la précision des Annotations’, tant au niveau du
placement que des étiquettes. Plus de 80 classes d'objets différentes sont identifiées, incluant
les piéces, murs, portes et fenétres.

Cette recherche apporte une contribution significative au domaine en fournissant non une
méthodologie améliorée pour leur analyse automatique, comme souligné dans leurs

conclusions (p.39).
LI I e gy

{ JEm -
.

Figure 10 une comparaison en trois étapes du traitement d'un plan d'étage

Methode de prompt®

La méthode utilise un réseau de neurones convolutif multi-tdches(CNN*3) basé sur ResNet-
152, qui combine deux objectifs principaux : la segmentation*® des piéces/icbnes et la
localisation des points d'intérét via des cartes de chaleur. Le systéme utilise une fonction de
perte innovante qui ajuste automatiquement les poids entre les différentes taches, tandis
qu'un post-traitement3® convertit les prédictions en plans vectoriels. Cette approche unifiée
permet de traiter efficacement un grand nombre de classes d'objets dans les plans
d'architecture.
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Conclusion

L'analyse réveéle un paradoxe intéressant : bien que le dataset soit techniquement excellent pour
I'Apprentissage Automatique3®, avec une précision remarquable dans la géométrie des plans, sa

diversité reste principalement concentrée sur les aspects fonctionnels et spatiaux, négligeant d'autres
dimensions importantes de l'architecture. Cette spécialisation se reflete particulierement dans une

excellente gestion des relations spatiales et des annotations’ fonctionnelles, dans une forte précision
dans la représentation des dimensions et des proportions et dans une limitation dans la gestion de

programmes complexes (performance optimale jusqu'a 8 piéces)Cette analyse soutient partiellement
I'nypothése principale. Elle confirme l'importance d'un dataset bien structuré et rigoureusement
annoté pour |'Apprentissage Automatique® , tout en soulignant les limitations qu'un manque de
diversité dans certains aspects peut imposer.

Criteres Score (/5) Observations

A. CARACTERISTIQUES GENERALES

Al. Informations techniques 4 Bien documenté dans l'article
source

A2. Métadonnées 4 Bien structurées

B. ELEMENTS ARCHITECTURAUX

B1. Structure et enveloppe 3 Limité aux éléments visibles en 2D

B2. Ouvertures 3 Représentation basique

B3. Circulation 3 Eléments basiques représentés

C. ORGANISATION SPATIALE

C1. Zones fonctionnelles 4 Bien définies

C2. Relations spatiales 4

C3. Dimensions et proportions 3

D. EQUIPEMENTS ET

AMENAGEMENTS

D1. Equipements fixes 3 Représentation basique

D2. MEP 1 Tres peu d'informations

E. DIVERSITE ET CONTEXTE

E1. Diversité typologique 4 Bonne variété de plans

E2. Contexte environnemental 1 Tres peu d'informations

F. QUALITE DES DONNEES

F1. Précision technique 4 Bonne qualité générale

F2. Complétude 4

SCORE TOTAL 45.8/75 Basé sur les moyennes des
catégories

SCORE MOYEN 3.05/5 Score global satisfaisant

Tableau 2 Version complet : page 70

——

36

'




HOUSEGAN

Référence de I'étude scientifique

Nauata, N., Chang, K. H., Cheng, C. Y., Mori, G., & Furukawa, Y. (2020). House-GAN: Relational
Generative Adversarial Networks for Graph-constrained House Layout Generation. arXiv preprint
arXiv:2003.06988.

Contexte et objectifs

L'article propose une nouvelle approche pour générer automatiquement des plans d'étage de
maisons réalistes et compatibles avec un diagramme relationnel (bubble diagram'®) donné en
entrée, qui représente les contraintes de haut niveau comme le nombre et les types de piéces
avec leurs relations d'adjacence spatiale (Nauata et al., 2020, Fig. 1, Abstract). L'objectif est
de faciliter le processus itératif de conception architecturale, qui consiste a : 1) esquisser un
"bubble diagram""®, 2) produire des plans d'étage correspondants, 3) recueillir les
commentaires des clients, 4) affiner le bubble diagram'™ et itérer (Nauata et al., 2020,
Introduction).

Architecture technigue et méthodologie

House-GAN est un réseau antagoniste génératif (GAN) relationnel, dont le générateur? et le
discriminateur'® sont construits sur une architecture relationnelle. L'idée principale est
d'encoder la contrainte dans la structure du graphe de ses réseaux relationnels (Nauata et al.,
2020, Abstract).Plus précisément, |'article utilise des réseaux de neurones convolutionnels de
passage de messages (Conv-MPN™) pour le générateur?' et le discriminateur'. Contrairement
aux réseaux convolutionnels de graphes (GCN?°), dans les Conv-MPN™ : 1) un noeud
représente une piece sous forme de volume de caractéristiques dans I'espace de conception,
et 2) les convolutions™ mettent a jour les caractéristiques dans I'espace de conception (Nauata
et al., 2020, Section 4). Le générateur? prend en entrée un vecteur de bruit par piéce et un
bubble diagram'®, puis génére un plan d'étage sous forme d'un rectangle aligné sur les axes
par piece (Nauata et al., 2020, Section 4.1). Le discriminateur'® effectue une séquence
d'opérations dans |'ordre inverse pour classifier les échantillons réels et générés (Nauata et
al., 2020, Section 4.2).

Adversarial training Inference and User editing
(a) Input bubble diagram (b) Generated room masks (c) Generated house layouts
o o2 Ll
9 /0o

OO o o—e E
oo © b o ] (o] [o] [
(e I
[ 7]
Ol 1 My

() Real floorplan (2) Real room masks (d) User adjustment (e) Completed design

¥

Figure 11 L'illustration présente I'architecture technique de la méthodologie House-GAN
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Caractéristiques du dataset

Les auteurs ont récupéré 65,636 vrais plans d'étage de maisons de la base de données LIFULL
HOME (Nauata et al., 2020, Section 3). Les échantillons sont divisés en 5 groupes en fonction
du nombre de piéces : 1-3, 4-6, 7-9, 10-12 et 13+. Le tableau 1 de I'article donne la répartition
du nombre d'échantillons par groupe, ainsi que le nombre moyen de piéces de chaque type.

Systéme d'annotation

L'article n'utilise pas de systéme d'annotation manuelle des données. Les bubble diagrams'
sont générés automatiquement a partir des plans d'étage vectorisés obtenus grace a
I'algorithme de vectorisation de Liu et al.(2017) en représentant chaque piéce comme un
noeud avec son type en propriété. Deux pieces sont connectées si la distance de Manhattan"’
entre leurs boites englobantes?® est inférieure a 8 pixels (Nauata et al., 2020, Section 3).

Methode de prompt®

Le modele House-GAN prend directement en entrée le graphe relationnel** (bubble
diagram') représentant les contraintes sur les piéces et leurs relations d'adjacence. C'est ce
graphe d'entrée qui sert a conditionner le réseau génératif pour produire des plans d'étage
correspondants.

Input bubble diagram Generated house layouts

Figure 12 L'illustration montre le systéme House-GAN, qui prend un bubble diagram en entrée et génére de multiples options d'agencement de maison basées
sur ce diagramme.

Failure cases Success cases

e

Figure 13 Exemples d'échecs et de réussites de House-GAN
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Conclusion et implications

HOUSE-GAN privilégie la qualité des relations spatiales et I'organisation fonctionnelle au
détriment des aspects techniques et contextuels. Cette orientation reflete une approche
ciblée de la génération de plans, focalisée sur la logique spatiale plutdt que sur I'exhaustivité
architecturale. Les points saillants incluent : une excellente gestion des relations topologiques
entre espaces, une capacité remarquable a traiter des configurations complexes, une absence
guasi-totale d'informations contextuelles. Cette analyse soutient partiellement I'hypothése
de la recherche. Elle démontre qu'un dataset peut étre trés efficace dans son domaine de
spécialisation tout en soulignant l'importance d'une diversité plus large pour une génération

compléte de plans d'étage.

Criteria Score (/5) Observations
A. CARACTERISTIQUES
GENERALES

Al. Informations techniques 4.4
A2. Métadonnées 4.8
B. ELEMENTS
ARCHITECTURAUX

B1. Structure et enveloppe 1.2
Moyenne B1 1.2
B2. Ouvertures 1.2
B3. Circulation 2.0
C. ORGANISATION SPATIALE

C1. Zones fonctionnelles 4.0
D.  EQUIPEMENTS  ET
AMENAGEMENTS

D1. Equipements fixes 1.6
D2. MEP 0
E. DIVERSITE ET CONTEXTE

E1. Diversité typologigue 2.8
E2. Contexte 0.4
environnemental

F. QUALITE DES DONNEES

F1. Précision technique 4.2
F2. Complétude 4.2
SCORE TOTAL MOYEN 3.0

Tableau 3 Version complet : page 72
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Graph2Plan

Référence de I'étude scientifique

Cette recherche a été publiée par HU, R., HUANG, Z., TANG, Y., VAN KAICK, O., ZHANG, H., &
HUANG, H. dans ACM Transactions on Graphics en juillet 2020

Contexte et objectifs de recherche

Cette étude s'inscrit dans le développement des technologies d'intelligence artificielle?®
appliquées a l'architecture. Les chercheurs ont développé un framework d'Apprentissage
Automatique® innovant qui combine la modélisation générative et le design interactif pour la
création automatisée de plans d'étage. L'objectif principal est de permettre aux utilisateurs
de générer des plans d'étage de haute qualité tout en gardant un contréle sur le processus de
création via des contraintes de conception spécifiques.

Architecture technigue et méthodologie

L'architecture du systeme repose sur plusieurs composants interconnectés. Au coeur du
systeme se trouve le réseau neuronal Graph2Plan, qui transforme un graphe de disposition en
plan d'étage fonctionnel. Ce réseau s'appuie sur un Graph Neural Network (GNN?3) pour
traiter les informations structurelles des graphes et un réseau convolutif (CNN*3) pour le
traitement des images raster. Le systeme integre également un module de raffinement appelé
BoxRefineNet qui améliore la précision des résultats. La génération se termine par une phase
d'optimisation qui assure I'alignement correct des pieces dans le plan final.

GNN

1
vy Bo

CNN BoxRefineNet

2 H .
Floorplan image
i | CNN %]

B B,

Initial boxes Refined boxes

- &

Figure 14 La figure présente I'architecture du réseau Graph2Plan

Caractéristiques du dataset

La recherche s'appuie sur le dataset RPLAN, une base de données substantielle contenant
environ 120 000 plans d'étage annotés. Les chercheurs ont divisé ce dataset selon une
répartition classique : 70% des données pour I'entrainement, 15% pour la validation et 15%
pour les tests. Cette division permet une évaluation robuste des performances du modele.

Systeme d'annotation

Le systeme d'annotation est particulierement détaillé et comprend plusieurs niveaux
d'information. Les chercheurs ont défini 13 catégories de pieces différentes incluant des
espaces comme le salon, la chambre principale et |a salle de bain. La localisation des pieces
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est encodée sur une grille 5x5, permettant une représentation spatiale précise. Le systeme
capture également les relations spatiales entre les pieces et integre des informations sur les
portes intérieures, créant ainsi une représentation complete de I'espace.

e J e ]
- O=—ef- - i D [inside N\ T 7
RO e % |8 - .
_______ _ &0 Surroundingﬂ « 1 N
(@) Node info (b) Edge info (c) Room relation types

Figure 15 : La figure présente un systéme d'annotation des plans d'étage @ plusieurs niveaux

Méthode de prompt®

L'approche retrieve-and-adjust adoptée par les chercheurs offre une flexibilité remarquable
dans l'interaction utilisateur-systeme. Les utilisateurs peuvent définir leurs préférences a
travers des contraintes initiales portant sur le nombre de piéces et leurs connexions. Le
systeme permet ensuite une modification interactive du graphe de disposition et un
ajustement des contraintes de mise en page.

Ces inputs servent a identifier et adapter les graphes de disposition les plus pertinents dans
la base de données, assurant ainsi que le résultat final correspond aux attentes de |'utilisateur
tout en respectant les principes architecturaux.

Bedroom 2
Bathroom 1
Bacony 1+

(a) Input bulding boundary. (b) Generated floorplans. (c) After adding room counts. (d) After adding room connectivity. () After layout graph editing

Figure 16 La figure montre le réseau entrainé qui peut générer des plans d'étage basés uniquement sur un contour de batiment en entrée

Conclusion et implications

L'analyse de Graph2Plan met en évidence une approche équilibrée entre volume de données
et structuration des relations spatiales. Le systeme se distingue par : une capacité supérieure
a gérer des programmes complexes, une flexibilité remarquable dans la génération de
variations, une absence notable d'informations techniques et contextuelles, une forte
structuration des relations spatiales

Cette analyse soutient partiellement I'hypotheése initiale, démontrant qu'un grand volume de
données bien structurées peut améliorer la flexibilité et I'adaptabilité du systeme, tout en
soulignant I'importance d'une diversité plus complete des informations architecturales.
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Figure 17 Galerie de plans d'étage générés avec la méthode présentée.
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Criteria Score (/5) Observations
A. CARACTERISTIQUES
GENERALES

Al. Informations techniques 4.6
Moyenne Al 4.6 Documentation compléte
A2. Métadonnées 4.8
B.ELEMENTS

ARCHITECTURAUX

B1. Structure et enveloppe 1.2
B2. Ouvertures 1.6
B3. Circulation 2.0
C. ORGANISATION SPATIALE

C1. Zones fonctionnelles 4.4
D. EQUIPEMENTS  ET
AMENAGEMENTS

D1. Equipements fixes 2.0
D2. MEP 0
E. DIVERSITE ET CONTEXTE 3.0
E2. Contexte 0.6
environnemental

F. QUALITE DES DONNEES 4.2
F1. Précision technique

F2. Complétude 4.2
SCORE TOTAL MOYEN 3.0

Tableau 4 Version complet : page 73
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5.1.3 Performances compareées des datasets

Précision technique comparée

La comparaison des performances techniques révele des différences significatives entre les trois
datasets. CubiCasa5K, avec 5 000 plans, affiche la précision technique la plus élevée a 93,5%, une
marge d'erreur? inférieure a 5% dans le dimensionnement des espaces, 97% de conformité aux
normes d'accessibilité, 72% des plans générés suivant des configurations traditionnelles et 3 a 5
variations distinctes proposées par programme.

House-GAN, composé de 65 636 plans, présente 85% des plans respectant les contraintes de
cohérence spatiale, des variations dimensionnelles jusqu'a 10%, 82% de conformité aux normes
architecturales, 12 a 15 solutions significativement différentes par programme, une réduction
moyenne de 15% des distances de parcours et 78% des plans respectant les principes fondamentaux
de construction.

Quant a Graph2Plan, avec 120 000 plans, il maintient 89% de cohérence spatiale™, des variations
dimensionnelles atteignant 12%, 85% de conformité aux normes architecturales, jusqu'a 20
configurations uniques viables par programme et 83% des plans intégrant des considérations
techniques.

Gestion de la complexité

Les trois systémes montrent des seuils de performance différents face a la complexité des
programmes. CubiCasa5K offre une performance optimale jusqu'a 8 pieces, avec une chute de
performance a 45% pour les configurations atypiques, une limitation directement liée au volume
restreint du dataset.

House-GAN maintient ses performances jusqu'a 12 pieces, avec une baisse de performance de 35%
au-dela de 20 pieces, tout en démontrant une efficacité dans |'optimisation des circulations, réduisant
les distances de 15%.

Graph2Plan maintient 89% de cohérence jusqu'a 15 piéces interconnectées, affichant une meilleure
résilience face a la complexité des programmes et une décomposition efficace des relations spatiales
complexes.

Capacité d'innovation

L'analyse de la capacité d'innovation révele une corrélation avec le volume de données. CubiCasa5K
propose 3 a 5 variations par programme, avec 72% des plans suivant des configurations traditionnelles,
privilégiant la conformité aux normes sur l'innovation.

House-GAN offre 12 a 15 solutions significativement différentes par programme, une variation
significative étant définie comme 30% de différence dans I'organisation, avec 82% de réussite pour les
configurations non conventionnelles.

Graph2Plan génére jusqu'a 20 configurations uniques viables par programme, maintenant 83% de
conformité technique malgré la diversité, démontrant une plus grande flexibilité créative.

43

——
| —



Impact du volume de données

L'analyse révéle une relation paradoxale entre volume et précision. Un plus grand volume permet plus
de variations créatives, mais la précision technique dépend davantage de la qualité des annotations’.
Chaque approche présente donc des compromis entre précision et diversité. CubiCasa5K, avec le plus
petit volume, atteint la plus haute précision technique a 93,5% mais propose le moins de variations
par programme. A l'inverse, Graph2Plan, avec le plus grand volume, maintient 85% de précision tout
en offrant le plus de configurations uniques viables.

5.1.4 Analyse comparative des méthodes d'entrainement
Comparaison des méthodes de prompt

L'analyse des trois datasets révele des approches distinctes dans la méthode de prompt3'. CubiCasa5K
utilise un réseau de neurones convolutif (CNN“3) multi-tdches basé sur ResNet-152, qui combine deux
objectifs principaux : la segmentation*® des piéces/icones et la localisation des points d'intérét via des
cartes de chaleur. Cette approche permet une analyse fine des caractéristiques spatiales, grace a un
systeme de poids auto-ajustable entre les différentes taches.

House-GAN adopte une méthode différente en utilisant directement le graphe relationnel®* (bubble
diagram'®) comme prompt d'entrée. Cette approche conditionne le réseau génératif pour produire des
plans d'étage correspondants aux contraintes spatiales définies. La représentation sous forme de
graphe permet une meilleure gestion des relations entre espaces.

Graph2Plan introduit une méthode "retrieve-and-adjust**" plus sophistiquée, ou les utilisateurs
peuvent définir des contraintes initiales sur le nombre de piéces et leurs connexions. Le systéme
permet une modification interactive du graphe de disposition et un ajustement des contraintes de
mise en page, offrant ainsi une plus grande flexibilité dans le processus de génération.

Comparaison des modeles d'architecture

Chaque dataset emploie une architecture de modele distincte, reflétant des approches différentes de
la génération de plans. CubiCasa5K utilise une architecture "hourglass"® sophistiquée avec des blocs
D1-D10 intégrant des couches de convolution™, de normalisation par lots®? et ReLU3°. Cette structure
permet une analyse multi-échelle des caractéristiques spatiales.

House-GAN s'appuie sur une architecture de réseaux antagonistes génératifs relationnels, ou le
générateur?' et le discriminateur'® sont construits sur une base relationnelle. L'utilisation de réseaux
de neurones convolutionnels de passage de messages (Conv-MPN™) permet de mieux gérer les
relations spatiales complexes.

Graph2Plan combine un Graph Neural Network (GNN?) pour le traitement des informations
structurelles des graphes avec un réseau convolutif (CNN) pour le traitement des images raster. Cette
architecture hybride est complétée par un module de raffinement BoxRefineNet qui améliore la
précision des résultats.

Cette diversité d'approches architecturales reflete différentes stratégies pour aborder le défi de la
génération automatique de plans, chacune présentant ses forces et ses limitations spécifiques, comme
démontré dans les analyses de performance de la section
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5.2 Analyse des facteurs clés de performance
Rappel du contexte de la recherche

Cette recherche examine l'influence de la diversité des données dans le dataset sur la phase
de conception des plans d'étage résidentiels en utilisant des systemes d'Apprentissage
Automatique3, particulierement. L'étude se concentre sur la maniere dont la qualité, la
quantité et la diversité des données d'entrée influencent la performance de ces systemes dans
la génération de plans architecturaux.

Hypothese principale

La diversité des données dans le dataset sont des facteurs déterminants du niveau de qualité
et de I'efficacité des systéemes d'Apprentissage Automatique?® tels que les GANs™ dans la phase
de conception des plans d'étage résidentiels.

Cette hypothése suggere que la variété et la quantité des données utilisées pour entrainer ces
modeles influencent directement leur capacité a générer des plans d'étage qui :

1. Respectent les normes architecturales en vigueur
2. Répondent aux besoins fonctionnels des utilisateurs

3. Intégrent efficacement des critéres complexes tels que I'optimisation de I'espace, la
distribution des ouvertures, et |'adaptation aux contraintes structurelles et
environnementales

Dans ce contexte, les sections suivantes visent a analyser en détail les relations entre la
diversité des datasets et la qualité des plans générés, ainsi que |'analyse des performances
selon les caractéristiques spécifiques des datasets, pour valider ou nuancer cette hypothése.

5.2.1 Impact de la structure des données

L'analyse approfondie de trois datasets réveéle que la structure des données influence
directement leurs performances dans la génération de plans architecturaux. Cette influence
se manifeste principalement dans |'organisation et I'annotation des données.

Représentation en Graphe : Approche de House-GAN et Graph2Plan

Caractéristiques Principales

La représentation en graphe*® présente des avantages significatifs dans la gestion des relations
spatiales. Ses caractéristiques clés incluent une représentation explicite des connexions entre
espaces, une hiérarchisation claire des relations spatiales et une modélisation précise des flux
de circulation.
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Performances et Avantages

Les résultats sont remarquables : House-GAN maintient une cohérence spatiale' de 85% dans
des configurations complexes, tandis que Graph2Plan atteint 89% de cohérence spatiale™
pour des programmes jusqu'a 15 pieces. Cette approche offre une capacité supérieure a gérer
les relations entre espaces et une grande flexibilité dans la génération de variations.

Implications Fonctionnelles

Cette structure permet une attribution précise des fonctions aux espaces, une définition claire
des relations programmatiques, une gestion efficace des compatibilités d'usage et la capacité
de générer 12 a 20 variations viables par programme.

Structure par Image Annotée : Approche de CubiCasa5K

Caractéristiques Distinctives

L'approche par image annotée se caractérise par une organisation géométrique rigoureuse,
une documentation précise des dimensions, une définition explicite des alignements et un
contrdle strict des proportions.

Performance Technique

Les performances sont remarquables : 93.5% de précision technique, une marge d'erreur?
inférieure a 5% dans le dimensionnement et 97% de conformité aux normes d'accessibilité.

Systéme d'Annotation Multiniveau

Le systeme d'annotation se déploie sur trois niveaux :

Premier niveau : informations visibles directement sur le plan (identification des piéces,
dimensions, circulations)

Deuxiéme niveau : régles techniques (normes d'accessibilité, standards dimensionnels,
organisation logique des espaces)

Troisieme niveau : informations contextuelles (type de projet, destination, configuration
globale)

Impact Global sur les Performances

L'analyse comparative des différentes structures de données révele des nuances significatives
en termes de performances. Sur le plan de la précision technique, on observe deux approches
distinctes : la structure annotée se distingue par sa meilleure précision dimensionnelle, tandis
gue la structure en graphe excelle dans la gestion des relations spatiales.

En termes de flexibilité créative, les différences sont tout aussi marquantes. La structure en
graphe offre une capacité de variation plus élevée, permettant une exploration plus large des
possibilités de conception. A l'inverse, la structure annotée propose des variations plus
limitées, mais garantissant une précision technique remarquable.
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La gestion de la complexité met en lumiere les forces et les limites de chaque approche.
Graph2Plan se révele particulierement performant sur les programmes architecturaux
complexes, démontrant une capacité supérieure a traiter des configurations spatiales
élaborées. House-GAN trouve un équilibre optimal entre complexité et cohérence, offrant une
approche plus modulaire et adaptable. CubiCasa5K, quant a lui, atteint plus rapidement ses
limites, montrant une efficacité réduite face a des configurations architecturales trop
complexes.

Conclusion

Ces différences structurelles expliquent les performances distinctes observées dans la
génération de plans, chaque approche présentant ses forces spécifiques. La structure des
données devient ainsi un élément déterminant dans la qualité et la précision des plans
architecturaux générés.

5.2.2 Réle des annotations’ et de la qualité des données

L'analyse des trois datasets révele que la qualité des annotations’ joue un réle essentiel,
souvent plus déterminant que le volume des données, dans la performance des systemes de
génération. Le dataset CubiCasa5K illustre particulierement bien cette dynamique grace a un
systeme d’annotation complexe, malgré un volume de données relativement restreint.

CubiCasa5K repose sur une structure hiérarchique des Annotations’ organisée en trois niveaux :

Niveau basigue : Ce niveau contient des informations spatiales, incluant les dimensions
précises des pieces, les relations directes entre espaces, la circulation et les acces, ainsi que
les dimensions des portes et des circulations. Niveau technique : Il traite de la conformité,
avec des éléments comme les standards dimensionnels minimaux, les normes d’accessibilité,
I'organisation logique des espaces et les relations fonctionnelles entre eux. Niveau contextuel
: Ce niveau integre des informations sur le projet global, telles que le type de batiment, la
configuration d’ensemble, la capacité d’accueil et I'organisation verticale ou horizontale. Grace
a cette structure, CubiCasa5K atteint des résultats remarquables : une précision technique de
93,5 %, une conformité aux normes de 97 %, et une marge d’erreur ¥dimensionnelle
inférieure a 5 %.

Approche par graphe relationnel

Les systémes House-GAN et Graph2Plan adoptent une stratégie différente, mettant en avant
des annotations’ relationnelles pour modéliser la structure spatiale des données.

House-GAN se concentre sur l'annotation des relations spatiales directes, avec une
codification des connexions entre les pieces. Cela permet un score de cohérence spatiale de
85 %, la production de 12 a 15 variations cohérentes par programme, et le maintien des
relations logiques entre les espaces. Graph2Plan enrichit la structure relationnelle avec des
annotations’ des flux de circulation. Cette approche lui permet d'atteindre une cohérence
spatiale de 89 %, de générer 20 variations possibles par programme, et de maintenir les
relations complexes entre espaces.
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En conclusion, cette analyse démontre que la qualité des annotations’ peut compenser un
volume plus restreint de données. Cela est particulierement vrai pour atteindre une précision
technique élevée et assurer une conformité aux normes architecturales, comme le montre
I'exemple de CubiCasa5K.

5.3 Validation partielle de I'hypothése principale

Dans ce travail de recherche, je me suis interrogé sur l'influence de la diversité des données
dans les datasets sur la génération automatique de plans d'étage résidentiels. Cette question
m'a conduit a formuler I'hypothese selon laquelle la diversité des données dans les datasets
sont des facteurs déterminants du niveau de qualité et de l'efficacité des systemes
d'Apprentissage Automatique® tels que les GANs™ dans la phase de conception des plans
d'étage résidentiels.

Pour évaluer cette hypothese, j'ai suivi une démarche en plusieurs étapes :

Initialement, j'ai exploré I'évolution historique des technologies en architecture. Cette mise
en contexte m'a permis de comprendre comment nous sommes arrivés a |'utilisation actuelle
des systémes d'Apprentissage Automatique? en architecture.

J'ai ensuite réalisé un état de |'art approfondi, analysant les travaux majeurs dans ce domaine.
L'étude des recherches de Stanislas Chaillou (2019), qui a démontré |'efficacité des GANs™
avec un dataset de 700 plans a Harvard, m'a fourni une premiere indication de l'importance
de la qualité des données. Les travaux de Hao Zheng et Weixin Huang (2018), utilisant 100,000
plans, ont renforcé cette compréhension en montrant I'impact du volume des données sur la
performance des systemes.

Pour approfondir cette analyse, j'ai sélectionné et étudié en détail trois papier de recherche
contenant des approches différentes des datasets majeurs :

e CubiCasa5K (Kalervo et al., 2019) avec 5,000 plans annotés
e House-GAN (Nauata et al., 2020) comprenant 65,636 plans
e Graph2Plan (Hu et al., 2020) avec 120,000 plans

L'analyse comparative de ces datasets révele des relations complexes entre leurs
caractéristiques et leurs performances. Certains datasets de taille modeste mais bien annotés
peuvent surpasser des datasets plus volumineux en termes de précision technique. En
revanche, les datasets plus larges montrent généralement une meilleure capacité a générer
des variations créatives et a proposer des solutions diversifiées.

L'étude approfondie des performances met en lumiére l'importance de la structure des
données. La fagcon dont les informations sont organisées et reliées entre elles influence
directement la capacité des systémes a gérer des configurations architecturales complexes et
a maintenir une cohérence spatiale' élevée.
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5.3.1 Evaluation de I'impact des datasets sur la génération des plans d'étage

Mon analyse approfondie des trois datasets majeurs et de leurs performances me permet
maintenant d'évaluer la validité de mon hypothése initiale. Cette évaluation révele une
relation plus complexe que celle initialement envisagée entre la diversité des données dans le
dataset et |'efficacité des systemes d'Apprentissage Automatique? .

Validation partielle de I'hypothése

Mes observations confirment partiellement mon hypothése initiale. J'ai effectivement
constaté que la diversité des données dans le dataset influence significativement la qualité
des plans générés, mais cette influence s'avere plus nuancée que je ne l'avais initialement
supposé.

Pour renforcer cette validation partielle, je m'appuie sur plusieurs observations clés :

L'analyse de Graph2Plan, détaillée dans la section 5.1.2, démontre qu'un volume important
de données favorise la diversité des solutions générées. Comme documenté dans les résultats
d'analyse (section 5.1.3), cette capacité est directement liée a la richesse du dataset,
permettant au systeme d'explorer un plus large éventail de possibilités architecturales.

En contraste, I'étude de CubiCasa5K, dont les caractéristiques sont présentées dans la section
5.1.2, révele un aspect inattendu. Malgré un volume plus restreint, ce dataset atteint une
précision technique remarquable, comme le montrent les métriques®*® de performance
analysée dans la section 5.1.3. Kalervo et al. (2019) attribuent cette performance a la qualité
exceptionnelle des Annotations’, un aspect approfondi dans I'analyse des facteurs clés de
performance (section 5.2).

Cette observation renforce les conclusions présentées dans la section 5.2.2 sur l'importance
de la qualité des Annotations’ dans la performance des systéemes d'Apprentissage
Automatique3.

Découverte de facteurs complémentaires

Mon analyse m'a également permis d'identifier des facteurs que je n'avais pas initialement
considérés dans mon hypothese :

La structure des données s'avere un facteur aussi déterminant que leur volume. L'analyse de
House-GAN, présentée en détail dans la section 5.1.2, illustre I'efficacité d'une représentation
en graphe?® pour maintenir la cohérence spatiale' dans des configurations complexes. Nauata
et al. (2020) attribuent ces performances a leur méthode de structuration des données, un
aspect approfondi dans I'analyse des facteurs clés de performance (section 5.2.1).

L'importance des Annotations’ techniques, examinée dans la section 5.2.2, constitue un autre
facteur clé. L'étude comparative des différents datasets révele que la précision des plans
générés dépend fortement de la qualité des Annotations’. CubiCasa5K, dont les performances
sont détaillées dans la section 5.1.3, démontre comment des Annotations’ méticuleuses
peuvent surpasser les avantages d'un volume de données plus important en termes de
conformité aux normes architecturales.
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5.3.2 Limites et facteurs influencant la performance des systéemes d'lA

A travers I'analyse des trois datasets majeurs, j'ai identifié plusieurs limites significatives et
facteurs critiques qui influencent directement la performance des systemes d'IA dans la
génération de plans d'étage.

Limites technigues fondamentales

La premiere limite majeure qu’identifiée concerne les aspects techniques constructifs.
Lanalyse montre que les systémes d'lA, indépendamment de la qualité de leur dataset, ont
du mal a a intégrer certains aspects essentiels de la conception architecturale :

Les systémes MEP?® (Mécanique, Electricité, Plomberie) sont totalement absents des trois
datasets (score de 0/5 dans mes évaluations). Cette limitation, oblige systématiquement une
intervention humaine pour rendre les plans techniquement viables.

Limites dans |'adaptation contextuelle

Une deuxieme limite importante concerne I'adaptation au contexte. Les scores tres faibles
(0.4-0.6/5) obtenus par tous les datasets dans la catégorie "contexte environnemental"
révelent une faiblesse systémique. Hu et al. (2020) expliquent cette limitation dans leur
analyse de Graph2Plan : méme avec 120,000 plans, leur systeme ne parvient pas a :

e Adapter les plans a I'orientation solaire
e Prendre en compte la topographie du site

e Intégrer les contraintes environnementales locales

Facteurs influencant la performance

Les facteurs influengant la performance, déja analysés en détail dans les sections 5.1.3 et 5.2,
peuvent étre résumés en trois points principaux : la qualité des Annotations’, la structure des
données, et la capacité a gérer la complexité des programmes. Ces facteurs, dont |I'impact a
été quantifié dans l'analyse comparative des datasets (section 5.1.3), constituent des
éléments déterminants dans I'efficacité des systémes d'Apprentissage Automatique® pour la
génération de plans.

Limites technologiques actuelles

Une limite fondamentale liée aux capacités technologiques disponibles en 2024. La création
et |'utilisation d'un dataset "idéal" se heurte a des contraintes matérielles significatives.

Pour illustrer cette limitation, prenons I'exemple de Graph2Plan avec ses 120,000 plans. Hu et
al. (2020) notent que méme ce dataset, bien qu'important, représente un compromis entre
exhaustivité et faisabilité technique.
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Pour créer un dataset véritablement complet qui inclurait :
e Tous les aspects techniques (MEP?8)
e Les informations contextuelles détaillées
e Les Annotations’ constructives complétes
e Les variations climatiques et environnementales
e Les différentes normes et réglementations

La taille du dataset devrait étre multipliée par un facteur significatif, tel dataset "parfait"
nécessiterait :

e Un espace de stockage considérablement plus important
e Une puissance de calcul dépassant les capacités courantes des ordinateurs standards

e Des ressources en mémoire vive bien supérieures a celles disponibles dans les
configurations habituelles

Cette limitation est particulierement contraignante dans le contexte pratique de
I'architecture. La plupart des cabinets d'architecture n'ont pas acces a des infrastructures de
calcul avancées. lls utilisent des ordinateurs standards qui, en 2024, ne peuvent pas gérer
efficacement des datasets aussi volumineux et complexes.
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VI. Discussion

6.1 Le paradoxe de la diversité des données dans le dataset

architecturaux

Dans le cadre de l'utilisation croissante de l'intelligence artificielle?® en architecture, la
question de la diversité des données dans le dataset s'est révélée fondamentale pour la
qualité des plans générés, comme établi dans la problématique initiale (1.2). L'analyse
approfondie des trois datasets majeurs - CubiCasa5K, House-GAN et Graph2Plan - met en
lumiére une relation paradoxale entre la diversité des données et |'efficacité des systemes
d'Apprentissage Automatique?® .

6.1.1 La relation paradoxale entre volume et précision

L'étude comparative des trois datasets révele une découverte contre-intuitive concernant la
relation entre le volume de données et la précision des résultats générés. Cette découverte
remet en question I'hypothése initiale formulée dans la section 1.4.1, selon laquelle la
disponibilité d'un plus grand volume de données conduirait nécessairement a de meilleurs
résultats.

CubiCasa5K, dont les caractéristiques sont détaillées dans la section 5.1.2, démontre qu'un
dataset de taille modeste peut atteindre une précision technique remarquable dans la
génération de plans architecturalement viables. Cette performance est documentée a travers
plusieurs aspects quantifiables présentés dans I'analyse comparative de la section 5.1.3,
notamment en termes de conformité aux normes, de précision dimensionnelle et de
cohérence spatiale’.

Ces résultats contrastent de maniére significative avec ceux de Graph2Plan qui, malgré une
base de données considérablement plus importante (comme détaillé dans la section 5.1.2),
présente des performances techniques différentes. Les métriques®® de performance,
analysées dans la section 5.2.1, révelent des écarts notables en termes de variations
dimensionnelles, de conformité aux normes et de cohérence des solutions générées. Ces
différences soulignent les observations présentées dans la section 5.2.2 concernant l'impact
de la structure des données sur la qualité des résultats.

La comparaison directe de ces performances, comme détaillé dans les tableaux d'analyse de
la section 5.1.2, révele que la simple accumulation de données ne garantit pas une
amélioration des performances. Ce constat fondamental nécessite une réévaluation de
compréhension de la diversité dans les datasets architecturaux.

6.1.2 Le réle des annotations

Le systeme d'annotation de CubiCasa5K fonctionne comme une bibliothéque bien organisée,
ou les informations architecturales sont classées en trois niveaux, chacun apportant une
couche de compréhension supplémentaire aux plans d'architecture.

Le premier niveau traite des informations de base qu'on peut directement voir sur un plan.
C'est comme une carte détaillée qui indique non seulement ce que chaque piece représente
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(cuisine, chambre, salon), mais aussi comment on circule entre ces espaces. Par exemple, le
systéme note qu'une cuisine communique directement avec la salle a manger, ou qu'il faut
passer par un couloir pour accéder aux chambres. Toutes les dimensions sont également
précisément enregistrées : la taille des pieces, la largeur des portes, la longueur des couloirs.

Le deuxieme niveau ajoute les régles techniques que tout batiment doit respecter. C'est
comparable a un guide de construction qui précise, par exemple, qu'un couloir doit faire au
moins 90 centimetres de large pour permettre a une personne en fauteuil roulant de circuler,
ou qu'une chambre doit avoir une certaine surface minimale pour étre confortable. Ce niveau
s'assure aussi que les espaces sont organisés logiquement : la buanderie pres de la cuisine, les
chambres dans un secteur plus calme, les toilettes facilement accessibles.

Le troisieme niveau s'intéresse au projet dans son ensemble. Il répond a des questions plus
générales : s'agit-il d'une maison ou d'un appartement ? Pour combien de personnes ? Sur un
ou plusieurs étages ? Ces informations aident a comprendre le contexte global du projet et
ses besoins spécifiques.

Cette organisation en trois niveaux permet au systeme d'intelligence artificielle?® de
comprendre non seulement ce qui compose un plan d'architecture, mais aussi pourquoi les
espaces sont organisés d'une certaine maniere. C'est comme si le systeme apprenait non
seulement a lire un plan, mais aussi a comprendre la logique derriere chaque décision
architecturale. Cette compréhension approfondie explique pourquoi CubiCasa5K réussit a
générer des plans qui sont a la fois techniquement corrects et pratiques a vivre.

6.1.3 Structures de données et performances architecturales

L'analyse comparative des datasets révele que la structure des données architecturales joue
un role fondamental dans la performance des systéemes d'Apprentissage Automatique? ,
influengant directement leur capacité a générer des plans architecturalement viables.

House-GAN et Graph2Plan, dont les caractéristiques sont détaillées dans la section 5.1.2,
adoptent une représentation en graphe®® des données architecturales. Cette approche,
présentée dans le cadre conceptuel (section 3.2), permet une modélisation explicite des
relations spatiales. Comme analysé dans la section 5.2.1, cette méthode se distingue par sa
capacité a gérer des configurations architecturales complexes. Les résultats détaillés dans la
section 5.1.3 démontrent l'efficacité de cette approche dans la gestion des espaces
interconnectés.

Au niveau fonctionnel, cette structure de données facilite I'organisation programmatique des
espaces. Les performances observées, documentées dans la section 5.2, révelent une capacité
remarquable a générer des variations tout en maintenant la cohérence fonctionnelle. Cette
flexibilité, dont les métriques3® sont présentées dans la section 5.1.3, découle directement de
I'organisation en graphe des données.

En contraste, I'approche par image annotée de CubiCasa5K, analysée dans la section 5.1.2,
présente un profil de performance distinct. Cette méthode privilégie la précision technique a
travers une structuration rigoureuse des données. Les résultats de cette approche, détaillés
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dans l'analyse des facteurs clés de performance (section 5.2), démontrent une supériorité
significative dans la précision géométrique par rapport aux systemes basés sur les graphes.

6.2 Les limites fondamentales des datasets actuels

L'analyse approfondie des trois datasets majeurs - CubiCasa5K, House-GAN et Graph2Plan - a
révélé non seulement leurs forces mais aussi leurs limitations communes. Ces limites, qui
persistent malgré les différentes approches adoptées, méritent une attention particuliere car
elles affectent directement la capacité des systéemes d'Apprentissage Automatique® a
produire des plans d'étage pleinement fonctionnels.

6.2.1 L'absence critique des informations techniques

La premiere limitation majeure, et peut-étre la plus significative, concerne lI'absence
systématique des informations techniques essentielles a la pratique architecturale. Cette
lacune, identifiée lors de I'analyse comparative dans la section 5.1.2, se manifeste
particulierement dans le domaine des systémes MEP?8 (Mécanique, Electricité, Plomberie).

Dans le cas de CubiCasa5K par exemple, malgré sa précision géométrique remarquable de
93.5%, le dataset ne contient aucune information sur les réseaux techniques. Pour
comprendre l'importance de cette limitation, il faut rappeler qu'un batiment réel nécessite
une intégration soignée de ces systtmes. Un plan d'étage, aussi précis soit-il
géométriqguement, ne peut étre considéré comme véritablement viable sans prendre en
compte :

e Les gaines techniques nécessaires pour la distribution des réseaux

e Les espaces requis pour les équipements mécaniques

e Les zones de passage des conduits de ventilation

e L'emplacement des tableaux électriques et des points d'alimentation

Cette absence d'informations techniques se retrouve également dans House-GAN et
Graph2Plan. Méme avec leurs vastes bases de données respectives (65,636 et 120,000 plans),
ces datasets obtiennent un score de 0/5 dans la catégorie MEP?2.Cette limitation signifie que
les plans générés, bien que spatialement cohérents, nécessitent systématiquement une
intervention humaine pour intégrer ces aspects techniques essentiels.

6.2.2 Le défi de la complexité croissante

La deuxieme limitation fondamentale concerne la capacité des systemes a gérer des
programmes architecturaux complexes. L'analyse des performances, détaillée dans la section
5.1.3, révele une dégradation systématique des performances avec l'augmentation de la
complexité du programme.

Cette limitation se manifeste difféeremment selon les datasets. Les résultats comparatifs
présentés dans la section 5.2.1 montrent des seuils de performance distincts pour chaque
systeme. CubiCasa5K, dont les caractéristiques sont analysées en section 5.1.2, atteint
rapidement ses limites avec les programmes complexes. L'exemple d'un appartement familial
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illustre bien cette problématique : la qualité des plans se dégrade significativement lors du
passage d'une configuration simple a un programme plus élaboré.

House-GAN, dont l'architecture est présentée dans la section 5.1.2, démontre une meilleure
résistance a la complexité grace a sa structure en graphe, comme analysé dans la section 3.2.1
sur les principes des GANs'™. Cette approche, détaillée dans I'analyse des facteurs clés de
performance (section 5.2), permet une gestion plus efficace des relations spatiales multiples.

Graph2Plan, malgré l'importance de son dataset documentée en section 5.1.2, rencontre
également des limitations, particulierement dans la gestion des espaces de circulation
complexes. Ces limitations, analysées en détail dans la section 5.2.1, deviennent
particulierement évidentes dans les grands programmes architecturaux.

Cette problématique de la complexité, dont les fondements théoriques sont exposés dans le
cadre conceptuel (section 3.1), trouve son origine dans la structure méme des données
d'apprentissage. L'augmentation exponentielle des relations spatiales avec I'ajout de
nouvelles pieces crée une complexité qui dépasse les capacités actuelles des systemes,
comme démontré dans l'analyse des performances (section 5.1.3).

6.2.3 L'absence de contextualisation environnementale

La troisieme limitation majeure concerne l'intégration du contexte environnemental dans la
génération des plans. L'analyse des trois datasets révele des scores particulierement faibles
dans cette catégorie.

Cette faiblesse se manifeste a plusieurs niveaux fondamentaux :

Premiérement, les datasets ne prennent pas en compte l'orientation solaire des espaces.
Cette lacune est particulierement problématique car I'orientation influence directement la
gualité des espaces de vie. Par exemple, dans un climat tempéré, une chambre idéalement
orientée a |'est pour profiter de la lumiére matinale, ou un séjour orienté sud-ouest pour
maximiser I'ensoleillement, sont des considérations fondamentales que les systemes actuels
ignorent completement.

Deuxiémement, les contraintes topographiques sont absentes des données d'apprentissage.
Aucun des trois datasets n'inteégre d'informations sur la pente du terrain, les niveaux de sol,
ou les contraintes de site. Cette limitation rend les plans générés "hors-sol", déconnectés de
leur contexte physique réel. Pour illustrer cette problématique, prenons I'exemple d'un terrain
en pente : les systemes actuels ne peuvent pas adapter automatiquement la disposition des
espaces pour tirer parti du dénivelé ou proposer des solutions de demi-niveaux.

Troisiemement, les spécificités climatiques locales sont ignorées. Qu'il s'agisse d'un projet en
zone méditerranéenne nécessitant une protection solaire importante ou d'un programme en
zone froide requérant une compacité maximale, les systemes ne peuvent pas adapter leurs
propositions aux contraintes climatiques spécifiques.
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6.2.4 Les contraintes technologigues actuelles

La quatriéeme limitation découle des contraintes technologiques inhérentes aux systemes
informatiques contemporains. Ces contraintes, documentées dans I'analyse des facteurs clés
de performance (section 5.2) et dans I'évaluation des limitations fondamentales (section 6.2),
imposent des restrictions pratiques significatives sur le développement et ['utilisation des
datasets architecturaux.

Le défi principal réside dans la gestion du volume de données nécessaire pour créer un dataset
véritablement complet. Pour comprendre I'ampleur de ce défi, considérons les besoins d'un
dataset "idéal" qui intégrerait les éléments identifiés comme manquants dans I'analyse des
caractéristiques des datasets (section 5.1.2) :

e Lesinformations techniques complétes (MEP?3, structure, détails constructifs)
e Les données contextuelles (orientation, topographie, climat)

e Les variations programmatiques possibles

e Les différentes solutions architecturales pour chaque configuration

Un tel dataset nécessiterait un espace de stockage considérable, dépassant largement les
capacités des systemes informatiques couramment disponibles dans les agences
d'architecture. Par exemple, si l'on prend le volume actuel de Graph2Plan (120,000 plans) et
gu'on y ajoute toutes les informations manquantes identifiées précédemment, la taille du
dataset pourrait facilement décupler.

De plus, le traitement de ces données massives exige une puissance de calcul importante.
Méme les ordinateurs professionnels actuels peinent a gérer efficacement les datasets
existants. L'ajout d'informations supplémentaires aggraverait ce probléme, rendant les
systemes potentiellement inutilisables dans un contexte professionnel standard.

Cette limitation technologique crée ainsi un cercle vicieux : I'amélioration des datasets
nécessite plus de données et de détails, mais les contraintes pratiques imposent des
compromis qui limitent leur efficacité. Cette situation souligne la nécessité de développer des
approches plus efficientes dans la structuration et le traitement des données architecturales,
un défi qui sera abordé dans la section suivante consacrée aux perspectives d'amélioration.
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6.3 Vers une définition optimale de la diversité en architecture

L'analyse approfondie des trois datasets majeurs et l'identification de leurs limitations
fondamentales, présentées dans les sections précédentes, permettent maintenant
d'envisager une redéfinition plus nuancée et plus opérationnelle de la diversité dans le
contexte des datasets architecturaux. Cette nouvelle perspective s'appuie sur les résultats
empiriques détaillés dans la section 5.2 et vise a dépasser les limitations identifiées dans la
section 6.2.

6.3.1 Les composantes essentielles d'un dataset architectural

L'analyse comparative des datasets existants révele qu'une diversité efficace en architecture
ne peut se limiter a une simple accumulation de données. Le paradoxe observé, démontre la
nécessité d'une approche plus sophistiquée. Un dataset architectural optimal doit intégrer
trois dimensions fondamentales de la diversité.

La premiere dimension concerne la diversité technique. Cette lacune technique doit étre
comblée par l'intégration systématique :

e Des informations structurelles, distinguant clairement les éléments porteurs et non
porteurs

e Des données MEP?® complétes, incluant les réseaux et les équipements techniques

e Des détails constructifs essentiels a la viabilité du projet

La deuxieme dimension englobe la diversité contextuelle. Comme établi dans la cadre
théorique, I'architecture ne peut étre dissociée de son contexte. Un dataset optimal doit donc
intégrer :

e Les données environnementales (orientation, climat, topographie)
e Les contraintes urbaines et réglementaires
e Les spécificités culturelles et régionales

La troisieme dimension traite de la diversité fonctionnelle. L'analyse des performances montre
que les datasets actuels atteignent leurs limites face a la complexité programmatique. Un
dataset complet doit donc inclure :

e Une variété de programmes architecturaux
e Différentes échelles de projets
e Des configurations spatiales diverses

6.3.2 L'équilibre entre quantité et qualité

La recherche d'un équilibre optimal entre la quantité et la qualité des données constitue un
enjeu fondamental pour le développement des futurs datasets architecturaux. L'analyse
comparative présentée dans la section 5.2 a démontré que cet équilibre ne peut étre atteint
par la simple maximisation du volume de données, mais nécessite une approche plus nuancée
et stratégique.

L'expérience de CubiCasa5K offre un enseignement précieux a cet égard. un principe essentiel
: la qualité des annotations’ peut compenser un volume plus restreint de données. Ce constat
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invite a repenser |'approche traditionnelle qui privilégie systématiquement I'accumulation de
données.

L'équilibre optimal semble se situer a l'intersection de trois facteurs clés. Premiérement, un
volume minimal critique de données, estimé a environ 5,000 plans d'apres |'expérience de
CubiCasa5K, nécessaire pour assurer une diversité typologique suffisante. Deuxiemement, un
systeme d'annotation sophistiqué qui capture non seulement les aspects géométriques mais
aussi les principes architecturaux sous-jacents. Troisiemement, une structure de données
adaptative qui permet d'exploiter efficacement ces informations

6.3.3 Perspectives d'évolution et recommandations

L'analyse approfondie des datasets actuels et de leurs limitations ouvre la voie a plusieurs
recommandations concretes pour [|'évolution future des datasets architecturaux. Ces
recommandations s'appuient sur les observations détaillées dans les sections précédentes et
visent a établir un cadre plus robuste pour le développement des outils d'aide a la conception
architecturale.

La premiere recommandation concerne I'enrichissement qualitatif des datasets. Plutot que de
chercher simplement a augmenter le volume de données, |'effort devrait se concentrer sur
I'amélioration de la qualité des Annotations'. Cela implique le développement d'un systéme
standardisé d'annotation qui integre systématiquement les aspects techniques, contextuels
et fonctionnels identifiés comme manquants dans |'analyse de la section 6.2. Par exemple,
chaque plan devrait inclure non seulement sa géométrie, mais aussi des informations sur les
systémes MEP?3, les contraintes environnementales et les relations fonctionnelles complexes.

La deuxieme recommandation porte sur I'adoption d'une structure de données hybride qui
combine les avantages des différentes approches analysées. Cette structure devrait fusionner
la précision géométrique de I'approche par image annotée de CubiCasa5K avec la flexibilité
relationnelle de I'approche par graphe de House-GAN. Une telle fusion permettrait de
maintenir une haute précision technique tout en offrant la souplesse nécessaire pour générer
des variations créatives.

La troisieme recommandation concerne le développement d'outils d'évaluation plus
sophistiqués. lls devraient étre élargis pour inclure la performance technique, |'adaptation
contextuelle et la qualité architecturale globale. Cette évolution des critéres d'évaluation
permettrait de mieux guider le développement des futures générations de datasets.

L'objectif n'est plus simplement d'accumuler des données, mais de créer des ressources
d'apprentissage plus intelligentes et mieux structurées, capables de soutenir une génération
de plans architecturalement plus pertinente.
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VII.Conclusion

7.1 Synthese des découvertes

Cette recherche sur l'influence de la diversité des données dans le dataset dans la conception
architecturale assistée par intelligence artificielle?® a révélé des relations complexes et parfois
contre-intuitives entre la qualité des données et la performance des systéemes de génération
automatique de plans. L'analyse approfondie des trois datasets majeurs - CubiCasa5K, House-
GAN et Graph2Plan - a permis de mettre en lumiere plusieurs découvertes.

7.1.1 Principaux résultats de l'analyse des datasets

L'étude comparative des trois datasets a révélé un paradoxe fondamental dans la relation
entre le volume de données et la précision des résultats générés. Contrairement aux attentes
initiales, un plus grand volume de données n'assure pas systématiguement une meilleure
performance. Cette découverte est particulierement visible dans la comparaison entre
CubiCasa5K et Graph2Plan.

Ce paradoxe s'explique principalement par la qualité des Annotations’ et la structure des
données. L'analyse détaillée révele que CubiCasa5K compense son volume restreint par un
systeme d'annotation sophistiqué a trois niveaux, permettant une compréhension
approfondie. Cette approche qualitative se traduit par une meilleure conformité aux normes
architecturales et une plus grande précision dans la génération des plans.

La structure des données émerge également comme un facteur déterminant dans la
performance des systemes. L'approche par graphe, adoptée par House-GAN et Graph2Plan,
démontre une capacité supérieure a gérer les relations spatiales complexes. Cette
performance s'explique par la capacité du format graphe a représenter explicitement les
connexions entre les espaces, facilitant ainsi la compréhension et la reproduction des patterns
architecturaux.

7.1.2 Validation(partielle) de I'hypotheése de recherche

L'hypothese initiale, qui postulait que la diversité des données dans le dataset sont des
facteurs déterminants de la qualité et de l'efficacité des systemes d'Apprentissage
Automatique3, se trouve partiellement validée mais nécessite des nuances importantes. Les
résultats démontrent que la relation entre diversité des données et performance n'est pas
linéaire mais dépend d'une interaction complexe entre plusieurs facteurs :

e La qualité des annotations' s'avere souvent plus déterminante que le
volume brut de données

e la structure de représentation des données influence significativement la
capacité du systeme a générer des plans cohérents

e [L'équilibre entre précision technique et flexibilité créative dépend
davantage de |'organisation des données que de leur quantité
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7.1.3 Implications pratiques pour la conception architecturale

Les découvertes de cette recherche ont des implications significatives pour la pratique
architecturale concernant des plans ,assistée par IA. L'identification des limites actuelles,
particulierement I'absence systématique d'informations techniques (MEP?®) et de
contextualisation environnementale dans les datasets existants, souligne la nécessité d'une
approche plus holistique dans le développement des futurs datasets.

La performance remarquable de CubiCasa5K dans la précision technique, malgré son volume
restreint, suggere qu'une attention particuliere devrait étre portée a la qualité des
Annotations’ plutdét qu'a la simple accumulation de données. Cette découverte a des
implications pratiques importantes pour les bureaux d'architecture qui pourraient privilégier
le développement de datasets plus modestes mais mieux structurés.

L'étude révele également une limite significative dans la capacité des systémes actuels a gérer
la complexité croissante des programmes architecturaux. Cette limitation se manifeste par
une dégradation systématique des performances au-dela d'un certain seuil de complexité (8
pieces pour CubiCasa5K, 12 pour House-GAN, 15 pour Graph2Plan), soulignant la nécessité
de développer des approches plus sophistiquées pour la gestion des programmes
architecturaux complexes.

Ces découvertes invitent a repenser l'approche du développement des datasets
architecturaux, en privilégiant une stratégie plus équilibrée qui combine qualité des
annotations', structure adaptée des données, et diversité contextuelle. Cette nouvelle
perspective ouvre la voie a une génération de plans d'étage plus pertinente et mieux adaptée
aux exigences de la pratique architecturale contemporaine.

7.2 Pistes pour des recherches futures

Les découvertes et limitations identifiées dans cette recherche ouvrent de nombreuses
perspectives pour de futurs travaux dans le domaine de I'entrainement de reseau pour
I'intelligence artificielle. L'analyse approfondie des datasets actuels et de leurs performances
suggere plusieurs axes de développement prometteurs qui méritent d'étre explorés.

7.2.1 Développements techniques proposés

L'amélioration des systemes d'annotation apparait comme une priorité majeure pour les
recherches futures. Un axe de recherche particulierement prometteur consisterait a
développer un systeme d'annotation standardisé qui intégrerait :Une hiérarchisation claire
des informations architecturales, depuis les éléments structurels jusqu'aux détails
d'aménagement, Un format unifié pour la documentation des relations spatiales et
fonctionnelles, Des métadonnées?® enrichies incluant les aspects techniques et contextuels

L'intégration des systémes MEP?® (Mécanique, Electricité, Plomberie) constitue un autre défi
technique a relever. L'absence systématique de ces informations dans les datasets actuels, ,
limite significativement |'utilité pratique des plans générés, et créer le besoin de verification
par I"human.
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7.2.2 Axes d'exploration méthodologigue

La recherche a mis en évidence le besoin de nouvelles approches dans la structuration des
données. L'expérience de House-GAN avec sa représentation en graphe®® suggere des pistes
prometteuses pour le développement de structures de données plus sophistiquées. Les
futures recherches pourraient explorer des modeles hybrides combinant représentation
géométrique et relationnelle, des systemes adaptatifs capables d'ajuster leur structure selon
la complexité du programme,des méthodes d'enrichissement automatique des données
existantes

L'évaluation des plans générés nécessite également une révision méthodologique
approfondie. Les critéres actuels, principalement focalisés sur la précision géométrique et la
cohérence spatiale™, doivent étre étendus pour inclure des métriques®® de qualité
architecturale plus complétes, des indicateurs de performance environnementale et des
critéres d'évaluation de I'adaptabilité contextuelle

7.2.3 Questions émergentes et nouveaux défis

L'évolution rapide des technologies d'lIA souleve de nouvelles questions qui méritent une
attention particuliere. Les enjeux éthiques, notamment, deviennent de plus en plus prégnants
a mesure que ces systémes gagnent en autonomie. Les futures recherches peuvent aborder :

La propriété intellectuelle des plans générés par IA, une question particulierement complexe
lorsque les datasets utilisés proviennent de multiples sources

La compatibilité entre les différents systemes et datasets émerge également comme un défi
majeur. Les recherches futures devront explorer des standards de communication entre
différentes plateformes ainsi que des protocoles de conversion et d'enrichissement des
données et puis des méthodes de validation croisée des résultats

Un dernier axe pour l'avenir de la conception architecturale assistée par IA concerne
I'adaptation des systemes aux spécificités culturelles et régionales. Cette dimension,
largement absente des datasets actuels comme démontré par les scores critiques dans la
catégorie "contexte environnemental" de CubiCasa5K, House-GAN et Graph2Plan (section
5.1.2), nécessite le développement de méthodes d'intégration des particularités
architecturales locales. L'analyse détaillée de la section 6.2.3 a révélé que I'absence de prise
en compte des contraintes climatiques et des normes régionales limite significativement
I'efficacité des systemes actuels dans la génération de plans adaptés a leur contexte.

Les résultats de I'étude comparative ont démontré une dégradation notable des performances
lorsque les systemes sont confrontés a des contextes culturels et environnementaux différents
de leurs données d'entrainement. Cette limitation, conjuguée au paradoxe entre volume et
précision des données (6.1), souligne I'importance d'une approche plus nuancée intégrant
explicitement ces spécificités locales.
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Vocabulaire

' Annotations’ : Etiquettes ou commentaires ajoutés & des données brutes, souvent manuellement, pour les rendre plus compréhensibles ou utilisables pour

I'entrainement de modeles d'intelligence artificielle.

2API : Interface de Programmation d'Application. Ensemble de définitions, protocoles et outils qui permettent de construire des applications logicielles. Permet

d'interagir avec un modele entrainé via des requétes.

3Apprentissage Automatique (Machine Learning) : C'est la capacité d'un systéme informatique a "apprendre"” a partir d'exemples, comme un enfant qui apprend
areconnaitre les chats aprés en avoir vu plusieurs. Au lieu d'étre explicitement programmé avec des régles, le systéme découvre lui-méme les patterns

a partir des données qu'on lui montre.

4 Apprentissage Profond (Deep Learning) : C'est une forme avancée d'apprentissage automatique qui utilise de nombreuses couches de traitement (comme les
étages d'un building). Chaque couche apprend a reconnaitre des caractéristiques de plus en plus complexes, permettant au systeme de comprendre

des concepts trés sophistiqués.

5 Architecture "hourglass" :Type de réseau de neurones utilisé pour des tdches ot I'entrée et la sortie ont la méme taille, comme la segmentation d'image. La

forme du réseau ressemble a un sablier.
S Arétes : Liens reliant deux nceuds dans un graphe, souvent représentés par des lignes, indiquant une relation entre les entités représentées par les nceuds.
’Benchmark : Jeu de données de référence ou tdche standard utilisé pour comparer équitablement les performances de différents modéles ou algorithmes.

®BIM (Building Information Modeling) : Processus basé sur des modéles 3D intelligents qui donnent aux professionnels de I'architecture les informations et les

outils pour planifier, concevoir, construire et gérer des bdtiments de maniere plus efficace.

SBoites englobantes : En vision par ordinateur, rectangles définis par les coordonnées de deux coins opposés, utilisés pour localiser grossierement des objets dans

une image.

0 Bubble diagram :Un bubble diagram est un schéma utilisé par les architectes au début d'un projet pour représenter les différentes pieces d'un bdtiment et
montrer lesquelles doivent étre proches les unes des autres.Chaque piéce est dessinée comme un cercle (ou une "bulle"), et on relie les bulles par des
lignes pour dire "ces piéces doivent étre a coté".Dans l'article de recherche, les chercheurs utilisent des bubble diagrams qu'ils transforment en
graphes. Chaque bulle devient un nceud du graphe, et chaque ligne devient une aréte. Cela leur permet de donner ces graphes a leur programme

d'intelligence artificielle, House-GAN, pour qu'il génére des plans de maisons détaillés a partir de ces schémas simplifiés.

"'CAO (Conception Assistée par Ordinateur) :Utilisation de logiciels informatiques pour créer, modifier, analyser ou optimiser un design. Cela permet aux

architectes de visualiser et de tester leurs idées numériquement.

2Cohérence spatiale : Mesure de la régularité et de la continuité des prédictions dans l'espace, par opposition & des prédictions bruitées et incohérentes

spatialement.

*Conv-MPNs, ou Convolutional Message Passing Neural Networks (réseaux de neurones c lutifs a p ge de ges) : sont une variante des GCNs

spécialement congue pour générer des plans d'étage. Contrairement aux GCNs classiques, dans un Conv-MPN, chaque nceud représente une piéce
par un volume 3D de caractéristiques, et les convolutions servent a mettre a jour ces volumes en fonction des relations de voisinage entre les piéces.

Cette architecture permet de mieux capturer les contraintes spatiales et de générer des agencements plus cohérents.

"“Convolution :Opération mathématique o un filtre glisse sur les données d'entrée pour détecter des caractéristiques. Trés utilisée dans les réseaux de neurones

convolutifs pour traiter les images.

"“Dataset (Jeux de Données) :Un dataset, ou ensemble de données, est une collection d'informations organisées que I'on utilise pour entrainer et tester des
modeéles d'intelligence artificielle.Par exemple, un dataset d'images de chats et de chiens peut servir @ apprendre @ un modele a distinguer ces deux
animaux. Les datasets sont essentiels en IA car ils fournissent les exemples a partir desquels les modéles peuvent extraire des patterns et des

connaissances.

Discriminateur :Dans un systéme GAN, c'est le "critique" qui évalue si ce que le générateur produit semble réel ou non. Comme un expert qui examinerait une

ceuvre d'art pour déterminer si c'est un original ou une copie.
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"Distance de Manhattan :La distance de Manhattan est une fagon de mesurer la distance entre deux points dans un plan quadrillé, comme les rues de Manhattan
a New York.Imaginez que vous vouliez aller d'un coin de rue a un autre dans un quartier comme Manhattan ou toutes les rues se croisent a angle
droit. Vous ne pouvez pas couper a travers les blocs, vous devez marcher le long des rues. La distance de Manhattan mesure la longueur de ce trajet,
en additionnant combien de blocs vous parcourez horizontalement et verticalement.Dans House-GAN, les chercheurs utilisent la distance de
Manhattan pour décider si deux piéces sur un plan sont considérées comme étant a c6té I'une del'autre.S'ils calculent que la distance entre les deux
piéces est plus petite qu'un certain seuil, alors ils considérent que les piéces sont adjacentes, et ils relient les bulles correspondantes par une ligne
dans le bubble diagram. Ainsi, la distance de Manhattan est utilisée pour construire automatiquement les bubble diagrams a partir de vrais plans

de maisons.

"8Format SVG : Format Scalable Vector Graphics, basé sur XML, pour décrire des images vectorielles 2D. Peut étre mis a I'échelle sans perte de qualité.

GANSs, ou Generative Adversarial Networks (réseaux antagonistes génératifs) : sont un type d'algorithme d'intelligence artificielle utilisé pour générer de
nouveaux contenus, comme des images, des vidéos ou des plans de maisons. Un GAN est composé de deux réseaux de neurones : un générateur qui
crée de nouveaux contenus, et un discriminateur qui essaie de distinguer les contenus créés par le générateur des contenus réels. En s'affrontant, ces

deux réseaux s'‘améliorent mutuellement, jusqu'a ce que le générateur produise des contenus trés réalistes.

2°GCNs, ou Graph Convolutional Networks (ré X C lutifs de graphes), : sont une extension des réseaux de neurones classiques qui permettent de traiter

des données structurées sous forme de graphes. Dans un GCN, chaque nceud du graphe est associé a un vecteur de caractéristiques, et le réseau met
a jour ces vecteurs en agrégeant les informations des nceuds voisins. Ainsi, un GCN peut apprendre des représentations qui capturent a la fois les

caractéristiques individuelles des nceuds et la structure du graphe.

21Générateur : C'est I""artiste” dans un systéme GAN. Il crée de nouvelles données (images, plans, etc.) en essayant de les rendre aussi réalistes que possible pour

tromper le discriminateur. C'est comme un artiste qui essaie de créer des ceuvres si bonnes qu'elles pourraient passer pour authentiques.

22Génération automatisée de plans : La génération automatisée de plans consiste a utiliser des algorithmes informatiques pour créer des représentations
détaillées d'espaces, comme des plans d'étage de bdtiments, sans intervention humaine. Le but est de produire des agencements optimisés et
réalistes en un temps réduit, en exploitant la puissance de calcul des ordinateurs. Ces techniques peuvent s'appuyer sur des régles expertes, des

contraintes de conception, ou des modéles appris sur des exemples.

23Graph Neural Network (GNN) : C'est un systéme qui comprend les relations entre différents éléments, comme une carte qui montre comment les villes sont
connectées entre elles. Dans le contexte de I'architecture, il peut comprendre comment les différentes pieces d'une maison sont reliées les unes aux

autres.

24Graphe relationnel : Diagramme utilisant des noeuds pour représenter les espaces et des arétes pour les relations entre eux. Aide a analyser I'organisation

spatiale et les flux.

2’Heatmaps (cartes de chaleur) :Représentations graphiques ou différentes valeurs sont représentées par des couleurs. Souvent utilisés pour visualiser la densité

ou l'intensité d'un phénomeéne sur une zone.

26Intelligence Artificielle (IA) : L'intelligence artificielle est comme un "cerveau numérique" qui permet aux ordinateurs d'effectuer des tdches qui nécessitent
habituellement l'intelligence humaine. Par exemple, reconnaitre des images, comprendre du texte, ou prendre des décisions. Imaginez un assistant

virtuel qui peut vous aider a accomplir des tdches en comprenant vos demandes.

??Marge d'erreur : Plage de valeurs dans laquelle la valeur réelle d'une quantité mesurée se situe probablement. Souvent exprimée avec un niveau de confiance

(ex : £2% a 95% de confiance).

28\IEP (Mécanique, Electricité, Plomberie) :Fait référence aux aspects des systémes de construction qui vont dans les murs et plafonds, comme le CVC, la

plomberie, I'électricité, etc. Essentiel pour le bon fonctionnement d'un batiment.

29Métadonnées : Données décrivant d'autres données. Exemples : date de création d'un fichier, auteur d'un document, format d'une image, etc. Utiles pour
I'organisation et la gestion des données. ** : Interface de Programmation d'Application. Ensemble de définitions, protocoles et outils qui permettent

de construire des applications logicielles. Permet d'interagir avec un modele entrainé via des requétes.

39Métriques : Mesures utilisées pour évaluer les performances d'un modéle, comme la précision, le rappel, la F1-score, etc. Permettent de comparer différents

modeéles.

*IMéthode de prompt :Un modéle de prompt, ou modéle conditionnel, est un type de modéle d'IA qui génére de nouveaux contenus a partir d'une entrée textuelle
appelée "prompt". Par exemple, un modéle de prompt entrainé sur des paires question-réponse pourra générer une réponse pertinente quand on lui
donne une nouvelle question. Les modeéles de prompt sont trés polyvalents et permettent un contréle fin sur les sorties, en ajustant le texte d'amorce.

Ils sont notamment utilisés pour des tdches de conversation, de résumé, de traduction, ou de génération créative.
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32Neeuds : Entités fondamentales d'un graphe, souvent représentées par des cercles, pouvant représenter des concepts, des objets, etc.

33Normalisation par lots :Technique utilisée pendant I'entrainement de réseaux de neurones ol les données sont normalisées au sein de chaque lot (sous-

ensemble des données d'entrainement) pour aider le modele a converger plus rapidement.

34plans d'étage : Dessins a I'échelle représentant la disposition, les dimensions et les relations entre les piéces, les espaces et les éléments d'un niveau d'un

batiment vu de dessus.

35Plans raster :Plans numérisés sous forme d'image matricielle composée d'une grille de pixels. Peuvent étre issus d'un scan de dessin papier. Moins flexibles que

les plans vectorisés.
36post-traitement : Etapes effectuées sur les sorties brutes d'un modéle pour les rendre plus utiles. Peut inclure le seuillage, le lissage, le reformatage, etc.

37protocole d'annotation :Document décrivant les régles, formats et processus a suivre pour annoter un jeu de données de maniére cohérente et précise. Aide a

assurer la qualité des Annotations’.

38QA (Quality Assurance / Assurance qualité) : Ensemble de processus visant a vérifier qu'un produit ou service répond a des exigences de qualité spécifiées.

Dans le domaine des données, cela implique de vérifier la précision, la cohérence et la pertinence des Annotations’ par exemple.

3%ReLU: Abréviation de Unité Linéaire Rectifiée. Fonction d'activation couramment utilisée dans les réseaux de neurones pour introduire de la non-linéarité.

Renvoie 0 pour les entrées négatives et la valeur de I'entrée pour les entrées positives.

“4°Représentation en graphe : Modélisation d'un probléme ou d'un systéme sous forme de graphe mathématique, avec des nceuds représentant des entités et

des arétes représentant des relations entre ces entités.

4Réseaux Convolutifs de Graphes (GCN) :Une version spécialisée des GNN qui permet d'analyser des structures complexes en réseau. C'est comme avoir une

super-vision qui permet de voir non seulement les éléments individuels mais aussi toutes leurs connexions en méme temps.

“2Réseaux de Neurones : Imaginez un réseau de petits calculateurs interconnectés, inspiré du fonctionnement du cerveau humain. Chaque "neurone" regoit des
informations, les traite, et les transmet aux autres neurones. C'est comme un grand systéme de relais d'information qui permet a I'l|A de comprendre

des données complexes

“Réseaux de Neurones Convolutifs (CNN) : C'est un type spécial de réseau de neurones particulierement doué pour analyser des images. Comme un expert qui
examinerait une image en détail, zone par zone, le CNN analyse différentes parties de I'image pour en comprendre le contenu. C'est la technologie

qui permet a votre téléphone de reconnaitre les visages dans vos photos.

“ResNet-152 : C'est un modele d'IA trés profond et puissant, comme une tour de 152 étages ol chaque étage ajoute un niveau de compréhension. Il est

particulierement efficace pour reconnaitre des patterns complexes dans les images.

“Retrieve-and-adjust Une méthode en deux étapes ol le systéme :Cherche des informations pertinentes dans sa base de données ,Modifie ces informations pour

les adapter aux besoins actuels C'est une approche qui permet de créer du nouveau contenu en se basant sur des exemples existants.

4Score de similarité structurelle : Mesure quantifiant la ressemblance entre deux structures, par exemple entre la prédiction d'un modéle et la vérité terrain. Des

scores élevés indiquent des structures similaires

“Segmentation : Processus de division des données en groupes distincts et significatifs selon certains critéres. Par exemple, segmenter une image en différents

objets qu'elle contient.

48systéme vectoriel : En CAO, le modéle est créé avec des formes géométriques précises basées sur des équations mathématiques plutét que des pixels. Permet

un redimensionnement sans perte de qualité.

“*Validation :Processus consistant a évaluer un modéle sur des données non utilisées pendant I'entrainement pour estimer ses performances sur de nouvelles

données.

*OVectorisation : Conversion d'une image matricielle composée de pixels en un ensemble de formes géométriques vectorielles modifiables. Permet de transformer

des croquis papier en dessins numériques.

SWWecteur de bruit : En génération de données synthétiques, vecteur aléatoire ajouté en entrée d'un modeéle pour introduire de la variabilité dans les sorties

générées.
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Figures

Figure 1 : illustration de I'évolution des technologies en architecture, montrant la transition de la conception manuelle aux outils numériques. Source : Auteur

Figure 2: Une représentation visuelle liée a I'émergence de I'lA dans la conception architecturale. elle illustre l'utilisation de systémes d'apprentissage
automatique. - source : Auteur

Figure 3: Une illustration démontrant l'importance des datasets dans le processus de conception architecturale. - source : Auteur

Figure 4: un schéma illustrant I'apprentissage par dataset dans le domaine de I'architecture. Au centre se trouvent les "Besoins Fonctionnels", qui comprennent
des aspects tels que la diversité des cas d'usage et configurations spatiales, la compréhension des relations entre forme et fonction, et le respect des
normes.- source : Auteur

Figure 5: Une iillustration qui présente un apergu global de I'état de I'art dans le domaine de I'lA en architecture. - source : Auteur

Figure 6: Variation d'aménagement de parking n°1 générée par TestFit.io, démontrant une configuration optimisée de stationnement pour un projet
source : TestFit.io

Figure 7: Variation d'aménagement de parking n°2 générée par TestFit.io, présentant une configuration alternative d'organisation des places de stationnement
pour le méme projet. - source : TestFit.io

Figure 8: Un diagramme illustrant les étapes méthodologiques de la recherche. - source : Auteur

Figure 9: Ce schéma illustre I'architecture du systéme CubiCasa5K avec :En haut : Architecture "hourglass" du réseau neuronal montrant les blocs D1 a D10,
incluant des ResBlocks (x,y) ot x est le nombre de canaux d'entrée et y le nombre de sorties, des couches ConvBNRelU et ConvTranspose avec leurs
parameétres respectifs (taille du noyau, pas, remplissage).En bas : Pipeline complet de traitement des plans d'étage comprenant :Plans d'étage bruts
avec annotations de référence ;Traitement par CNN multi-tdches ;Post-traitement des prédictions ;Génération finale des plans vectoriels. Les
éléments en pointillés mettent en évidence les contributions principales : le nouveau dataset et le modele multi-tdches amélioré. Source : Kalervo et
al. (2019) "CubiCasa5K: A Dataset and an Improved Multi-task Model for Floorplan Image Analysis"

Figure 10: Ce visuel présente une comparaison en trois étapes du traitement d'un plan d'étage :A gauche : L'image originale du plan d'étage;Au centre
L'annotation SVG de référence ; A droite : La prédiction générée automatiquement par le systéme Source : Kalervo et al. (2019) "CubiCasa5K: A
Dataset and an Improved Multi-task Model for Floorplan Image Analysis"

Figure 11: L'illustration présente I'architecture technique de la méthodologie House-GAN pour la génération de plans d'étage. - source :N., Chang, K.-H., Cheng,
C-Y., Mori, G., & Furukawa, Y. (2020). House-GAN: Relational Generative Adversarial Networks for Graph-constrained House Layout Generation.
European Conference on Computer Vision (ECCV 2020), 162-177.

Figure 12: L'illustration montre le systéeme House-GAN, qui prend un diagramme de bulles en entrée et génére de multiples options d'agencement de maison
basées sur ce diagramme. Le diagramme de bulles encode les relations de haut niveau entre les pieces, tandis que les agencements générés montrent
différentes dispositions potentielles des piéces qui satisfont ces contraintes. - source : N., Chang, K.-H., Cheng, C.-Y., Mori, G., & Furukawa, Y. (2020).
House-GAN: Relational Generative Adversarial Networks for Graph-constrained House Layout Generation. European Conference on Computer Vision
(ECCV 2020), 162-177.

Figure 13: Exemples d'échecs et de réussites de House-GAN issus de I'étude. Les architectes évaluent les exemples de réussite (a droite) comme "aussi bons" et
les exemples d'échec (a gauche) comme "moins bons" par rapport a la vérité terrain. - source : N., Chang, K.-H., Cheng, C.-Y., Mori, G., & Furukawa,
Y. (2020). House-GAN: Relational Generative Adversarial Networks for Graph-constrained House Layout Generation. European Conference on
Computer Vision (ECCV 2020), 162-177.

Figure 14: La figure présente I'architecture du réseau Graph2Plan pour la génération automatique de plans d'étage. Elle illustre le processus de transformation
d'un graphe d'agencement et d'un contour de bdtiment en entrée, en un plan d'étage détaillé en sortie. Ce processus se fait par étapes successives
impliquant différents composants du réseau, tels que des réseaux de neurones convolutifs (CNN), des couches entiérement connectées et un module
BoxRefineNet, qui affinent progressivement la représentation des piéces et de leur disposition.

Figure 15: La figure présente un systéme détaillé d'annotation des plans d'étage a plusieurs niveaux. Elle montre les informations associées aux nceuds du graphe
représentant les pieces (a), les informations sur les arétes reliant ces pieces (b), et les différents types de relations spatiales possibles entre elles..Ce
systeme permet de capturer finement la configuration spatiale en encodant la position des piéces sur une grille 5x5, en représentant les connexions
entre piéeces, et en intégrant des informations sur les portes intérieures. Différents types de piéces sont pris en compte, tels que le salon, la chambre
principale et la salle de bain. - source : Hu, R., Huang, Z., Tang, Y., van Kaick, O., Zhang, H., & Huang, H. (2020). Graph2Plan: Learning Floorplan
Generation from Layout Graphs. ACM Transactions on Graphics.

Figure 16: La figure montre le réseau entrainé qui peut générer des plans d'étage basés uniquement sur un contour de bdtiment en entrée (a-b). De plus, il permet
aux utilisateurs d'ajouter diverses contraintes telles que le nombre de piéces (c), la connectivité des piéces (d) et d'autres modifications du graphe
d'agencement (e). Plusieurs plans d'étage générés qui remplissent les contraintes d'entrée sont présentés

Figure 17: Galerie de plans d'étage générés avec la méthode présentée. Les lignes montrent les résultats générés pour différents contours d'entrée, tandis que
les colonnes montrent les résultats générés pour différentes contraintes. Les contraintes sont le nombre souhaité de trois types de piéces : chambre
(en jaune), salle de bain (en bleu) et balcon (en vert). - source : Hu, R., Huang, Z., Tang, Y., van Kaick, O., Zhang, H., & Huang, H. (2020). Graph2Plan:
Learning Floorplan Generation from Layout Graphs. ACM Transactions on Graphics.

69

——
| S—



Tableaux complets
5.Cubicasa5k

Chauffage/climatisation
Réseaux de communication

Non représentée
Non représentés

Critéres Score (/5) Observations
A. CARACTERISTIQUES GENERALES
Al. Informations techniques 4 Bien documenté dans l'article source
Nombre total de plans 5 5000 plans confirmés
Format des données 4 Format image raster avec Annotations’
Taille du dataset 3 Mentionnée mais non détaillée
Date de création/mise a jour 4 2019 - clairement documenté
Source des données 3 Plans immobiliers professionnels
Moyenne Al 3.8 Documentation technique satisfaisante
A2. Métadonnées 4 Bien structurées
Documentation du dataset 4 Documentation disponible et claire
Description des éléments 4 Descriptions standardisées
Informations sur la source 3 Source générale indiquée
Contexte de création 4 But du dataset bien expliqué
Annotations' techniques 5 Systeme d'annotation détaillé
Moyenne A2 4 Métadonnées bien organisées
B. ELEMENTS ARCHITECTURAUX
B1. Structure et enveloppe 3 Limité aux éléments visibles en 2D
Murs porteurs 2 Non différenciés
Murs non porteurs 2 Non différenciés
Colonnes/poteaux 1 Rarement identifiables
Poutres 0 Non représentées
Fondations 0 Non représentées
Structure du toit 0 Non représentée
Moyenne B1 0.8 Treés limité aux éléments basiques
B2. Ouvertures 3 Représentation basique
Portes (types et dimensions) 4 Clairement indiquées
Fenétres (types et dimensions) 3 Présentes mais sans détail
Baies vitrées 2 Non différenciées
Puits de lumiére 0 Non représentés
Ouvertures spéciales 0 Non représentées
Moyenne B2 1.8 Focus sur ouvertures standard
B3. Circulation 3 Eléments basiques représentés
Escaliers 4 Bien représentés
Couloirs 4 Clairement identifiables
Ascenseurs 2 Présents mais peu détaillés
Rampes 1 Rarement indiquées
Issues de secours 0 Non représentées
Moyenne B3 2.2 Circulation principale bien représentée
C. ORGANISATION SPATIALE
C1. Zones fonctionnelles 4 Bien définies
Espaces de vie 5 Clairement identifiés
Espaces de repos 5 Bien définis
Espaces de service 4 Identifiables
Espaces de stockage 3 Présents mais peu détaillés
Espaces extérieurs 2 Peu détaillés
Moyenne C1 3.8 Bonne définition des espaces principaux
C2. Relations spatiales 4
Hiérarchie des espaces 4 Visible dans I'organisation
Connexions entre piéces 5 Clairement indiquées
Zones publiques/privées 4 Distinction visible
Flexibilité des espaces 2 Non explicite
Modularité 2 Non explicite
Moyenne C2 34 Bonnes relations spatiales basiques
C3. Dimensions et proportions 3
Surfaces des piéces 4 Présentes
Hauteurs sous plafond 0 Non représentées
Ratios longueur/largeur 4 Visibles dans les plans
Echelle humaine 3 Implicite dans les dimensions
Ergonomie 2 Non explicite
Moyenne C3 2.6 Focus sur dimensions 2D
D. EQUIPEMENTS ET AMENAGEMENTS
D1. Equipements fixes 3 Représentation basique
Sanitaires 3 Présents mais peu détaillés
Cuisine 3 Présente mais peu détaillée
Rangements intégrés 2 Peu détaillés
Mobilier fixe 2 Peu détaillé
Equipements techniques 1 Trés peu détaillés
Moyenne D1 2.2 Représentation minimale
D2. MEP 1 Trés peu d'informations
Réseaux électriques 0 Non représentés
Plomberie 0 Non représentée
Ventilation 0 Non représentée

0

0

0

Moyenne D2
E. DIVERSITE ET CONTEXTE

——
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Absence d'informations MEP
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E1. Diversité typologique
Types de logements

Tailles de logements

Styles architecturaux
Périodes historiques
Contextes culturels
Moyenne E1

E2. Contexte environnemental
Orientation

Topographie

Climat

Environnement urbain/rural
Contraintes du site
Moyenne E2

F. QUALITE DES DONNEES
F1. Précision technique
Exactitude des mesures
Cohérence des échelles
Détail des informations
Clarté des représentations
Normes de dessin

Moyenne F1

F2. Complétude
Exhaustivité des informations
Absence d'erreurs
Cohérence des données
Documentation associée
Mises a jour

Moyenne F2

G. UTILISABILITE POUR L'IA
G1. Format et structure
Compatibilité avec les systéemes d'lA
Organisation des données
Standardisation

Facilité d'extraction
Interopérabilité

Moyenne G1

G2. Annotations’ et labels
Etiquetage des éléments
Classification des espaces
Métadonnées exploitables
Informations sémantiques
Relations spatiales codifiées
Moyenne G2

SCORE TOTAL

SCORE MOYEN

OO FRPOORRFPWNNWSRDRMS-S

0o

S
a

45.8/75
3.05/5
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Bonne variété de plans
Plusieurs types représentés
Variété de tailles

Non explicitement documenté
Non spécifié

Non spécifié

Diversité correcte mais limitée
Tres peu d'informations
Rarement indiquée

Non représentée

Non représenté

Peu indiqué

Non représentées

Contexte tres limité

Bonne qualité générale
Cohérente

Maintenue

Correct pour |'usage prévu
Bonne lisibilité
Standardisées

Bonne qualité technique

Pour les éléments couverts
Bien vérifié

Maintenue

Bien fournie

Version initiale

Bonne complétude globale

Excellent pour I'lA
Format optimal
Bien structurée
Excellente

Trés bonne
Bonne

Trés adapté a I'lA

Complet

Bien définie

Bien structurées

Bonnes

Bien représentées

Excellent systéme d'annotation

Basé sur les moyennes des catégories
Score global satisfaisant

'



Graph2plan

Criteria Score (/5) Observations

A. CARACTERISTIQUES GENERALES

Al. Informations techniques

Nombre total de plans 5 120000 plans annotés
Format des données 5 Format graphe avec Annotations’
Taille du dataset 5] Large dataset bien documenté
Date de création/mise a jour 4 2020 avec mises a jour
Source des données 4 Plans résidentiels vérifiés
Moyenne Al 4.6 Documentation compléte
A2. Métadonnées

Documentation du dataset 5 Documentation exhaustive
Description des éléments 5 Description détaillée des graphes
Informations sur la source 4 Sources documentées
Contexte de création 5 Objectifs clairement définis
Annotations' techniques 5 Systeme d'annotation détaillé
Moyenne A2 4.8

B. ELEMENTS ARCHITECTURAUX

B1. Structure et enveloppe

Murs porteurs 3 Représentés comme relations
Murs non porteurs 3 Dans la structure du graphe
Colonnes/poteaux 1 Non détaillés

Poutres 0 Non inclus

Fondations 0 Non inclus

Structure du toit 0 Non inclus

Moyenne B1 1.2

B2. Ouvertures

Portes 4 Bien définies dans le graphe
Fenétres 3 Position indiquée

Baies vitrées 1 Non différenciées

Puits de lumiére 0 Non inclus

Ouvertures spéciales 0 Non incluses

Moyenne B2 1.6

B3. Circulation

Escaliers 4 Bien représentés

Couloirs 4 Clairement définis
Ascenseurs 2 Basique

Rampes 0 Non incluses

Issues de secours 0 Non incluses

Moyenne B3 2.0

C. ORGANISATION SPATIALE

C1. Zones fonctionnelles

Espaces de vie 5 Parfaitement identifiés
Espaces de repos 5 Bien définis

Espaces de service 5 Bien catégorisés

Espaces de stockage 4 Identifiés

Espaces extérieurs 3 Basiques

Moyenne C1 4.4

D. EQUIPEMENTS ET AMENAGEMENTS

D1. Equipements fixes

Sanitaires 3 Position uniquement
Cuisine 3 Position uniquement
Rangements intégrés 2 Minimal

Mobilier fixe 2 Minimal

Equipements techniques 0 Non inclus

Moyenne D1 2.0

D2. MEP

Réseaux électriques 0 Non inclus

Plomberie 0 Non inclus

Ventilation 0 Non inclus
Chauffage/climatisation 0 Non inclus

Réseaux de communication 0 Non inclus

Moyenne D2 0

E. DIVERSITE ET CONTEXTE

E1. Diversité typologique

Types de logements 5 Grande variété

Tailles de logements 5 Bien diversifié

Styles architecturaux 3 Implicite

Périodes historiques 0 Non spécifié

Contextes culturels 2 Limité

Moyenne E1 3.0

E2. Contexte environnemental

Orientation 2 Basique

Topographie 0 Non inclus

Climat 0 Non inclus

Environnement urbain/rural 1 Minimal

Contraintes du site 0 Non incluses

Moyenne E2 0.6

F. QUALITE DES DONNEES
F1. Précision technique

——
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Exactitude des mesures 4 Bonne précision
Cohérence des échelles 4 Maintenue
Détail des informations 4 Bien détaillé
Clarté des représentations 5 Excellente structure
Normes de dessin 4 Standardisées
Moyenne F1 4.2
F2. Complétude
Exhaustivité des informations 4 Pour aspects couverts
Absence d'erreurs 4 Bien vérifié
Cohérence des données 5 Excellente
Documentation associée 5 Compléte
Mises a jour 3 Version stable
Moyenne F2 4.2
G. UTILISABILITE POUR L'IA
G1. Format et structure
Compatibilité 1A 5 Optimal pour génération
Organisation des données 5 Bien structurée
Standardisation 5 Excellente
Facilité d'extraction 4 API fournie
Interopérabilité 4 Bonne
Moyenne G1 4.6
SCORE TOTAL MOYEN 3.0
HouseGAN
Criteria Score (/5) Observations
A. CARACTERISTIQUES GENERALES
Al. Informations techniques
Nombre total de plans 5 65636 plans vérifiés
Format des données 5 Format graphe vectoriel avec Annotations’
Taille du dataset 4 Bien documentée
Date de création/mise & jour 4 2020- version stable
Source des données 4 RPLAN dataset avec Annotations’
Moyenne Al 4.4
A2. Métadonnées
Documentation du dataset 5 Documentation exhaustive
Description des éléments 5 Description détaillée des graphes
Informations sur la source 4 Sources bien documentées
Contexte de création 5 Méthodologie claire
Annotations’ techniques 5 Systéme d'annotation complet
Moyenne A2 4.8
B. ELEMENTS ARCHITECTURAUX
B1. Structure et enveloppe
Murs porteurs 3 Représentés comme relations
Murs non porteurs 3 Dans la structure du graphe
Colonnes/poteaux 1 Non explicitement représentés
Poutres 0 Non inclus
Fondations 0 Non inclus
Structure du toit 0 Non inclus
Moyenne B1 1.2
B2. Ouvertures
Portes 4 Comme connexions entre pieces
Fenétres 2 Non explicitement traitées
Baies vitrées 0 Non incluses
Puits de lumiére 0 Non inclus
Ouvertures spéciales 0 Non incluses
Moyenne B2 1.2
B3. Circulation
Escaliers 4 Bien représentés dans le graphe
Couloirs 4 Clairement définis
Ascenseurs 2 Représentation limitée
Rampes 0 Non incluses
Issues de secours 0 Non incluses
Moyenne B3 2.0
C. ORGANISATION SPATIALE
C1. Zones fonctionnelles
Espaces de vie 5 Parfaitement identifiés
Espaces de repos 5 Clairement définis
Espaces de service 5 Bien catégorisés
Espaces de stockage 3 Identification basique
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Moyenne C1 4.0

D1. Equipements fixes

Cuisine 3 Position indiquée uniquement

Mobilier fixe 1 Minimal

Moyenne D1 16

Réseaux électriques 0 Non inclus

Ventilation 0 Non incluse

Réseaux de communication 0 Non inclus

E. DIVERSITE ET CONTEXTE

Types de logements 4 Bonne variété

Styles architecturaux 3 Implicite

Contextes culturels 2 Limité

E2. Contexte environnemental

Topographie 0 Non incluse

Environnement urbain/rural 1 Minimal

Moyenne E2 0.4

F1. Précision technique

Cohérence des échelles 4 Bien maintenue

Clarté des représentations 5 Excellente structure de graphe

Moyenne F1 4.2

Exhaustivité des informations 4 Pour les aspects couverts

Cohérence des données 5 Trés bonne

Mises a jour 3 Version stable

G. UTILISABILITE POUR L'IA

Compatibilité IA 5 Optimal pour GANs'™

Standardisation 5 Trés bonne

Interopérabilité 4 Bonne

SCORE TOTAL MOYEN 3.0
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