Le paramétrique au service de l'architecte
dans le processus de conception de plans

Meémoire

de

master

Concevoir et construire I'architecture

&

Arthur ROULAND
2021

Encadré par

Francois Guéna
Joaquim Silvestre
Anne Tischer

Activités et Instrumentation de la conception

-

ensa paris === la villette

T

Remerciements

Je tiens & remercier mes directeurs de mémoire : Monsieur Francois GUENA, Madame Anne TUSCHER
ainsi que Monsieur Joaquim SILVESTRE. Je les remercie pour leur encadrement, leurs conseils et leurs
encouragements qui m'ont permis de realiser ce mémoire de recherche.

Jaimerais remercier particulierement Frangois GUENA pour m'avoir initié a l'architecture et la
modélisation parametrique.

Je voudrais remercier mon ami Ewen COSSEC pour son aide précieuse sur I'écriture du scriptinformatique
ainsi que mes parents, Stephane et Stéphanie ROULAND, pour leur aide a la relecture de ce mémoire.

Enfin, je remercie toutes les personnes qui ont pu participer a mes recherches et a I'élaboration de ce
meémoire.

Sommaire

Avant propos
Introduction

Point Historique
Problematique

Ftat de I'art

Ftapes de la recherche
Resultat de la recherche
Exemples de plans géenéres
Conclusion

Notice d'utilisation
Bibliographie

Glossaire

Annexes

11

15

19

23

27
28
28
28
29
29
30
30
31
31
32
32
33
34
35
36
37

39
40
40
40
41
41
42
43
44
44
45
45
46
a7
48
52
53
56
57

Sommaire détaille

0 - Avant propos

1 - Introduction

2 -Point historique
3 - Problématique

4 - Etat de l'art
4.1 - Introduction de I'état de l'art
4.7 - Uintelligence artificielle
4.2.1 - Stanislas CHAILLOU
4.2.2 - Jean Raphaél PIQUARD
4.2.3 - Alex SALINI
4.3 - Les automates cellulaires
4.3.1 - Nathan BEYLER
4.3.2 - Robert J. KRAWCZYK
4.3.3 - Christiane M. HERR & RYAN C. FORD
4.4 - Les systemes multi-agents et 'allocation spatiale
4.4.1 - Zifeng Guo
4.4.7 - Silvio CARTA
4.4.3 - Building Generator with Geometry Nodes
4.4.4 - Krishnendra SHEKHAWAT
445 - Finch 3D
45 - Conclusion de I'état de 'art

5 - Ftapes de la recherche
5.0 - Les logiciels
5.0.1 - Rhinoceros 3D
5.0.2 - GrassHopper
5.1 - Premiéres recherches avec le plug-in «Marmot»

5.2 - Premiéres recherches avec le plug-in «Magnetizing Floor Plan Generator»
5.3 - Division de la surface avec le composant «Substrate»

5.4 - Modification du systéme d’évaluation
5.5 - Recherches sur la division de la surface
5.5.1 - Division en Voronoi
5.5.2 - Division par segments
5.5.3 - Division de la surface en une grille
5.6 - Automate cellulaire
5.7 - Division par propagation
5.8 - Le script Python

5.9 - Inclusion du code Python dans I'ensemble du programme

5.10 - Itération réguliere et enregistrement
5.11 - Résolution des problemes du composant Python
5.12 - Premiers enregistrements

61
62
62
64
65
66
67
69
71
72
73
74
75
76
77
78
80

83
84
86
38
90
90
91
93
93
93

95

99

105

111

115
116
117
118
119
121
122
122
122
123
123
123
124
125
125
126
127

6 - Résultat de la recherche

6.0 - Introduction
6.0.1 - Vue d’ensemble du programme final
6.0.2 - Présentation genérale de I'algorithme

6.1 - Paramétres de depart

6.2 - Définition de la grille

6.3 - Valeurs aléatoires de départ

6.4 - Division de la grille

6.5 - Attribution des couleurs

6.6 - Simplification des surfaces

6.7 - Opérations entre les surfaces

6.8 - Récuperation des contours

6.9 - Evaluation des scores

6.10 - Score final de la généeration

6.11 - Dessin du plan

6.12 - Enregistrement de la génération

6.13 - Récapitulatif des étapes

7 - Exemples de plans généres

7.1 - Génération de T2

7.2 - Génération de T3

7.3 - Génération de T4

7.4 - Analyse des résultats
7.4.1 - Résultats de la génération de plans
7.4.2 - Poucentage des scores par typologie
7.4.3 - Graphique de la genération des T2
7.4.4 - Graphique de la genération des T3
7.4.5 - Graphique de la genération des T4

8 - Conclusion

9 - Notice d'utilisation
10 - Bibliographie

11 - Glossaire

12 - Annexes
12.1 - Capture d’écran du timer
12.1.2 - Code du timer
12.2 - Capture d’écran du script Python
12.2.2 - Code du script Python
12.2.3 - Explication du script python
12.2.3.1 - Le script codée par grasshopper
12.2.3.2 - Définition des variables
12.2.3.3 - Texte d'information
12.2.3.4 - Voisins & exclure
12.2.3.5 - Voisinage des cellules
12.2.3.6 - Boucle de répétition
12.2.3.7 - Etude des bords de la grille
12.2.3.8 - Etude des cellules génériques
12.2.3.9 - Affectation des couleurs
12.3 - Capture d’écran de |'enregistreur
12.3.2 - Code de I'enregistreur

0

Avant propos

* Avant propos

Introduction

Point historique

Problématique

Etat de l'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

Ftant étudiant en Master d'architecture dans le séminaire Activités et
Instrumentation de la Conception & I'Ecole Nationale Supérieure d’Architecture
de Paris La Villette (ENSAPLV), et ayant été trés intéressé et inspiré par les
recherches du chercheur Stanislas Chaillou, j'ai voulu travailler sur la genération
de plans. A l'origine, I'idée de ce mémoire était d’axer mes recherches sur une
optimisation de plan. L'objectif aurait eté d'obtenir un agencement d'espace
permettant d'optimiser les plans et de reduire ainsi au maximum les circulations
entre les logements mais également au sein méme des logements. Cependant,
en réflechissant sur ce sujet et en faisant I'état de 'art, j'ai orienté ma recherche
dans le domaine de la génération de plan a l'aide de I'Intelligence Artificielle,
dans la continuite des recherches de différents etudiants de 'ENSAPLV. Aprés
quelgues semaines de recherches et d'apprentissage dans ce domaine, je me suis
confronté a plusieurs problemes majeurs. En effet, les recherches en Intelligence
Artificielle nécessitent des connaissances en informatique et notamment en code
informatique que je n'ai pas et que j'ai eu beaucoup de mal a assimiler. J'ai alors
decidé d'aborder ce sujet d'une facon différente. Les recherches en génération
de plans avec I'Intelligence Artificielle avancent chaque année, cependant chaque
chercheur se confronte a un probleme de taille qui est I'acces aux banques de
données de plans. Les intelligences artificielles necessitent ce que I'on appelle
une phase d'entrainement durant laguelle les programmes s'exercent tout seuls
a reconnaitre des catégories d'objets avant de pouvoir les générer en s'appuyant
sur ces bases de données. Jai alors réoriente mes réflexions dans ce sens afin
de m'inscrire dans la continuité des recherches effectuées dans le domaine. Ainsi,
I'objectif de ce mémoire sera d'explorer une maniére possible de générer des
plans afin de pouvoir constituer une banque de données conséquente qui pourrait
étre utilisée par la suite en génération de plan avec I'Intelligence Artificielle.

12

Schéma de fonctionnement d'un programme de Deep Learning (Intelligence Artificielle)

Banque

d'images
(Plans générés dans le cadre
de cette recherche)

~ o
Valeurs Générateur
aléatoires

Hr Y~

Eig

Echantillon de
données

x

=

Image genéree

N

\‘ '
-

“

//;r Discriminateur

VRAI / FAUX

Evaluation de
la génération

Figure 1

Schéma de fonctionnement d'un programme de Deep Learning

© Arthur ROULAND

13

1

Introduction

Avant propos

* Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

Les outils de conception en architecture ne cessent de se développer. Ainsi,
grace a l'outil informatique de plus en plus performant et diversifié, de nouvelles
possibilités s'offrent aux architectes en matiere de forme, de calcul et de génération
de formes. L'objet de ce mémoire porte sur l'utilisation des outils paramétriques
dans la génération de plans.

Mon travail consiste donc en une recherche visant a développer un
programme qui pourra génerer des plans tres diversifies afin de les utiliser
par la suite dans le domaine de la recherche en machine learning ou encore
en deep learning. Ce programme realise sur Grasshopper permettra de générer
une multitude d'agencements qui répondront a des criteres de dimensions et de
surfaces des differentes pieces a obtenir. Les plans se verront attribuer un score
qui permettra leur évaluation afin que le programme puisse en juger la qualite.

Dans un premier temps nous ferons un point historique de I'évolution de la
conception. Nous verrons brievement les étapes par lesquelles les architectes sont
passés afin d'arriver a la situation que nous connaissons aujourd’hui.

Nous aborderons ensuite le contexte dans lequel ce mémoire s'inscrit. Nous
verrons dans cette partie la problématique que nous pouvons extraire en fonction
des questionnements concernant ce sujet. Cela nous permettra alors d'établir une
méthode expérimentale pour proposer une réponse a cette dite problématique.

Al'issue de cela, nous ferons I'état de I'art. |l sera question ici de s'intéresser
a ce qui se fait actuellement dans le vaste domaine de la Conception Assistée
par Ordinateur (CAO ou CAD : Computer Aided Design) et plus précisément
en architecture. Nous regarderons les differentes meéthodes utilisees ainsi que
les démarches des chercheurs ayant travaillé dans ce domaine afin d'avoir
connaissance des possibilites. Cela nous permettra également de voir les limites
de chacune des méthodes et proposer ainsi une nouvelle approche pour répondre
a notre questionnement.

16

Ensuite nous verrons les supports informatiques utilisés afin de réaliser cette expérience
presentant ainsi leurs caractéristiques respectives ainsi que leurs domaines d'application. Puis nous
ferons un bilan de I'évolution de la recherche, les étapes par lesquelles je suis passe avant d'arriver au
résultat final ainsi que les problemes que j'ai pu résoudre. Cette expérience n'est pas I'unique facon de
générer des plans mais une des multiples manieres d'y arriver. Nous verrons donc les choix que j'ai pu
faire afin de résoudre certains problemes qui ont, par la suite, eu un impact sur le réesultat des plans

generes.

Une fois I'évolution de la recherche expliquée, nous regarderons le resultat de I'expérience de ce
meémoire qui nous permettra de répondre a notre questionnement. Le fonctionnement du programme
final sera développé en détail dans cette partie afin d’en faciliter la compréhension. Enfin, nous pourrons
regarder un échantillon des plans généres.

Pour terminer, nous verrons la notice d'utilisation du programme. Afin de s'inscrire dans une
démarche de recherche, je souhaitais rendre accessible le fonctionnement du programme afin qu'une
tierce personne puisse se l'approprier mais également que quiconque puisse faire fonctionner le
programme simplement afin de générer une banque de plans.

17

/

Point historigue

Avant propos

Introduction

* Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

Durant la Renaissance, un nouveau metier s'affirme : I'architecte. Bien que
beaucoup de personnes ont exercé cette pratique bien avant la Renaissance, c'est
a cette période, que le métier se définit a part entiere dans le role qu'il occupe encore
aujourd’hui. L'architecte était alors chargé de concevoir le projet mais aussi d'en
assurer le bon déroulement tout au long de sa réalisation. Depuis bien longtemps,
les architectes se sont munis d'outils pour les aider a concevoir. Tout d'abord de
simples stylos, équerres, regles et compas. Cependant, une innovation va venir
chambouler I'avenir de la maniére de concevoir I'architecture et I'architecture elle-
méme : l'invention de I'informatique. L'informatique est apparue progressivement
et a evoluée au fil du temps. L'invention n'est pas un processus linéaire, cela résulte
de multitudes de tests d'ameéliorations parmi lesquelles il résulte ce qui a été
sélectionné comme amélioration viable ou intéressante. On retrouve également
beaucoup de tentatives ratées ou bien d’améliorations qui n'ont pas su trouver
leur utilité a leur epoque. Ce serait vers 1834 que Charles Babbage aurait concu
la premiere machine analytique : un calculateur mécanique programmable basé
sur un systeme de cartes perforées reliées a un organe de commande. Herman
Hollerith, invente quant a lui une machine électromécanique permettant de stocker
des données sur une carte perforée en 1880. Au fur et a mesure de I'évolution de
I'informatique, I'ordinateur a été inventé jusqu'a arriver a ce que nous connaissons
aujourd’hui. Tout d'abord, dans les années 50, I'ordinateur a été developpé dans
un but militaire tout comme de nombreuses inventions. Il a peu a peu été adapte
jusqu'a arriver a un usage civil, celui que nous connaissons aujourd’hui avec
nos ordinateurs, smartphones, tablettes bien d'autres. Les premiers outils de
Conception Assistée par Ordinateur (ou CAO ou CAD en anglais) apparaissent
et ce n'est réellement que dans les années 70 gu'ils se développent afin que
les architectes puissent les utiliser. Cependant, le CAD peut étre appréhende
de multiples facons. Tout d'abord utilisé afin de faire sur ordinateur ce que les
architectes faisaient avant sur papier en dessin en deux dimensions : un ensemble
de traits ou de courbes qui créent des formes jusqu'a arriver a du CAD en trois
dimensions. Jusqgu'alors, ce CAD servait a dessiner, a créer, a concevoir sur un outil
informatique, mais 'ordinateur n'intervenait pas reellement dans le processus de
conception. Aujourd’hui, cette utilisation du CAD est globalement maitrisée par
I'ensemble du corps de métier. Cependant, la Conception Assistée par Ordinateur
ne se limite pas a un simple changement de support de dessin et de conception.

20

Avec I'apparition du paramétrique dans les années 80, le CAD s’ouvre a un nouveau champ des
possibles. Dans cette branche du CAD, I'ordinateur joue un réle majeur dans la notion de conception.
En effet, dans le domaine du parameétrique, les objets virtuels ne sont pas dessinés par les architectes
mais leurs parameétres sont décrits étape par étape. Ainsi, une boite n'est pas simplement qu’'un volume
dessiné arbitrairement dans un espace virtuel mais devient un quadrilatére avec un grand cote de
longueur x et un petit cote de longueur vy, extrude suivant la normale de ce plan d'une longueur z. Cette
boite a un point d'origine dans I'espace qui est défini par 'utilisateur et celle-ci est orientée dans les
trois plans selon un angle egalement defini. Ainsi, chaque étape du processus de conception est définie,
precisée et parametrée par le concepteur qui ne va que tres peu dessiner voire pas du tout. L'ordinateur
va ainsi calculer I'ensemble des contraintes et parametres deéfinis lors du processus de conception afin
d'arriver un modele 2D ou 3D respectant I'ensemble de ces contraintes. Cette fagon d'utiliser le CAD
permet la création de nombreuses formes, objets complexes trés difficiles voire impossibles a dessiner
sans avoir recours a l'utilisation de I'informatique. Certains architectes et designers en ont méme fait
leur signature. L'utilisation de logiciels parametriques dans I'utilisation du CAD est relativement récente
et donc la plupart des architectes n'utilisent pas cette fagon de concevoir. Cependant, la conception
paramétriqgue n'est pas l'unique forme ou la machine intervient amplement dans le processus de
conception. Depuis quelques années, une nouvelle branche de la conception architecturale se développe
grandement : l'utilisation de I'Intelligence Artificielle.

21

3

Problematique

Avant propos

Introduction

Point historique

* Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

Dans le domaine de la recherche en génération de plan, on peut retrouver
plusieurs logiques expérimentales permettant d'arriver a ce résultat. Parmi elles,
on trouve notamment la génération de plan en utilisant un programme de machine
learning ou de deep learning qui sont des branches du domaine de l'intelligence
artificielle. Cependant, comme nous avons pu |'évoquer préecédemment, ce type de
programme est fait pour apprendre et nécessite donc une phase d'entrainement.
Ensomme, onva donner a un programme d'intelligence artificielle des informations
sur lesquelles il va s'entrainer. Le but de I'entrainement peut étre par exemple de
reconnaitre une certaine typologie de plan. Une fois cette phase d'apprentissage
terminée, lorsque le programme ne se trompe que trés peu (le taux d’erreur est
convenable comparé au taux de réussite), alors il est possible d'utiliser cet outil
afin de génerer des formes aléatoires qu'il va reconnaitre. Ainsi le programme
ne va nous proposer que des résultats qu'il reconnait et donc générer des plans
correspondant aux criteres que I'utilisateur lui soumet.

Cependant, afin de géneérer des plans répondant a certaines exigences,
la phase d’'entrainement nécessite une grande quantité d'informations de départ
sur laquelle le programme va s'exercer. Certains organismes répertorient des
plans, ayant un aspect homogene et les mettent a disposition comme Rakuten
par exemple. Il semble d'ailleurs que ce soit cette banque de données que le
chercheur Stanislas Chaillou a utilisée pour le développement de son intelligence
artificielle. Cependant, ces plans fournis par Rakuten répondent a des standards
asiatiques, la phase d'entrainement est donc influencée par ce parametre et les
plans alors généres le sont pour leurs similarités avec ces données initiales.

24

L'objectif de cette recherche est alors de créer un programme permettant de générer des plans
simples, qui répondront a des criteres paramétrables. Ainsi, on pourra obtenir une grande diversité de
plans qui serviront par la suite comme banque de données dans la recherche en intelligence artificielle.
Les plans génerés seront évalués en fonction de certaines de leurs caractéristiques qui leur sont propres
pour pouvoir les noter et les classer dans des catégories.

Pour I'élaboration de cette expérience, j'ai souhaite utiliser des outils les plus simples possibles
afin de permettre a une plus grande diversité de personnes d'avoir acces a cette recherche afin de la
modifier, 'ameéliorer et ainsi pouvoir générer des plans adaptés a leurs attentes. L'objectif est de générer
des formes simples mais avec un trés large spectre de possibilités pour permettre I'élaboration d'une
banque de donneées la plus diversifiee possible

25

4

Ftat de 'art

Avant propos

Introduction

Point historique

Problématique

* Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

4.1 - Introduction de I'état de l'art

Cette partie qu'est celle de 'état de I'art va nous permettre de prendre
connaissance de l'avancée du savoir dans le domaine de la généeration de
plans. Cependant, comme nous avons pu le voir precedemment, nous pouvons
apprehender ce sujet de plusieurs facons. Nous allons donc tout d'abord faire
I'état de I'art de la génération de plan a I'aide de I'Intelligence artificielle, puis nous
ferons I'état de I'art de ce sujet dans les domaines des automates cellulaires, des
systemes multi-agents ainsi que celui de 'allocation spatiale.

4.7 - 'intelligence artificielle

L'intelligence artificielle est 'ensemble de théories et de techniques mises
en ceuvre en vue de realiser des machines capables de simuler l'intelligence
humaine. Ces technigues sontaujourd’'huilargement utilisées dans divers domaines
utilisant la technologie comme nos smartphones, tablettes et ordinateurs. Certains
chercheurs et architectes se sont alors penchés sur I'adaptation et I'utilisation de
I'intelligence artificielle dans le domaine de 'architecture et donc de la génération
de plans.

4.2.1 - Stanislas CHAILLOU

Dans le domaine de la recherche en génération de plans pour 'architecture,
les travaux de Stanislas CHAILLOU sont trés souvent mentionnés. Ce chercheur
a présenté en Fevrier 2020 une conférence se tenant au Pavillon de 'arsenal a
Paris intitulée : « Al & Architecture ». Cette conférence d'une vingtaine de minute
disponible sur internet présente les travaux que Chaillou a pu faire ces dernieres
années. Evoluant essentiellement dans le domaine de lintelligence artificielle,
cet architecte chercheur a alors développé un programme de Deep Learning
permettant de générer des plans d'architecture tout a fait convaincants par leur
aspect, leur ordonnance etc. Dans la vidéo du Pavillon de I'Arsenal, il explique
I'élaboration de son programme et les étapes par lesquelles il est passe afin de
deévelopper un tel dispositif.

JIELE
B[mes W
i WL EmE

Figure 42.1.a
Travail de Stanislas CHAILLOU
Source : cahiers-techniques-batiment.fr

Figure 4.2.1.c
Travail de Stanislas CHAILLOU
Source : paulvanderlaken.com

Figure 4.2.1.b
Photo de Stanislas CHAILLOU
Source : pavillon-arsenal.com

28

4.2.2 - Jean Raphaél PIOUARD

Le mémoire de Jean-Raphaél PIQUARD a également participé a I'élaboration de mon mémoire.
Cet éléve de I'Ecole Nationale Supérieure d’Architecture de Paris La Villette (ENSAPLV), s'est intéressé
a la génération de plan a l'aide de l'intelligence artificielle. Dans son mémoire on peut voir qu'il a tout
d'abord commencé par générer des chiffres entre 0 et 9. Il a ensuite réussi a générer des formes
géomeétriques simples comme des carrés, des triangles, des losanges etc. Aprés ces étapes de
recherches, il a adapté son programme a la génération de formes noires dans un espace blanc. Quelque
chose de trés intéressant émerge de cette recherche car les formes générées par le programme de
Jean-Raphaél Piquard peuvent appartenir a certaines catégories identifiables et reconnaissables mais
son programme génere également ce qu'il appelle des chimeéres. Ces dernieres n'appartiennent &
aucune des catégories ou pourraient appartenir a plusieurs catégories en méme temps. Ce résultat est
intéressant car grace a ce processus de recherche, il est possible de générer des plans chimériques
appartenant a des typologies qui sortent de I'ordinaire.

o Gl ol O G o el A
" FErFEEl FER T ELR F LN -
T EF I TR N LT
M AN AAEEE A E™
ddd™ Al d A JdEANJAEEE™
LT T rrrerrL
T T ErEF N B ETLECTT
ol ol ok o o R AP O PR
ANEEJAdEE HAdFMBJAAHA™
A e A

Figure 4.2.2.a
Exemple de génération
Source : Mémoire de Jean-Raphaél PIQUARD

4.2.3 - Alex SALINI

Alex SALINI a lui aussi été etudiant a 'ENSAPLV. Durant son Post-Master Recherche en
Architecture, il a rédigé en Septembre 2020, un carnet de recherche sur “L'utilisation d'un réseau
adversarial antagoniste (GAN) dans la création de plans d’architecture”. Tout comme Jean-Raphaél
PIQUARD, il s'est intéressé a l'utilisation de lintelligence artificielle et s’est inspiré des travaux de
Stanislas CHAILLOU. Cependant, il semble qu'Alex SALINI se soit directement attaqué a la génération
de plans sans élaborer d'étapes dans son programme. La seconde différence importante est la banque
de donnees. Il semble avoir fait le choix d'une banque de plans beaucoup plus précise, d'une qualité
de resolution beaucoup plus élevée quitte a avoir une banque beaucoup plus réduite avec 250 plans
(Jean-Raphaél PIQUARD utilisait des images de 50 par 50 pixels). Le résultat de son programme
d'intelligence artificielle n'était pas concluant par rapport au résultat attendu mais les génerations qu'il
a pu faire demeurent trés intéressantes et permettent tout de méme de produire une multitude de
propositions.

ey —_— e

—= =3
=

1o

o
l mmmuunl

gl

|
mlmmmJ
|
|

Figure 4.2.3.a

Exemple de génération

Source : «['utilisation d'un réseau adversarial antagoniste (GAN) dans la création de plans d'architecture»
Alex SALINI, 2020

29

Avant propos

Introduction

Point historique

Problématique

* Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

4.3 - Les automates cellulaires

Un automate cellulaire consiste en une grille réguliere de « cellules »
contenant chacune un « état » choisi parmi un ensemble fini et qui peut évoluer au
cours du temps. Cette méthode permet de générer en deux dimensions ou en trois
dimensions un assemblage de cellules. Certains chercheurs se sont pencheés sur
ce sujet afin de I'adapter a la génération en architecture, qu'elle soit a I'echelle de
plans, de batiments ou de quartiers de villes. L'utilisation des automates cellulaires
est tres intéressante car elle permet de paramétrer chaque unité a l'aide de
I'informatique. Les formes ainsi génerées répondent donc a des critéres définis et
variables dont on peut connaitre les paramétres.

4.3.1 - Nathan BEYLER

Nathan BEYLER a également été étudiant a 'ENSAPLV et a rédigé son
meémoire de recherche de master “Utiliser et transformer des criteres en esquisses
de plan” en 2019. Cet étudiant s'est donc intéresse a la génération de plan en se
basant sur un principe d'automates cellulaires dans I'optique de soumettre des
propositions aux architectes. Nathan BEYLER ne s'inscrit pas dans la continuité
de la recherche en intelligence artificielle mais souhaite plutét développer des
esquisses de plans en prenant en compte différents parameétres tels que la lumiere,
le son et la chaleur. Sa recherche lui a permis d'élaborer une maniere de diviser un
plan en le transformant en une grille de cellules et en divisant cette grille avec un
automate cellulaire afin de deéfinir differents espaces de couleur.

Etat final de la grille : Aléatoire Semi-aléatoire

Figure 4.3.1.a

Exemple de génération

Source : «Utiliser et transformer des critéres en esquisses de plan»
Nathan BEYLER, 2019

30

4.3.2 - Robert J. KRAWCZYK

KRAWCZYK Robert J. est un professeur et chercheur du College of Architecture de I'lllinois
Institute of Technology a Chicago aux Etats-Unis. Son papier de recherche intitulé “Architectural
Interpretation of Cellular Automata” publié en 2002 porte comme son nom I'indique sur I'interprétation
architecturale des automates cellulaires. Ce travail consiste a générer des relations entre des cellules
sur un plan horizontal mais aussi vertical dans I'optique de produire des formes en trois dimensions
ayant des relations. Les formes ainsi générées sont par la suite interprétées de différentes manieres en
utilisant différentes formes qui font varier le résultat final. On voit ici que les automates cellulaires ne
sont qu'un support a la créativité. Les relations dans les deux plans sont générées selon des parameétres
mais le résultat laisse place a différentes interprétations esthétiques et spatiales.

[L I T [o o BB
T By e e m
‘FIDEE B : é"*k? o |
‘ = itectural form series
. a om 1]
, . &
L i
Ena
R "

r.’_\i;*’—‘ Fg e 11. Cells
\

Figure 12, Cells with retained growth
Figure 4.3.2.a
Travaux de Robert J. KRAWCZYK
Source : «Architectural Interpretation of Cellular Automata»
Robert J. KRAWCZYK, 2002

4.3.3 - Christiane M. HERR & Ryan C. FORD

Christiane M. HERR est une enseignante et chercheuse a Southern University of Science and
Technology a Shenzhen en Chine. Ryan C. FORD est quant a lui, un architecte Néo-Zélandais. Ces deux
personnes ont collaboré sur un papier de recherche intitulé “Adapting Cellular Automata as Architectural
Design Tools” publié en 2015. Tout comme KRAWCZYK, ces deux chercheurs tentent d'appliquer les
automates cellulaires a la conception architecturale en modifiant les régles des automates cellulaires
afin qu'ils correspondent a celles de I'architecture. Les formes générées dans cette recherche ne restent
que formelles et l'interprétation est ensuite faite par 'humain. Le programme élaboré ne semble pas
permettre de transformer ces formes en plans architecturaux. Cependant, le but de ce papier de recherche
est plutdt de demontrer qu'il est possible d'appliquer ce systeme a l'architecture, de démocratiser ce
support d'aide a la conception et de le considérer comme un reel outil dans le processus de conception.

Figure 4.3.3.a

Travaux de Christiane M. HERR & Ryan C. Ford

Source : «Adapting Cellular Automata as Architectural Design Tools»
Christiane M. HERR & Ryan C. Ford ,2015

31

Avant propos

Introduction

Point historique

Problématique

* Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

4.4 - | es systemes multi-agents et I'allocation spatiale

Les systemes multi-agents sont des systemes composés d'un ensemble
d’agents (un processus, un robot, un étre humain, une fourmi etc.), actifs dans
un certain environnement et interagissant selon certaines régles. Ce procédé se
rapproche de celui des automates cellulaires mais ne se base pas forcément sur
I'utilisation d’une grille. Les architectes et les chercheurs ont utilisé cette méthode
afin de pouvoir générer des plans ordonnés répondant a des criteres. Ces derniers
sont souvent liés aux relations spatiales mais aussi fonctionnelles qu'entretiennent
les espaces entre eux. Ce systeme appliqué en architecture se rapproche du
principe d’allocation spatiale. Celle-ci est la disposition informatique des piéces
dans un plan. C'est le processus de détermination de la position et de la taille de
différentes pieces dans un espace a deux dimensions, en fonction des exigences
de [l'utilisateur et des contraintes topologiques et géométriques. L'allocation
spatiale va généralement travailler dans un espace restreint, une forme visant a
étre agencée selon des parameétres contrairement au systeme multi-agents dont
la forme va étre générée par la création du plan.

441 - Zifeng Guo

Zifeng Guo est un chercheur de I'Ecole Polytechnique Fédeérale de Zurich en
Suisse. Dans ses travaux intitules “Evolutionary approach for spatial architecture
layoutdesign enhanced by anagent-basedtopology finding system” publiesen 2017,
il aborde la genération en architecture en se basant sur un systéeme multi-agents.
Un systéme multi-agents est défini par wikipédia comme étant “[...] un systéme
composé d'un ensemble d’agents (un processus, un robot, un étre humain, une
fourmi etc.), actifs dans un certain environnement et interagissant selon certaines
regles”. A l'aide de cette méthode, ce chercheur dispose des espaces qui vont
interagir entre eux de plusieurs manieres : 'attraction, la répulsion, I'échange et la
compression. Grace a cette méthode, il arrive a imbriquer et organiser les espaces
entre eux en plan mais egalement dans un univers virtuel en trois dimensions. Par
la suite, il simplifie sa méthode en se basant sur un systeme de grille permettant
d'obtenir des résultats tres convaincants.

Figure 4.4.1.a

Travaux de Zifeng Guo

Source : Evolutionnary approach for spatial architecture layout design enhanced by an agent-based typology finding system
2017

Figure 4.4.1.b

Travaux de Zifeng Guo

Source : Evolutionnary approach for spatial architecture layout design enhanced by an agent-based typology finding system
2017

32

Figure 4.4.1.C

Travaux de Zifeng Guo

Source : Evolutionnary approach for spatial archi-
tecture layout design enhanced by an agent-based
typology finding system

2017

Le second article de ce chercheur auquel je me suis intéressé s'intitule “Generated Building
Layout”. Cetterecherche est également basée sur l'utilisation de systemes multi-agents mais uniquement
dans un environnement a deux dimensions. Dans ces travauy, il spécifie les noms des pieces ainsi que
les relations qu'elles entretiennent avec les espaces avoisinants. Ces espaces sont alors disposés
dans un rectangle dans lequel le plan final doit s'inscrire. L'ordinateur propose alors un agencement en
disposant des cloisons et des ouvertures en fagade afin de constituer un plan.

Bathn%
ro h“Jedronm
| FOo)

Garage ﬂi

,;'5'/
Enu:f(me A A
\ Kitchen
Dinning roam——
Laundargath room ﬂ'

Diagram of one-floor layout.

= =
athr ml Bed KBS e ‘ |

Lara

Kiche g
= Figure 4.4.1.d
Travaux de Zifeng Guo

Source : Generated Building Layout

I——l—-l——

4.4.2 - Silvio CARTA

Silvio CARTA est un enseignant chercheur ayant travaille a l'université de Cagliari en lItalie, a
I'universite de Rotterdam et a l'université de Delft aux Pays-Bas. Il travaille désormais a 'université de
Hertfordshire au Royaume Uni. Ses travaux portent sur I'organisation autonome des plans a l'aide d'outils
informatiques. Deux d’entre eux m'ont particulierement intéresse : “Self-organizing Floor Plans” réalisé
a l'université d'Hertfordshire et publié le 27 Mai 2020 et “Self-Organising Floor Plans in Care Homes”
realise en Mai 2020 avec Stephanie St Loe également chercheuse a l'universite d'Hertfordshire. Le
premier travail de ce chercheur tend a une optimisation du plan a chague génération. Ainsi, le meilleure
agencement d'espaces est utilisé en entrée pour la génération suivante dans I'optique d’améliorer le
resultat a chaque itération. Les premiers plans générés sont tres intéressants car ils ne répondent pas
aux standards d'architecture. Les formes et leur disposition sortent de I'ordinaire et cette approche
permet d'explorer de nouvelles partitions. La seconde partie de cette recherche ressemble a un systeme
multi-agents ou l'utilisateur va venir disposer des espaces en spécifiant les connexions de chaque
piece. Le programme va venir générer une proposition de plan en respectant ces conditions.

© .
&© @
e /’ gl i
® ©
Figure 4.4.2.a Figure 4.4.2.b

Travaux de Silvio CARTA Travaux de Silvio CARTA
Source :Self-organizing Floor Plan Source :Self-organizing Floor Plan
27 Mai 2020 27 Mai 2020

33

Avant propos

Introduction

Point historique

Problématique

* Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

Le second article auquel je me suis intéressé est “Self-Organising Floor
Plans in Care Homes" réalisé avec Stephanie ST LOE. Ces deux travaux de
recherche ont été publiés en Mai 2020 et portent sur le méme sujet. Cependant,
ce second travail integre également le champ de vision depuis certains points
du plan. Ainsi, les connexions qu'entretiennent les espaces peuvent traverser les
pieces et évoluer selon le cheminement d'un potentiel usager.

Figure 10. Viewing cones of agents in the simulation. Agents gathering to the kitchen.

Figure 4.4.2.c

Travaux de Silvio CARTA

Source :Self-organizing Floor Plan in Care Homes
Mai 2020

4.4 3 - Buiding Generator with Geometry Nodes

Blender est un logiciel de 3D gratuit et communautaire. Ainsi, les utilisateurs
peuvent créer des plug-ins, des add-ons que tout le monde peut télecharger et
utiliser. Durant I'année 2021 est sortie une nouveauté sur le logiciel Blender : le
Building Generator with Geometry Nodes. Cet add-on gratuit permet la génération
de batiments entiers. En parameétrant des textures, des formes de fagades, de
planchers, de structures et de percements, le logiciel est capable de générer en
quelgues secondes des batiments. Pour l'instant, il semble que I'add-on soit utilisé
dans le but de créer les formes extérieures des batiments au détriment de la
partition du plan. Cependant, cette méthode pourrait trés facilement étre appliquée
a la génération de plans.

Figure 4.4.3.a

Exemple de génération

Source : Instagram @antoinebagattini
15 Novembre 2021

34

4.4 4 - Krishnendra SHEKHAWAT

Krishnendra SHEKHAWAT est un chercheur diplomé de I'Indian Institute of technology de Delhi
(2008) et de I'université de Genéve (2013). Il s'est notamment intéressé & la question de I'allocation
spatiale en architecture qu'il définit comme ceci : “Space allocation is the computational arrangement
of rooms (spaces) in a floor plan. In other words, it is the process of determining the position and size
of different rooms in a two-dimensional space, according to the user’'s requirements and topological
and geometric constraints”. En somme nous pourrions le définir en frangais comme la disposition
informatique des espaces dans un plan en déterminant la position et la taille de chaque espace du plan.
Il a réalisé de nombreux travaux de recherche a ce sujet comme un article nomme “Automated space
allocation using mathematical techniques” publié en Avril 2015. Dans cet article, ce chercheur a créé
une méthode afin de disposer des espaces tendant & respecter les dimensions d’'un rectangle d'or (le
ratio du grand c6té du rectangle sur le petit doit étre égal & 1.618). Ainsi, il a divisé en 4 un plan ayant
la forme d'une croix et ces 4 espaces sont alors divisés en piéces ayant également ce ratio doré.

O - spaces
M - Inner extra space
[- Outer extra space

Figure 4.4.4.a

Travaux de Krishnendra SHEKHAWAT

Source : Automated space allocation using mathematical techniques
ler Avril 2015

Le second article de ce chercheur qui m'a particulierement intéressé s'intitule “Space Allocation
in Rectangular Floor Plan” et a été publié en Décembre 2012. Cette thése réalisée pour I'Université
de Geneve semble étre les prémisses de la recherche publiée en Avril 2015. Il y détaille sa démarche
et les opérations mathématiques mises en ceuvre afin de paramétrer les différents espaces ainsi que
leurs proportions. Le résultat de ces recherches est trés intéressant car la division et le rapport de
surface gu'entretiennent les pieces entre elles lui permettent de hiérarchiser les espaces tout en créant
les inscrivant dans des rectangles dorés (selon certains consensus, les proportions dorées sont les
proportions parfaites que I'on peut retrouver dans le corps humain, la nature, certaines structures
minérales etc---).

4
Bath 7] - Room
room

Bedroom | . Extra space
1
an Room 2 Figure 5.3
3| Kitchen

Figure 4.4.4.b

Travaux de Krishnendra SHEKHAWAT

Source : Space Allocation in Rectangular Floor Plan
Décembre 2012

35

Avant propos

Introduction

Point historique

Problématique

* Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

445 - Finch 3D

'agence d'architecture suédoise Wallgren Arkitekter et I'entreprise de
construction suédoise BOX Bugg ont développé un plug-in de programmation
visuelle sur Grasshopper. Apres avoir dessiné les murs extérieurs d'un batiment
ainsi que ses cloisons intérieures, ce plug-in permet d'agencer les espaces en
dessinant du mobilier et des portes. Il est possible de faire mouvoir les cloisons
et les murs, ainsi le plan s'adapte automatiqguement aux nouveaux parameétres.
Cet outil peut permettre d'aider les architectes a aménager leurs plans et leur
proposer des solutions différentes de celles qu'ils auraient pu concevoir. Il semble
cependant que ce programme ne propose qu'une seule partition de l'espace
par plan et n'explore pas toutes les possibilités. De plus, les paramétres doivent
étre modifies manuellement ou peuvent potentiellement étre programmés par
I'utilisateur. Cela reste une supposition.

Figure 4.45.a

Capture d'écran d'une vidéo
Source : archdaily.com

6 Décembre 2019

Figure 4.4.5.b

Capture d'écran d'une vidéo
Source : archdaily.com

6 Décembre 2019

36

4.5 - Conclusion de I'état de 'art

Pour conclure cet état de l'art, il semble que beaucoup de personnes s'intéressent au domaine
de la génération en architecture. Cela peut prendre différentes formes & différentes échelles (celle
d’un logement, d'un batiment ou d'un bout de ville). Diverses méthodes sont utilisées et il en existe
certainement d'autres que nous n‘avons pas pu évoquer ici. Cet état de 'art n'a pas pour but d'étre
exhaustif sur ce domaine mais plutét de donner un apercu de la situation actuelle dans le domaine
de la génération en architecture. Nous avons ici pu voir difféerentes méthodes que sont l'intelligence
artificielle, les automates cellulaires, les systémes multi-agents ainsi que I'allocation spatiale.

Nous verrons dans la partie 5 de ce mémoire de recherche que la méthode retenue est celle
des automates cellulaires. En effet, jai pu suivre I'année derniere les cours “TR707 : Initiation a la
modélisation paramétrique” ainsi que le cours “CTID 825 : systemes de la conception digitale” dispensés
a 'ENSAPLV par Francois GUENA. Ces cours portaient en partie sur l'utilisation de cette méthode pour
la génération de formes sur Rhinocéros 3D a l'aide du plug-in Grasshopper. Cette méthode m'est donc
relativement familiere mais elle est également plus accessible que certaines autres comme I'utilisation
de l'intelligence artificielle qui requiert un certain nombre de connaissances en langage informatique.

37

o

Ctapes de
la recherche

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

« Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

5.0 — Les logiciels

5.0.1 - Rhinoceros 3D

Pour réaliser cette expérience, j'ai choisi d'utiliser le logiciel Rhinoceros 3D.
Ce logiciel Conception Assistée par Ordinateur a été sélectionné pour plusieurs
raisons. Premierement, il permet de générer des formes trés variées et complexes
ce qui laisse alors une grande liberté a I'utilisateur. Il est plus libre que certains
autres logiciels utilisés en architecture comme Archicad ou Revit par exemple.
Rhinoceros 3D est disponible sur PC et sur Mac ce qui pourra également permettre
a un plus grand nombre de personnes d'accéder aux fichiers afin de pouvoir les
modifier. Enfin, Rhinoceros 3D propose un plug-in nommeé GrassHopper dont nous
allons nous servir tout au long de cette expérimentation

‘K%/ Rhinoceros’

Figure 5.0.1.a
LLogo de Rhinoceros 3D
Source : food4rhino.com

5.0.2 - Grasshopper

Grasshopper (GH) est un plug-in de Rhinoceros 3D. Un plug-in (encore
appelé module d’extension ou module externe) est un programme complétant les
fonctionnalites d'un logiciel. Le plugin GrassHopper permet de creer des modeles
paramétriques sur Rhinoceros grace a de la programmation visuelle. GrassHopper
a eté selectionné car il est utilisé par certains architectes concevant des projets a
I'aide de 'outil paramétrique. Cette extension permet la création de formes variees
et cela nous servira donc a genérer des dispositions de plans dont on connait les
parametres, que I'on peut faire varier mais dont on peut également en extraire les
données. De plus, géenérer des formes a l'aide du paramétrique dans Rhinoceros
3D avec GrassHopper permet de visualiser le résultat, offrant ainsi une meilleure
appréhension et compréhension du programme

Figure 5.0.2.a
Logo du plug-in GrassHopper
Source : food4rhino.com

40

5.1 — Premiéres recherches avec le plug-in « Marmot »

Tout d’abord, j'ai voulu baser mes recherches sur des programmes déja existants disponibles
sur Food4Rhino afin de comprendre leur fonctionnement. J'ai donc pu analyser ce que ces programmes
permettaient de génerer mais j'ai également identifié leurs limites. J'ai notamment télecharge et utilise
I'add-on « Marmot ». Cet add-on sert a générer une répartition d'espaces au sein d'un rectangle que
I'utilisateur definit. En testant ce programme j'ai pu identifier des avantages et des inconvénients a
baser mes recherches sur cet add-on. L'avantage aurait été la faciliteé d'utilisation. Marmot permet
d'indiquer différentes pieces dans un plan qui est définissable par I'utilisateur. Il permet d'indiquer la
surface de ces différentes pieces mais également les relations qu'elles entretiennent entre elles. C'est-
a-dire que I'on peut indiquer si l'on souhaite que la piece 1 communique avec la piece 2. Ce programme
est assez efficace, cependant, la surface que 'on accorde a chaque piece semble étre approximative
sans réelle surface minimale. L'ensemble des surfaces des pieces varie afin de trouver un équilibre pour
occuper I'ensemble du plan. Les différents espaces n'ont pas de longueurs minimales, et en ce sens,
une chambre de 10 metres carrés pourrait étre genérée comme etant un rectangle de 10 metres par
1 meétre. Enfin, cet add-on ne semble fonctionner qu’avec une surface rectangulaire. Un test avec une
surface polygonale plus quelconque a eté réalisé mais le programme ne semble pas réussir a ameénager
le plan.

Figure 5.1.a
Logo de I'add-on Marmot
Source : food4rhino.com

h.2 — Premiéres recherches avec le plug-in « Magnetizing Floor Plan Generator »

En continuant mes recherches sur I'avancement de la génération de plan, j'ai trouve I'addon
“Magnetizing Floor Plan Generator”. Ce programme est bien plus complet mais également plus
complexe que I'add-on Marmot. Magnetizing Floor Plan Generator permet comme son nom l'indique de
générer des plans. Tout comme pour Marmot, j'ai pu téléecharger et essayer cet outil et j'ai identifie des
avantages et des inconvénients a ce programme. En premier lieu, cette extension est plutét complete
et permet de générer des formes de plans trés variées, en indiquant les difféerentes pieces souhaitées,
d'afficher leurs surfaces respectives mais egalement les relations gu'elles entretiennent entre-elles
comme dans l'extension Marmot. L'avantage est la diversite de parametres sur lesquels I'utilisateur
peut intervenir mais egalement la diversité des formes genérées. Malheureusement, cet add-on est tres
complexe a utiliser et est tres spécifique. Les données genérees par ce programme sont au final peu
exploitables dans le sens ou il est difficile de récupérer ces données afin de les reutiliser en complétant
le programme. Les surfaces des pieces sont strictement égales au parameétre predéfini par 'utilisateur
et ne peuvent pas varier. La relation qu'ont les pieces entre elles est certes trés précise mais doit étre
changée manuellement. Dans ce mémoire, il est primordial que I'ordinateur puisse faire varier ces
parametres sans intervention humaine une fois I'algorithme lance.

I - I Figure b.2.a
Logo de I'add-on Magnetizing Floor Plan Generator

Source : food4rhino.com

41

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

« Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

5.3 — Division de la surface avec le composant « Substrate »

Apres ces tentatives d'adaptation d'un programme existant a ma recherche,
j'ai donc compris que la réussite de cette derniere reposerait sur le choix de la
méthode de division d'une surface en différents espaces. L'enjeu est donc de
trouver une fagon de diviser une surface immuable en plusieurs espaces qui eux
peuvent se trouver dans un domaine variable.

Afin de tenter de résoudre ce probléme, je me suis intéressé au composant
“‘Substrate” de GrassHopper. Cet élément permet la division d'une surface en un
nombre d'espaces donne. Par défaut, I'angle de cette division est aléatoire. En
indiquant un angle “pi” j’ai pu obtenir une division ou les espaces se rencontrent en
formant des angles droits. Ainsi la surface principale a été découpee en plusieurs

rectangles formant ainsi la partition du plan. En sortie de ce composant, j'ai pu
recuperer ces surfaces.

o6 béooeé 0606 96@6 =) m.ﬁE ié ﬂ! 00' %08
e) S — ——

ad « Heou 3090300

Surface géométrique

i : .
00 00060 000 L WeWE A8 »> 4T

(1% 2 [R +0930ad

Surface totale.

LW | /

J'ai alors commence a élaborer une partie d'algorithme me permettant
dévaluer les surfaces obtenues. A ce stade de la recherche, I'évaluation de la
qualité des espaces ne repose que sur la surface au sol des pieces. Grace a ce
systeme, il est donc possible de savoir si la superficie d’'une piece se situe dans un
intervalle que j'ai pu indiquer. En sortie de cette évaluation, si la surface se trouve
dans l'intervalle, alor, sa valeur sort de |'algorithme. Si sa surface est trop petite ou
trop grande, alors la valeur 0 sort de I'algorithme. Les sorties de chaque piece sont

alors regroupées afin de constituer le score final.

Figure 5.3.a
lllustration du composant «Substrate»
© Arthur ROULAND

00 000ace 0006 9906) EUjE iﬁ“ ﬂi > L" %L
e —) S— — ——
C1 Heuw +00 %00

Figure 5.3.b
Premier programme d'évaluation
© Arthur ROULAND

3em seettr ot

Pour optimiser les résultats, j'ai choisi d'utiliser un module de design
génératif intégré a GrassHopper : “Galapagos”. Ce composant récupére une ou
plusieurs valeurs et peut agir sur des parameétres que I'on deéfinit afin de les faire
varier dans 'optique d’optimiser ou de minimiser la valeur de sortie. A cette etape
de la recherche, l'utilisation de Galapagos n'a pas été convaincante car le systeme
d'évaluation donnait en sortie des surfaces et non pas des scores. Galapagos

cherchait donc soit a les optimiser, soit a les minimiser.
42

Figure 5.3.c
Logo de I'add-on Galapagos
Source : food4rhino.com

5. 4 — Modification du systeme d’évaluation

Dans cette nouvelle étape, j'ai donc modifie mon systeme d’évaluation afin qu'il n'évalue non
plus la valeur des surfaces mais si ces derniéres respectent ou non les critéres que je leur demandais.
Pour ce faire, les surfaces étaient évaluées afin de voir si elles se trouvaient toujours dans l'intervalle
de valeur predéfini. Au lieu d’envoyer leur valeur en sortie, elles se voyaient attribuer un score : 0 ou 1.
Ainsi, si les pieces respectent les surfaces demandées, elles obtiennent 1 point. Cependant, la surface
ne reste qu'un indice de qualité d’espace : une chambre de 15m? peut paraitre trés confortable dans
un logement mais si cette chambre fait 15 métres de long sur 1 meétre de large alors I'espace n'est pas
praticable. Afin de résoudre ce probleme, un nouveau module d'évaluation est venu s'ajouter au premier
me permettant d'évaluer la longueur des cotés. Cette partie de I'algorithme permet donc de vérifier si
les cotés sont égaux ou supérieurs a une valeur donnée. Si c'est le cas, alors on va attribuer 1 point a
la piece, dans le cas contraire : 0 point.

A l'issue de cela, j'ai tenté de réutiliser Galapagos pour optimiser cette fois -ci le résultat qui
sortait des modules d'evaluation. Plus le score est éleve, plus il respecte les critéres que I'utilisateur
demande au programme de génération.

00 000000 0000 00O Wi WEUE Hi 4 +- 49
A O S e e i),
E1°] Heuw +09 300

Figure 5.4.a
Systéme de points
© Arthur ROULAND

RAIPLANORDI O
S0 rRARSIIGL

00 0006
——
CLKE Heu

Q000 L WeEE H AR »> R4 T
T — — ——

Figure 5.4.b
Premiers résultats obtenus avec Galapagos
© Arthur ROULAND

43

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

« Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

5.5 — Recherches sur la division de la surface

5.5.1 - Division en voroni

En utilisant le composant Substrate, Galapagos ne pouvait intervenir que
sur un seul parameétre d’'entrée : Seed (graine). Cette Seed peut étre modifiée en
changeant la valeur d’entrée. Cependant, aucune logique apparente ne se dessine
entre la Seed 1, la Seed 2, la Seed 3 etc'-- Galapagos cherche a trouver une valeur
optimisée et cela n'est pas possible avec un parametre Seed. Afin d'optimiser les
chances de résultats, j'ai indigué que ce parameétre pouvait prendre un large panel
de valeurs afin d'en trouver potentiellement une qui permettrait d'avoir un résultat
satisfaisant. Cependant, j'ai découvert que les Seeds n'étaient pas infinies. Les
données de ces dernieres se répetent. Ainsi, par exemple, la Seed numéro 17 peut
étre la méme que la Seed 1017. Galapagos n'était donc pas en mesure d'influer
correctement sur les valeurs de départ afin de chercher a optimiser le résultat de
sortie.

00 00000 000 WIS BAB »> @48
e — —— ——
1 Heuw 09200

Figure 5.5.1.a
Résultat obtenus avec un systeme de voronoi
© Arthur ROULAND

00 900600 0000 0000 B5 FOHE Fi 48 »- 048
T
ad = Do 200 300

Figure 5.5.1.b
Systeme de voronoi
© Arthur ROULAND

Il'a donc fallu chercher une nouvelle méthode de division de la surface.
Je me suis alors penché sur une division en voronoi. Cette méthode permet de
placer un nombre de points définis sur une surface et de diviser cette surface
en cellules. Malheureusement, les differents composants permettant d'appliquer
cette méthode ne permettaient pas d'obtenir des angles de 90°, de paramétrer
le nombre de cotées de chaque espace formé ou encore de régler la position et la
forme précises des cellules. Cette piste a donc éte ecartee.

44

5.5.72 - Division par segments

Une autre piste explorée afin de diviser une surface a éte de me baser sur le Cours Transversal
Intra-Domaine “Systemes numériques de la conception digitale” que j'ai pu suivre quelques mois
auparavant avec Frangois Guéna a I'ENSAPLV. Jai donc repris le programme que javais realise
pendant ce cours et jai tenté de I'adapter aux enjeux de ma recherche. Ainsi j'ai pu disposer b points
sur la périphérie du plan afin de tracer des segments venant découper la surface originale. Cela creait
alors différentes zones correspondant a des pieces. Cependant, avec cette méthode, le nombre de
pieces obtenues était trop grand. J'ai alors tenté d'approfondir le programme afin que certains traits
puissent s'arréter lorsqu’il rencontraient d'autres segments. Cette piste n'a pas été concluante et jai
donc continué mes expérimentations.

00 00000 VDO 85 WeWE M A% »> ©L T
e)

CCE Heu 200300

e
;

Figure 5.5.2.a
Résultat obtenu avec une division par des segments
© Arthur ROULAND

06 000000 0000 0V0O &5 WOES My 4E +> L8
e e R e e i i vt
T Heu 360900

s A NTATS

Figure 5.5.2.b
Systeme de division par des segments
© Arthur ROULAND

5.5.3 - Division de la surface en une grille

En continuant mes recherches sur les méthodes de division d'une surface je me suis intéressé
au composant “Quad Grid” de I'add-on LunchBox de GrassHopper. LunchBox permet d'explorer les
formes mathématiques, les panneauy, les structures et d'autres choses pour ensuite les représenter en
3D dans GrassHopper dans Rhinoceros 3D. J'ai tenté d'utiliser cet add-on afin de pouvoir diviser une
surface rectangulaire en une multitude de carrés. L'idée était a cette étape de la recherche de grouper
ces carrés/cellules afin de diviser le plan en plusieurs formes rectangulaires utilisant toutes les axes X
et Y afin de former des angles droits entre les differents espaces. N'ayant pas trouve de manieres pour
regrouper les cellules, cette piste a été mise de cote.

Ore Q- Fhe- P Db T

0 00060 00O B WeWE 8 48 »> 24T
T — L S—— ——

(=]~ Heuw 00900

Figure 5.5.3.b
Logo de I'add-on LunchBox
Source : food4rhino.com

Figure 5.5.3.a
Résultat obtenu avec Quad Grid 45
© Arthur ROULAND

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

« Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

5.6 — Automate cellulaire

Durant mon Master a 'ENSAPLV, j'ai eu I'occasion de suivre deux cours
dispensés par Frangois Guéna. Ces cours 4 et b du CTID82b : “Systemes
numeériques de la conception digitale” dispensés en semestre 8 a 'ENSAPLV
portaient sur 'utilisation des automates cellulaires dans GrassHopper. Dans ce
cours, il était possible grace au plug-in “Anemone” de Grasshopper, de créer des
boucles de répétition d'une opéeration a I'aide d'un composant codé en langage
Python. Cet exercice était basé sur deux automates cellulaires “Day& Night” et
“Le jeu de la vie". Dans cet exercice il était possible de changer la valeur d'une
ou plusieurs des cellules appartenant a une surface. A cette valeur on pouvait
attribuer une couleur afin qu’elle soit visible dans I'interface de Rhinoceros 3D. Sur
ce principe j'ai décide d'essayer de modifier ce programme afin de créer non plus
2 valeurs (une allumée et une éteinte) mais 6 valeurs (une valeur éteinte : 0 et 5
valeurs de couleur). Ainsi j'ai pu diviser une surface en une multitude de surfaces
appartenant a 6 catégories. Cette methode offre de nombreuses possibilités car
la répartition des valeurs va étre faite par le composant Python. De cette maniere,
selon le code Python que I'on créé/utilise, il est possible de régler la répartition des
différentes valeurs/couleurs selon ce que I'on souhaite obtenir.

= = Ore-Biar- A =
8¢
'L L | ,i'i_ s
I
S 2)
.'_.;_J'--';.'
J '
e
-
00 00000 000 L. HOUE B AR > ©4 T
AR, R ok S Ay
ad Heu +09 90 0|
L
T m— =
7 =]

Figure 5.6.a
Premiers résultats obtenus avec un automate cellulaire
© Arthur ROULAND
00 200600 0000 0000 B5 WOHE Hi 48 »- 49
e e i i i et)
@ae - Heu 200300

o

Figure 5.6.b
Programme de I'automate cellulaire
© Arthur ROULAND

Figure 5.6.c
Logo de I'add-on Anemone
Source : food4rhino.com

46

5.7 — Division par propagation

Dans cette méthode, la surface est divisée en une grille. A chacune des cellules de cette grille
est attribuée la valeur O excepté b d’entre elles ayant respectivement la valeur 1, 2, 3, 4 et 5. Ces
5 valeurs vont par la suite étre récupérées afin de former une surface correspondant a une piece.
L'utilisation de cette méthode implique un script Python ce qui a été une nouveauté pour moi. En me
basant sur le cours portant sur les automates cellulaires, j'ai tenté d'écrire un programme afin que les
cellules “allumeées” puissent se propager a l'instar de taches d'encre. Dans ce cours, nous utilisons un
voisinage parameétré dans GrassHopper qui a été ensuite envoyé dans une des entrées du composant
Python. Dans cet exemple, j'ai tenté d'effectuer une propagation pour les valeurs 1 et 2 uniqguement afin
de voir si cela marchait et comment les valeurs reagiraient lorsqu'elles allaient se rencontrer. Comme on

peut le voir sur les images ci-dessous, le resultat n'était pas trés concluant.

Ore- S G- hi s T
s0¢

L mB B0 O *WM LD PEIT W B

— e— —
ad Heu 2090200
S

Figure 5.7.a
Premiers tests de propagation par I'automate cellulaire
© Arthur ROULAND

FEAE PG bd mE B0 HO *H O FEIT g v

@ Heu *09 300

7

ST W/ T

Figure 5.7.b
Programme de I'automate cellulaire
© Arthur ROULAND

Figure 5.7.c
Premier script Python pour la propagation par automate cellulaire
© Arthur ROULAND

47

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

« Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

5.8 — Le script Python

La recherche repose sur la collaboration et sur I'aide. Les chercheurs
se basent sur des theses, des articles ou encore des papiers de recherche. lls
publient ensuite leurs productions afin que d'autres personnes puissent s'appuyer
dessus. En m'inscrivant dans cette démarche, je me suis basé sur des écrits mais
j'ai également fait appel a mon réseau afin de m'aider dans ma recherche. Mon
ami Ewen COSSEC ayant effectué des études dans la programmation de jeux
vidéos a accepté de m'aider a coder les commandes que je souhaitais réaliser.
Gréace a son aide, j'ai pu clarifier mes intentions et approfondir ma compréhension
du langage Python. Cependant, cela n'a pas été chose aisée, beaucoup d'essais
ont été nécessaires avant d'arriver a un résultat satisfaisant. Nous avons, a cette
étape de la recherche, réussi a propager les valeurs (et donc les couleurs) & la
maniére de taches d'encre comme je le souhaitais.

Un parameétre important qui influe beaucoup sur le résultat de I'automate
cellulaire estle voisinage. Le voisinage consiste a definir quels sont les voisins d'une
cellule. Il existe plusieurs voisinages remarquables dont deux que j'ai pu utiliser :
le voisinage de Moore et le voisinage de Von Neumann. Celui de Von Neumann
va regarder 4 voisins d'une cellule. Le voisin du dessus, celui du dessous, celui de
gauche et celui de droite. Le voisinage de Moore, quant a lui, va regarder ces 4
cellules mais également les 4 cellules se trouvant dans ses angles afin d'inscrire
la cellule étudiee dans un carré. Afin de limiter les diagonales et tenter d'avoir,
dés I'etape de l'automate, un résultat le plus rectangulaire possible, j'ai décidé de

baser ma recherche sur I'utilisation du voisinage de Moore.

Schéma illustrant le systéeme
de propagation par tache d'encre
© Arthur ROULAND

r S

Voisinage de Von Neumann

Voisinage de Moore

Schéma illustrant les voisinages
de Von Neumann et de Moore
© Arthur ROULAND

/-
— Figure 5.8.b
N

48

Cependant, le code que nous avons elaboré a ce moment de la recherche présentait encore
plusieurs problemes. En effet, la définition de la grille est un réel sujet dans l'utilisation d'un automate
cellulaire. La grille ne connait pas ses propres limites. C'est a 'utilisateur de le lui indiquer dans le script
Python. Ce probleme n'avait été que partiellement réglé et les couleurs pouvaient se propager d'un cote
a l'autre de la grille sans raison apparente comme on peut le voir sur les images ci-dessous. Cependant,
le résultat engendre par ce code me permettait de continuer a avancer sur la suite du programme
malgre ces problemes.

3se 200

Figure 5.8.c

Evolution des résultats lors de I'écriture du script Python
© Arthur ROULAND

Figure 5.8.d
Evolution des résultats lors de I'écriture du script Python
© Arthur ROULAND

RNNNYAIY,

1
Figure 5.8.e
Evolution des résultats lors de I'écriture du script Python
© Arthur ROULAND

V Figure 5.8.f
Evolution des résultats lors de I'écriture du script Python
© Arthur ROULAND

49

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

« Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

Figure 5.8.g
Résultat de I'écriture du script Python
© Arthur ROULAND

Hd mE WO DO *HOL PETI s@ B>

@ - @e-u 300300

Voisinage

,/”//’_’—‘ Boucle de répétition

Figure 5.8.h
Script Python
© Arthur ROULAND

Figure 5.8.i
Script Python
© Arthur ROULAND

50

Lo mH BO DO *H LY PEIT e B
==

Heu 309300

PYAE PG b mm BO DO ?E%—%IE’O‘Q‘%-“&

e Heu 209300

dmB EO DO *HLH PKEIT #w B
==

e Heu 209300

dmB EO DO *HLH PKEIT #w B
==

e Heu 209300

Lo mE B0 O *H oD PEIT Fm B
==

e Heu 209300

Figure 5.8.j
[térations générées avec le script Python
© Arthur ROULAND

Figure 5.8k
[térations générées avec le script Python
© Arthur ROULAND

Figure 5.8
[térations géné avec le script Python
© Arthur ROULAND

Figure 5.8.m
[térations générées avec le script Python
© Arthur ROULAND

Figure 5.8.n
Résultat de la génération avec le script Python
© Arthur ROULAND

b1

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

« Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

5.9 — Inclusion du code Python dans I'ensemble du programme

Afin de continuer I'élaboration de |'algorithme, j'ai densifie la définition de
la grille afin d'arriver a une précision de |'ordre de la dizaine de centimétre. La
surface est ainsi divisée en cellules de 10 centimetres par 10 centimetres. L'étape
suivante était de récupérer ces surfaces afin de les utiliser pour former des pieces.
Les formes générées sont biscornues, peu praticables et peu communes. Afin
d'arriver a un résultat plus “classique” j'ai decidé de rajouter une partie dans le
programme me permettant d'inscrire les surfaces génerées dans des rectangles
pour simplifier la partition du logement. Cependant, en augmentant la précision
de la grille, j'ai également augmenté le temps de calcul de mon programme qui
pouvait parfois mettre plusieurs minutes pour génerer mes taches d'encre.

S bd mE B0 HO *W I PETIT se

Heu 250 300

Boucle de répétition

Figure 5.9.a
Image de la grille avec une définition de 10 cm par 10 cm
© Arthur ROULAND

Figure 5.9.b
Probléme d'inscription de la forme dans un rectangle
© Arthur ROULAND

Jai également commencé a m'intéresser a la maniere dont les premiéres
valeurs allaient étre disposees sur la grille. L'idée était de générer des valeurs
aleéatoires afin que les premiéres gouttes des taches d'encre puissent se placer
seules et aléatoirement. A ce stade de la recherche, la maniere de disposer ces
cellules de départ aléatoirement n'avait pas encore été trouvée tout comme
I'inscription des formes dans des rectangles.

FPUAE PG bd mH B0 HQ *H I WESS 9@ 0

FCE Hoeu

|
=d
=
|
L]

Figure 5.9.c
Tentative de génération de valeurs aléatoires
© Arthur ROULAND 52

5.10 — Itération régulieres et enregistrement

La solution a laquelle j'ai pensé pour palier & ce probléme était la création d'un timer (minuteur).
Pour cela javais besoin de deux choses. Un composant me permettant de générer des valeurs
aleéatoires et un second composant pouvant activer le premier a intervalles réguliers. Ainsi, j'ai utilise le
composant “Timer” associé au composant “Deconstruct Date” afin de pouvoir envoyer un signal “True”
au composant “Random”. Le timer est réglé sur 120 000 secondes (2 minutes) car cela correspond
a peu pres au temps de génération d'un plan. Toutes les 2 minutes, cet élément active le composant
“Random”. Ce dernier avait comme paramétres d’entrée 12 pour le nombre de valeurs & générer (2 par
piéces, une valeur en X et une valeur en Y) et un domaine dans lequel devaient se trouver les valeurs
(entre 0.00 et 1.00). En effet, les dimensions de la surface générale ont été “reparamétrisées”. Cela
signifie que quelque soit la taille du plan, I'algorithme va appréhender la surface comme étant un axe
dont O est le début et 1 en est la fin. Cela permet de pouvoir rentrer les valeurs que 'on souhaite pour
la taille du plan sans avoir a manipuler les coordonnées de départ des pieces. Avec cet algorithme, 12
valeurs aléatoires correspondant a 6 coordonnées sur le plan étaient générées toutes les 2 minutes.

ELYSo NI W TETES. KXW T Y

ad Heu 200300

o=

Figure 5.10.a
Timer
© Arthur ROULAND

Coordonnées 1;1
'Sl Coordonnée 0;1

Coordonnée 0,25 ; 0,6
Coordonnée 0,5; 0,5

Coordonnées 1;0

A Al Coordonnée 0;0

-
¥

A

Figure 5.10.b
lllustration du «reparamétrage» d'une surface
© Arthur ROULAND

53

A ce stade, je me suis également penché sur les opérations entre les
surfaces. En effet, nous avons vu dans 'étape précédente que les formes généerées
avaient pour vocation d'étre inscrites dans des rectangles. Malgré le fait que cette
étape ne fonctionnait pas parfaitement, il était possible de commencer a régler les
opérations qui allaient s'opérer entre ces éléements. Pour cela j'ai creé une partie
de l'algorithme permettant d'effectuer des opérations booléennes. Ces opérations
consistent a supprimer une partie d'une surface lorsgu'elle se superpose avec
Avant propos une autre. Il est important de noter que cette démarche implique un ordre de

priorité. Ainsi les pieces ont été connectées afin que le séjour soit la piece la plus _ . o , _ o
importante, puis la chambre, puis la cuisine etc Pour terminer, j'ai egalement orienté mes recherches sur la fagcon d'enregistrer les plans genérés

Introduction a chague itération. Je me suis tout d’abord basé sur le mémoire de Jean-Raphael PIQUARD qui avait
1 lui aussi eu besoin d'enregistrer ses itérations. Malheureusement, pour une raison inconnue, cela ne
fonctionnait pas. J'ai donc essayeé diverses méthodes afin d’enregistrer mes plans. A cette etape, j'étais
en mesure d’enregistrer les plans au format .dwg (drawing). Ce format est trés utilisé par les architectes
et d’autres corps de meétier pour travailler. Ce format enregistre des formes, des couleurs et des attributs
propres aux formes dans un format qu'il est possible d'ouvrir pour le modifier. Il était nécessaire pour
cette expérimentation d’enregistrer les plans au format image (jpg, .png, tiff etc--). L'enregistrement
au format .dwg n'était donc pas la solution appropriée. Cependant, cela m'a permis de commencer &
¢laborer un algorithme d'enregistrement et de pouvoir vérifier qu'il fonctionnait correctement.

Point historique

Problématique

Etat de I'art

« Etapes de la recherche

clean pour 'export de la capture* - X

2021.06.08 - Mémoire 15 clean pour Iexport de la capture

Suface | Mesh | Intersect Transform Display ARCHICAD ~HB-Radiance Wb HB-legacy LB-Legacy Honeybes Kangaroo2 Dragonfy LunchBox Ladybug Elefront HB-Energy Anemone Human TTToolbox Magnetizing FPG Clipper Boid Kangaroo

PRAN PY bd mE B0 @ XB D PHEIT #i B
S ST S ST R ST

Triangulation

Résultat de la recherche
Figure 5.10.c

Inscription des surfaces dans des rectangles et opérations booléennes
© Arthur ROULAND

S @ PO R0V O
Exemples de plans
générés
PVLAE P bd m;;‘ B0 50 *W L PEIT ww B
Conclusion Optimisation

Notice d’utilisation

Bibliographie

Glossaire

Figure 5.10.d
Programme d'opération booléenne
© Arthur ROULAND

Annexes

@ Autosave complete (140 seconds ago)

Figure 5.10.f

E 1 Opération booléenne E 1

SRace SRacs Premier programme d’enregistrement des itérations

© Arthur ROULAND

- >
Superposition
entre les espaces
Espace 2 Espace 2
Figure 5.10.e

Schéma d’'une opération booléenne
© Arthur ROULAND

Arthur ROULAND 54 55

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

« Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

5.11 — Résolution des problémes du composant Python

Afin de solutionner le probleme lie¢ au programme Python, j'ai appelé une
seconde fois mon ami Ewen COSSEC. Nous avons finalement réussi a solution-
ner le probleme de passage des couleurs d'un coté a l'autre. Cependant, mes
recherches ayant avancé, je lui ai fait part de mes intentions afin d'ameéliorer le
programme. En effet, jusqu’a présent, il était nécessaire d'indiquer a I'algorithme
le nombre d'itérations souhaité pour genérer un plan. Ce nombre d'iterations était
variable en fonction du positionnement des cellules de deépart et de la taille du
plan. J'avais réglé par defaut un nombre surévalue. Cela affectait les performances
de mon ordinateur et donc le temps nécessaire a la genération d’un plan. De plus,
jusqu'a present, j'avais besoin de visualiser |'état de propagation des couleurs sur
la grille. Cela me permettait de tester mes scripts Python afin de m'assurer que
le programme fonctionnait correctement. Le probleme éetant réglé, je n'avais plus
besoin de visualiser chaque itération. Cela était également souhaité car l'algo-
rithme envoyait en sortie chaque étape de la répartition des couleurs. De ce fait,
chaque étape était alors ensuite envoyée dans la création de rectangles, dans le
systeme d'operation, dans le systeme d'évaluation etc --- Cela ralentissait consi-
dérablement mon ordinateur alors que je n'avais pas besoin de ces évaluations
intermediaires. Nous avons donc travaillé sur une ameélioration du programme qui
allait nous permettre d'effectuer toutes les itérations dans le script Python pour
n'envoyer en sortie que le résultat final une fois la grille entierement colorée. Grace
a ce changement, le temps de génération d'un plan passait de 120 000 secondes
(2 minutes) & moins de 20 secondes. Le voisinage étant déja paramétré dans le
script Python, deux etapes présentes dans GrassHopper n'étaient plus d'aucune
utilité ce qui a largement participé a la simplification du programme. L'utilisation
de I'add-on “Anemone” a donc été arrétée a cette étape car le programme pouvait
désormais savoir s il était nécessaire de continuer ou non sans avoir recours a
Anemone.

Q00 Q000 00O BN HeIE SU AE »> @4 T
== e S— — ——
ad Heu 309300

Script python

Boucle de répétition

Figure 5.11.a
Désactivation de I'add-on Anemone
© Arthur ROULAND

Ore_ Qi G- i ik T
a0¢

00 O00GCA VDO WeWE B AR > @0 T
e) S — — —
6l Hew +09® 300

Figure 5.11.b
Résolution du probléme de propagation des couleurs
© Arthur ROULAND 56

5.12 - Premiers enregistrements

Suite a cela, j'ai pu continuer mes recherches concernant I'enregistrement des plans. Je me
suis rendu sur le site Rhinoceros Forums sur lequel j'ai pu récupéerer un composant “Script C#" qu'un
dénommeé David Rutten avait mis en ligne.

https://discourse.mcneel.com/t/capturing-rhino-layout-viewport-iterations-print-or-image-ex-
ort/51387

00 000600 Q000 0ADO L. FeWE By AR »> ©L T
——) S— — ——
ad Heu +59 300

Figure 5.12.a
Script C# pour I'enregistrement
© Arthur ROULAND

Ce composant était exactement ce que je cherchais. Il m'a donc permis d’enregistrer chaque
itération dans un dossier spécifique, au format .png en donnant un nom a chaque image. J'avais pu
essayer d'enregistrer différemment au cours de ma recherche notamment a I'aide de I'add-on LadyBug.
J'ai pu enregistrer quelques images mais cette méthode présentait un défaut trés important. L'idée de
ce programme était d’enregistrer les plans, de 6 points par exemple, de la maniére suivante :

Sa destination : L’enregistrer dans le dossier de sa typologie (par exemple T2)

Sa vue : Une vue a été configurée dans Rhinoceros afin de paramétrer le cadrage d’enregistrement du
plan

Son nom : Plan 6 pts {0}.png

Le nom du fichier est trés important. En effet, en utilisant LadyBug, les plans s’enregistrent les
uns sur les autres. C'est-a- dire que le nouveau plan a 6 points supprimait I'ancien. En utilisant le script
C# de David Rutten, le “{0}" permettait & I'ordinateur de donner un numéro au plan. Ainsi le premier
plan enregistré s'appellera “Plan 6 points 0.png” et le suivant “Plan 6 points 1 .png”. Cela m'a donc
permis de catégoriser les plans en leur donnant un nom identifiable mais unique afin de pouvoir tous
les enregistrer. J'ai tout de méme eu quelques imprévus. Aprés avoir modifié certaines parties de mon
programme, celui-ci n'enregistrait que des images vides ou incomplétes. Le probleme était que le com-
posant Script C# doit étre le composant le plus en avant dans I'espace GrassHopper. Ce probleme a été
réglé en copiant et collant simplement le composant afin de le placer en avant dans le plan de travail
de GrassHopper.

Figure 5.12.b
Logo de I'add-on LadyBug
Source : food4rhino.com

57

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

« Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

En parallele, j'ai également remarqué que le composant “Random” qui
me servait a genérer des valeurs aléatoires comprises entre 0.00 et 1.00 ne
fonctionnait pas veritablement comme je le souhaitais. En effet, au bout de quelques
génerations, j'ai noté que les valeurs étaient identiques a celles des premieres
génerations. L'aspect aléatoire des valeurs est trés important dans cette recherche
afin d'obtenir une diversité infinie de plans. Le fait que les générations se répétent
va engendrer des génerations de plans identiques et cela n'est pas souhaitable.
J'ai donc cherché un moyen d'obtenir réellement des valeurs aléatoires pour mon
programme. Je me suis rendu sur le site Rhinoceros Forums et j'ai pu tester un
programme intitulé “Randoms_Unique_viaHashSet_V1.gh” posté sur le forum par

un certain Peter Fotiadis.

https://discourse.mcneel.com/t/real-random-numbers/56072/5

J'ai adapté le programme contenu dans ce fichier et apres plusieurs tests
afin de verifier le caractere aléatoire des valeurs j'ai décidé de le conserver et de
I'utiliser dans le cadre de ma recherche. Gréace a ces programmes, j'étais alors en
mesure de genérer aléatoirement un plan toutes les 20 secondes et de I'enregistrer

correctement sur mon disque dur.

& OGOO Q0000 8L JOWE JW AR »> 4T
e) S — ——
ad Heu *00 300

Score of generation /'4 -

. = o I /
(Maxlmlém Score} W -l-i;/%/ i_% . —%
("“:'.'_ <

Figure 5.12.c
Ajout du script C# dans le timer
© Arthur ROULAND

58

i o e e ey

mmmmmmm

xxxxxxx

......

zzzzzzzz

Figure 5.12.d
Premiers enregistrements
© Arthur ROULAND

Figure 5.12.e
Premiers enregistrements
© Arthur ROULAND

Figure 5.12.f
Premiers enregistrements
© Arthur ROULAND

Figure 5.12.g
Premiers enregistrements
© Arthur ROULAND

5.12.h
Premiers enregistrements
© Arthur ROULAND 59

0

Resultats de
la recherche

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

* Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

6.0.1 - Vue d’ensemble du programme final

62

¥

]

Figure 6.0.1.a
Vue d’ensemble du programme final
© Arthur ROULAND

63

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

* Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

6.0.2 - Présentation générale de l'algorithme

L'algorithme final se compose en 12 parties ayant chacune une fonction spécifique.

- La partie 1 propose a I'utilisateur d'agir sur certains paramétres
- La partie 2 sert a définir la surface et a la diviser
- La partie 3 permet de générer des valeurs aléatoires a intervalle régulier.

- La partie 4 est le script Python qui va nous permettre de diviser la surface en plusieurs
zones distinctes.

- La partie 5 attribue a chaque zone une couleur différente afin de pouvoir les identifier.

- La partie 6 consiste en la simplification des surfaces générées en les inscrivant chacune
dans un rectangle.

- La partie 7 réalise des opérations booléennes entre les différentes surfaces afin qu'aucune
d’entre elles ne se chevauchent.

- La partie 8 est |la récupération des contours des surfaces finales

- La partie 9 permet de regarder si les surfaces générées et découpées répondent aux
parametres de départ et leur attribuent des scores.

- La partie 10 évalue le score total du plan et le score maximal qu'il aurait pu obtenir.

- La partie 11 récupere les périmetres des différents espaces et crée des lignes noires
épaisses symbolisant des cloisons intérieures et des murs extérieurs.

- La partie 12 permet I'enregistrement des plans dans un dossier sur le disque de
I'ordinateur.

Figure 6.0.2.a
Schéma des parties du programme final
© Arthur ROULAND

64

6.1 - Paramétres de départ

La premiere partie de ce programme permet de définir les parametres de deépart sur lesquels nous
pouvons agir. Dans un premier temps, nous pouvons indiquer la longueur et la largeur du plan en entrant une
valeur en metre dans les panneaux blancs. Ces deux valeurs sont ensuite multipliees afin d'afficher la surface
totale du plan que I'on souhaite générer.

En dessous, nous retrouvons 6 groupes, chacun d'une couleur difféerente. Ce programme étant pour la
génération de T2, il ne comporte que 6 espaces (séjour, chambre, cuisine, salle de bain, entrée et WC). Dans le
programme pour la génération de T3 nous retrouverons une chambre en plus et dans le programme qui génere
des T4, 2 chambres en plus.

Chacun de ces groupes est donc identifié avec une couleur et le nom de I'espace correspondant en
anglais afin de permettre au plus grand nombre de comprendre ce programme. Il est demandé de rentrer la
surface minimale ainsi que la surface maximale souhaitée pour chacune des pieces. Il est également demandeé
la dimension minimale d'un coté. En effet, sans ce paramétre un séjour de 15 m? pourrait étre une surface de
15 metres par 1 metre et cela n'est pas souhaitable. Ensuite, nous pouvons renseigner le chemin d'acces dans
lequel nous souhaitons enregistrer nos plans. Sans cela, aucun plan ne sera enregistré.

Pour terminer nous retrouvons un panneau renseignant le score de la génération ainsi que le score
maximum qu'il aurait pu atteindre.

Plan Surface

Plan Length - (meters) Total Surface

Folder path | Score of generation

Plan width - (meters)

Maximum Score

Living Surface { 12 ‘L
Minimum Surface :}

Maximum Surface

Minimum dimensions on one side ¢

Bedroom 1 Surface

Minimum Surface

i

Maximum Surface
Minimum dimensions on one side { >
Kitchen Surface
Minimum Surface { . }
Maximum Surface { s ‘f
Minimum dimensions on one side { }
Bathroom Surface
Minimum Surface { }
Maximum Surface { 3 >
Minimum dimensions on one side { >
Entrance Surface
Minimum Surface N
Maximum Surface { . }
Minimum dimensions on one side ~ { >
WC Surface
Minimum Surface { >
Maximum Surface 5
[Figure 6.1.2
Minimum dimensions on one side { } Partie 1 du programme final

© Arthur ROULAND

65

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

* Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

6.2 - Définition de la grille

La deuxieme partie de cet algorithme récupere la longueur et la largeur du plan
souhaité et crée une surface. Cette surface, ici de 7,5 metres par 6 metres, est divisée
10 fois plus précisément. On obtient alors une grille avec une précision de 10 cm. Ce
parametre peut étre modifié afin d’obtenir des plans plus ou moins précis. Cela va influer
sur la rapidité de la génération du plan ainsi que sur le résultat obtenu.

Surface et division de la surface

Figure 6.2.a
Partie 2 du programme final
© Arthur ROULAND

66

6.3 - Valeurs aléatoires de départ

La grille obtenue dans la partie 2 est réecupérée dans la partie 3. Avant cela, un timer a été élabore
afin de permettre de générer des plans a intervalle régulier sans avoir a relancer le programme aprés chaque
geénération. Ici, on peut voir que le timer est régle sur 20 secondes. Ce composant de grasshopper va activer
toutes les 20 secondes le “Boolean Toggle”. Ce dernier va envoyer un signal “True” au composant “Stream Filter”.
Ce composant va ordonner aux autres eléments de s'activer. Le timer est & adapter a chaqgue ordinateur. Si
I'ordinateur est puissant quelques dizaines de secondes suffisent. Si l'ordinateur n'a pas des capacités de calcul
tres élevees, alors un temps plus long sera nécessaire.

On retrouve ensuite un code avec des sliders. Ce composant de code va nous permettre de générer
des valeurs aléatoires. Les sliders permettent de paramétrer le nombre de valeurs qui vont en sortir. Pour ce
programme genérant des T2 de 6 pieces, nous avons besoin de deux fois six valeurs. C'est pourquoi le slider “N”
(pour number) est réglé a 12. Les autres sliders indiquent le domaine dans lequel vont se trouver ces valeurs
aléatoires. Ici, on voit que I'on va geénérer 12 valeurs, comprises entre 0 et 1 avec au maximum 3 décimales.

Enfin, les données geénéreées sont affichées dans un composant “Panel” en jaune. Dans cet exemple,
12 valeurs sont générées, numérotées de 0 a 11. Elles ne sont ni logiques, ni rangées dans quelconque ordre.
En dessous, nous retrouvons le composant “List Item”. Cet élément permet de récupérer une liste et d’en sortir
certains éléments. On voit en sortie que chaque valeur aléatoire est utilisée séparément des autres afin d'étre
envoyee dans la suite de cette partie de I'algorithme.

Score of generation
4

Maximum Score

{ 12 %

Figure 6.3.a
Partie 3 du programme final : Timer et valeurs aléatoires
© Arthur ROULAND

67

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

* Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

Apres la génération de 12 valeurs aléatoires, 'algorithme se divise en 6 parties
identiques. Chacune de ces parties va donc correspondre a une piece. Pour chaque piéce,
nous avons besoin d'une valeur de départ (cela sera expliqué plus précisément dans la
partie 4). Le programme récupére donc deux valeurs aléatoires générées précédemment
afin de les utiliser comme coordonnées afin de placer un point au hasard sur la grille
genérée dans la partie 2. Chaque valeur va étre disposée sur la grille. Une premiere valeur
sur I'axe X est comprise entre 0 et 1. 0 étant le point le plus a gauche du plan et 1 le
point le plus & droite du plan (dans cet exemple 7,5 métres). Une seconde valeur sur I'axe
Y entre 0 et 1 (ici entre 0 et 6 métres). Ce point est donc disposé sur la surface et est
associé a une cellule du plan. Cette valeur a été multipliée par la longueur du plan sur ce
méme axe. On obtient 2 valeurs. Dans cet exemple de T2 de 7,5 metres par 6 metres, les
coordonnées possibles sont comprises en X entre 0 et 75 et en Y entre 0 et 60.

Ces deux valeurs sont ensuites utilisées dans un composant “Expression” qui contient la
formule suivant : L x j + i

i et j sont ici les deux valeurs des coordonnées finales. Cependant, il est nécessaire
d’expliquer que la grille est composée de cellules (ici 75 x 60 = 4 500 cellules) numérotées
de 0 a 4 499. Cependant, cela forme une ligne et nous souhaitons parameétrer ces cellules
afin qu'elles forment un rectangle. Ce composant nous permet de dire que notre grille sera
composee de 75 colonnes de chacune 60 cellules. Nous obtenons donc pour la premiere
piece de ce plan, des coordonnées indiquant la colonne 45 et la ligne 52. A cet endroit se
trouve une cellule et cette derniere se voit attribuer la valeur 1 par le composant “List Item”.
Cela s’appliqgue aussi a chacune des b autres pieces ayant chacune des coordonnées
aléatoires en X et en Y afin de définir la premiere cellule de chaque espace.

Emplacement des cellules de couleur

Figure 6.3.b
Partie 3 du programme final : Activation des cellules initiales
© Arthur ROULAND

68

6.4 - Division de la grille

La quatrieme partie est composée d'un seul élément : un script python. Comme nous avons pu le voir
precedemment dans la partie 5 de ce mémoire, la division “aléatoire” du plan était un réel enjeu afin d’obtenir des
resultats différents a chaque itération. Pour le programme final, j'ai opté pour un systeme que je définis comme
un systéeme en taches d'encre. Imaginons une feuille blanche imbibée d'eau sur laquelle nous venons déposer 6
gouttes d’encre de différentes couleurs. Ces gouttes vont s’étaler sur cette feuille, se rencontrer afin que la feuille
soit entierement recouverte de couleurs. Ce script python a pour role d'utiliser nos cellules initiales afin de les
faire s'étaler de cette méme maniere. Le script python est disponible et détaille dans son intégralité dans la partie
“Documents annexes”.

Script python

Figure 6.4.a

Partie 4 du programme final

© Arthur ROULAND
Le script utilise 3 entrées différentes. Une entrée C dans laquelle est renseignée les coordonnées de
départ de chaque cellule initiale avec sa valeur. Une valeur correspond a une piéce (qui va par la suite étre
visualisée par une couleur). On retrouve également une entrée “Longueur” et une entrée “Largeur”. Ces entrées
sont reliées a la multiplication de la longueur et de la largeur par 10. Pour le plan de 7,5 métres par 6 meétres on
a comme parametre de longueur la valeur 75 et pour le parametre de largeur, 60. La grille est organisée de la

maniere suivante.

Figure 6.4.b
Schéma d'organisation de la grille
© Arthur ROULAND

69

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

* Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

Cette grille est donc organisée en cellules ayant pour la plupart 8 voisins : 3 au-
dessus, 3 en dessous et 1 de chaque coté, ce qui correspond au voisinage de Moore
expligué précédemment dans la partie 5.8. Afin de faire fonctionner ce programme il a
fallu identifier les cellules qui ne correspondaient pas a ces cellules dites “standards”.
Il sagit donc de toutes les cellules se trouvant sur les bordures de notre grille. Pour ce
faire, j'ai créé quatre parametres correspondant chacun a une des bordures de la grille :
LigneDuHaut, LigneDuBas, ColonneGauche et ColonneDroite. Chacun de ces composants
contient les voisins a exclure pour que le programme fonctionne correctement. Exception
dans I'exception, les cellules situées dans les coins de la grille doivent exclure plus de
voisins que les cellules qui sont simplement en bordure de la grille.

Y ..-...

Figure 6.4.c
Etude des voisins d'une cellule
© Arthur ROULAND

Notre automate cellulaire fonctionne en observant les voisins de chaque cellule.
On souhaite que toutes les cellules soient a I'état 0 sauf 6 d’entre elles ayant pour valeur
un numéro entre 1 et 6 chacune correspondant a une couleur. A chaque itération du script
python, les cellules a I'état O vont regarder autour d’elles si un de leur voisin a une valeur
(et donc une couleur). Si elle n'ont pas de voisin de couleur, elles restent & I'état 0 (noir).
Si un de leur voisin a une couleur (par exemple vert, correspondant a la valeur 2), alors la
cellule va s'attribuer la valeur 2 et devenir verte. Cependant, notre programme étudie les
cellules de la cellule 0 & la cellule C (C correspondant & la longueur totale de la grille, soit,
la derniére cellule). Si une cellule devient verte, lorsque la prochaine cellule va regarder
ses voisins, elle verra une cellule verte et donc prendra également sa couleur. Cela fausse
donc le résultat. Pour ce faire, notre algorithme dit & chaque cellule que si elle a un voisin
de couleur, alors elle va mémoriser cette valeur et lorsque toutes les cellules auront été
¢tudiées, seules les cellules ayant une valeur différente de zéro pourront & ce moment 13,
changer d'état. Cette opération est répétée en boucle jusqu'a ce que toutes les cellules de
la grille aient une couleur différente du noir (état 0).

70

6.5 - Attribution des couleurs

La cinquieéme partie consiste a identifier les différentes surfaces obtenues. Afin de mieux visualiser lors
de I'élaboration de I'algorithme de génération de plan, j'ai décidé d'attribuer a chaque valeur une couleur afin de
comprendre l'organisation du plan au premier coup d’'ceil. Ainsi, chaque valeur va se voir attribuer une couleur.
La valeur O est noire, la valeur 1 est bleue, la 2 est verte, la 3 est rouge, la 4 est jaune, la b est rose et la 6 est
violette. Pour les générateurs de plan de T3 et de T4, une ou deux couleurs supplémentaires ont été ajoutées
correspondant a une nouvelle piece.

Le programme se divise & nouveau en 6 parties (pour les 6 piéces du plan). Pour chaque piéce, sa
couleur est utilisée afin de mieux se retrouver dans le programme. A la sortie de I'attribution des couleurs, on
récupére le nombre de cellules de chaque couleur ainsi que leur numéro d'identification (compris ici entre 0 et
4 499). Chaqgue cellule est ensuite transformée en une surface (de 10 centimétres par 10 centimétres dans ce
cas-ci). Les cellules sont ensuite assemblées entre elles afin de former la surface totale de chague couleur. Cette
surface totale est ensuite décomposée afin d’en extraire, la surface ainsi que son périmetre.

Attribution des couleurs

e

e

Figure 6.5.a
Partie 5 du programme final
© Arthur ROULAND

71

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

* Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

6.6 - Simplification des surfaces

Cette sixieme partie permet d'inscrire les surfaces complexes générées dans des
rectangles de mémes dimensions afin de simplifier le plan. La surface obtenue en sortie
de la cinquieme partie est utilisée par le composant “Dimensions”. Ce composant de
GrassHopper permet d'évaluer la dimension en U et en V d’'un élément. Comprenez ici en
X et en Y. Ces données vont étre utilisées afin de générer un rectangle avec les mémes
dimensions U et V afin d'inscrire parfaitement la surface générée dans un rectangle. Le
composant utilisé afin de créer ce rectangle est le composant “Center Box”. Mon choix
s'est porté sur ce composant car il permet de renseigner facilement le centre d’une boite.
Par défaut, chaque boite est construite comme ayant pour centre le point X=0 et Y=0. Le
composant “Center Box" crée des boites a partir de son centre. Si I'on rentre la valeur 2
en X et 3enY, ce composant va créer un objet de 2 unités en -X, de deux unités en X, de
3 unités en -Y et de 3 unités en Y. Au lieu d’obtenir un rectangle de 6 m? de surface, on
obtient un rectangle de 24 m? de surface. Afin d’y remédier, les valeurs en U et en V sont
multipliees par 0.5 afin d’avoir un rectangle ayant les dimensions souhaitées. La valeur Z
est de O car nous cherchons a obtenir une surface et non pas un volume.

Afin de récupérer le centre de chaque surface, les dimensions en X et en Y vont
étre etudiées comme allant de 0 a 1. Ainsi avec la valeur 0.5 en X et en Y, on obtient le
centre de la surface complexe générée et on utilise ce méme point comme centre de
reférence de la surface rectangle.

En sortie de cette partie numéro 6, on obtient donc 6 surfaces rectangulaires
s'inscrivant dans le plan mais se superposant.

Figure 6.6.A
Partie 6 du programme final
© Arthur ROULAND

12

6.7 - Opérations entre les surfaces

La septieme partie va nous permettre de récupérer les surfaces genérées dans la sixieme partie et de les
découper afin qu’aucune d’entre elles ne se superpose. Pour ce faire j'utilise le composant “Region Difference”
de GrassHopper. Ce composant permet de créer des opérations booléennes entre les surfaces. Si deux surfaces
se superposent, alors 'une d’entre elles est prioritaire sur I'autre. La seconde surface va donc étre coupée par la
premiere comme on peut le voir sur le schéma ci-dessous.

Opération booléenne

Espace 1 Espace 1

Superposition
entre les espaces

Espace 2 Espace 2

Figure 6.7.a
Schéma de principe d’'une opération booléenne
© Arthur ROULAND

Cette opération implique un ordre de priorité de certains espaces sur les autres. Dans ce programme,
'espace du séjour (Living) est prioritaire sur toutes les autres surfaces. Ensuite, la chambre (Bedroom) est
prioritaire sur tous les espaces sauf sur celui du séjour. Puis vient le tour de la cuisine (Kitchen), puis de la salle
de bain (Bathroom), de I'entrée (Entrance) et enfin des sanitaires (WC). Dans le programme de génération de
plan de T3 et de T4, une a deux chambres sont ajoutées entre la chambre 1 et la cuisine. Ainsi la chambre 1 est
prioritaire sur la chambre 2 qui elle méme est prioritaire sur la chambre 3 (pour les plans de T4). Ainsi, on obtient
en sortie 6 surfaces qui ne se superposent plus et qui sont découpees afin que I'entiereté du plan soit utilisee.

Figure 6.7.b
Partie 7 du programme final
© Arthur ROULAND

73

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

* Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

6.8 - Récupération des contours

La partie numéro 8 consiste uniquement a récupérer les contours des surfaces
finales afin de pouvoir les visualiser facilement si besoin. Elles sont ensuite envoyées dans
les parties 9 et 11.

_ -
_ o B
" (@ >

— -

Partie 8 du programme final
© Arthur ROULAND

74

6.9 - Evaluation des scores

La neuvieme partie permet d'évaluer le score de chaque espace. Chaque surface est réecupéreée et utilisée
dans 2 algorithmes.

Le premier permet de vérifier si les dimensions de chaque espace correspondent aux valeurs rentrées
dans la partie 1. A l'aide du composant “Dimensions” nous obtenons les valeurs en U et en V (en X et en)
de chaque surface. Ces valeurs sont comparées a la valeur renseignée dans la partie 1 a I'aide du composant
“Larger Than". Si la valeur par exemple en X est supérieure ou égale a la valeur minimale souhaitée alors le
composant “Stream Filter” va générer la valeur 1. Si elle est inférieure, ce composant va générer la valeur 0. Cette
opération est appliquée a la longueur et a la largeur de la surface. Ces deux valeurs sont ensuite multipliées entre
elles afin d’obtenir un score de 1 point ou de O point. Ainsi chaque surface obtient 1 point pour son respect de la
dimension minimale de la piece.

Dans un second temps, la surface est elle aussi évaluée. Le composant “Area” permet de connaitre
la surface d'un objet complexe. On utilise ici les composants “Larger Than” et “Smaller Than” afin d’évaluer
si notre surface est comprise dans les valeurs souhaitées. La surface maximale du salon est volontairement
grande afin que cette piece puisse étre la plus grande possible. Les composants “Larger Than” et “Smaller
Than” se rejoignent ensuite dans I'élement “Gate And”. Cela permet de réunir les deux informations. Si les deux
gvaluations sont positives, alors le composant “Stream Filter” va envoyer la valeur 1. Si 'une des deux évaluations
s'avere étre mauvaise, alors il enverra la valeur 0. Ainsi chaque surface obtient 1 point pour son respect de la
surface de la piece.

Bedroom

Kitchen

Minimum dimensions

Bathroom

Entrance

Figure 6.9.a
Partie 9 du programme final
© Arthur ROULAND

75

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

* Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

6.10 - Score final de la génération

La dixieme partie de cet algorithme permet de réunir I'ensemble des scores
obtenus pour le respect de la dimension minimale et I'ensemble des scores pour le respect
de la surface. Nous avons donc deux fois six points donc un score maximal de 12 points.
L'ensemble des scores obtenus dans chaque catégorie sont additionnés afin de visualiser
le score général pour le respect de la dimension minimale et le score général pour le
respect de la surface. Ensuite, ces deux scores sont additionnés afin d'obtenir le score
final du plan.

Score evaluation

Figure 6.10.a
Partie 10 du programme final
© Arthur ROULAND

76

6.11 - Dessin du plan

La onzieme partie est reliee a la partie 8. Pour rappel, la partie 8 servait a récupérer les contours des
surfaces de chaque espace final avant I'évaluation.

Chaque contour va étre divisé en plusieurs segments a l'aide du composant “Deconstruct Brep'. En
utilisant 'option flatten, les courbes ne seront plus rangées dans des listes séparées mais toutes vont appartenir
a une et méme liste. Le composant “Deconstruct Domain” va nous servir & obtenir le point de départ et le point
d'arrivée de chaque segment afin d’en faire des lignes. Dans le premier “Panel” | nous voyons que I'épaisseur
des cloisons est renseignee, ici 0.07 meétre soit 7 cm. Cette valeur est divisée par 2 afin d’obtenir la valeur de 3,5
cm. Cette valeur va étre multipliee par -1 afin d’obtenir un décalage de notre ligne de 3,5 cm et de -3,5 cm afin
que la cloison ait pour axe notre ligne de départ et fasse bien 7 cm. Ces deux lignes sont ensuite transformeées
en surface grace au composant “Loft”. Si on le souhaite, le composant “Extrusion” permet de fabriquer un modeéle
3D du plan généré. La hauteur d'extrusion est paramétrable grace au slider.

Dans un deuxieme temps, les contours de notre plan sont récupérés afin d'y apporter un décalage de 0.2
metre soit 20 cm. Cela permet de créer une épaisseur plus importante sur le contour du plan.

Enfin, la derniere étape de la partie 11 consiste a assigner une couleur aux surfaces. Afin que les plans
soient le plus visible possible, j'ai choisi de leur donner la couleur noire (le fond étant blanc cela créé un fort
constraste). Pour cela, jutilise le composant “Colour CMYK”. Dans les entrées “Cyan”, “Magenta” et “Yellow”
j'entre la valeur 1 afin d’obtenir un noir. Le composant “Create Material” permet de diffuser cette couleur et enfin
le composant “Custom Preview” permet d’'assigner cette couleur a la géométrie formée par les cloisons et les

murs formant le contour du plan.

Interior Walls

Création du rendu d'image

Figure 6.11.a
Partie 11 du programme final
© Arthur ROULAND

77

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

* Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

6.12 - Enregistrement de la génération

La douzieme et derniére partie de cet algorithme va nous permettre de donner un
nom en fonction du score du plan généré et de I'enregistrer dans un dossier sur le disque
de l'ordinateur ('emplacement du fichier est renseigné par I'utilisateur dans la partie 1).
Pour les T2, cette partie numéro 12 est divisée en 12 parties pour chacun des 12 points.
Pour les T3, elle est composée de 14 parties et pour les T4 de 16 parties.

Tout d'abord, j'utilise le composant “List Length” dans la partie 3 afin d’obtenir le
score final maximal souhaité pour chaque plan. 12 points pour un T2, 14 points pour un T3
et 16 points pour un T4. Cette valeur est comparée au score maximal obtenu dans la partie
10. Cette opération est nécessaire car si une ou plusieurs surfaces prioritaires suppriment
une surface, alors la piece n'existe plus. Par exemple, si le séjour et la chambre recouvrent
totalement la salle de bain avant la partie 7 (opération booléennes entre les surfaces)
alors le score maximal diminue et le plan n'a plus les pieces souhaitées.

Espace 1 Opération booléenne Espace 1
(prioritaire) (prioritaire)
—)
Espace 2 Figure 6.12.a

Schéma de suppression
d'une piece lors d'une
opération booléenne
© Arthur ROULAND

Jutilise alors le composant «Equality» afin que le programme sache si le score
maximal est bien le bon. Si tel est le cas, la valeur 1 sort de ce composant, sinon la valeur
0 est obtenue.

Le score total de la génération est comparé dans chacune des parties afin de Iui

attribuer un nom. Ainsi chaque partie a pour entrée une valeur comprise entre 1 et 12
pour les T2. Lorsque le plan généré a un score de 6 points, seul le composant “Equality”
se situant dans la partie du score de 6 points va dire que 'égalité est bien respectée et
envoyer la valeur 1. Toutes les autres vont envoyer la valeur 0.
Ces deux égalités sont ensuite réunies dans le composant “Gate And”. Cette opération
permet de vérifier que le score maximal est le bon (qu'il ne manque pas de piéces) et de
donner le score du plan comme nom de I'image a enregistrer. Si ces deux parametres sont
respectés alors le composant suivant “Stream Filter” va envoyer la valeur 1. Si'une de ces
deux conditions n'est pas respectée alors il va envoyer la valeur 0. La valeur 1 va activer le
script C# permettant I'enregistrement du plan. La valeur O ne le permet pas.

Le dernier composant de cet algorithme demande plusieurs entrées. Pour ce
programme nous n'utilisons pas I'entrée “trigger”.

L'entrée “Dir" nous demande la direction de I'enregistrement. Elles sont déja toutes
préréglées afin d’avoir pour destination ce que l'utilisateur aura précisé dans la partie 1.
L'entrée “Name” demande le nom de I'image a enregistrer. Pour chaque score le nom est
le suivant “Plan (score) points {0} .png” Chaque plan va donc avoir comme nom son score.
Le “{0}" nous permet d’enregistrer les plans avec un nombre comme suffixe afin que
chaque nom soit différent et que les plans ne s'écrivent pas les uns sur les autres. Cela
aurait pour conséquence de supprimer chaque plan généré a chaque itération. Le “.png”
permet de renseigner sur le type de format d'image que I'on souhaite enregistrer.

L'entrée “VP" nous demande le “ViewPort” soit la vue que I'on souhaite enregistrer.
Chacun des trois programmes (T2, T3 et T4) a un fichier GrassHopper unique qui doit
étre ouvert dans le fichier Rhino. Ce fichier Rhino a subi quelques modifications afin de
faciliter I'enregistrement des plans. L'environnement Rhino a été rendu blanc afin d'obtenir
le contraste le plus fort. Les axes X et Y ainsi que le quadrillage de I'environnement ont
été changés en blanc afin de devenir invisibles. Enfin, une vue par défaut a été créée afin

d’obtenir des plans ayant les mémes cadrages et les mémes proportions. g

Folder Path

Viewport to export

)

Is total score true ?

1 _ **7 { »—\’; :

Plan Score

Is total score true ?
' f
I G ——
! i
A — - _ o
Plan Score
J— ——
Is total score true ? .
Plan Score
BT e
(—— =
Is total score true ?)
— —
)
Plan Score
[:
Is total score true ?

Plan Score
e e

Is total score true ?

T N

™

Plan Score

—
Is total score true ?
/’*)

Plan Score

+

Plan Score

Is total score true ?

%

Plan Score

<

Is total score true ?
—_— C

Plan Score

<

Is total score true ?

Is total score true ?

T

W‘
PO

—

Figure 6.12.b
Partie 12 du programme final
© Arthur ROULAND

79

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

* Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

6.13 - Récapitulatif des étapes

Etape 1 : parametres de départ

Etape 2 : Définition de la grille

Etape 3 : Valeurs aléatoires de départ

Etape 4 : Division de la grille

80

Etape 5 : Attribution des couleurs

Etape 6 : Simplification des surfaces

Etape 7 : Opérations entre les surfaces

Etape 8 : Récupération des contours

Etape 9 : Evaluation des scores

Etape 10 : Score final de la génération

Etape 11 : Dessin du plan

Etape 12 : Enregistrement de la génération

ORE, ORE

81

82

-

Exemples de
plans generes

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

* Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

7.1 - Génération de T2 (de 1 4 12 points)

1 point

2 points

I

|

3 points

4 points

b points

84

1T

T

=il

N0 E

i

]

mz I

6 points
o .
J_L | IL
-
= L
[points
[
i I
=iy
1
8 points
I_‘__
| |
9 points
10 points

11 points

12 points

85

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

* Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

7.2 - Génération de T3 (de 1 4 14 points)

2 points

3 points

4 points

b points

6 points

T

R

f[

86

1 =B E

e

B

=

1 points
| ‘H
11 @ E %ﬁ =i
-] j l(
- _.. - |
=] ﬁ = |
u I] I
] El
8 points
HEE HEE |- - i
- - - J =
Y F [+
l‘r =
=i | ‘
il] T g
— | 1= K
| . Ha
9 points
R i e 1
= I N I == A — |
- IR j]
T ot
10 points
— L]
0 M F
i [
11 points
||
n |
12 points

87

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

* Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

7.3 - Génération de T4 (de 1 4 16 points)

3 points

4 points

5 points

6 points

[points

8 paints

I
T

il

——

i

L]

9 points

10 points

]

Hied e

11 points

12 points

13 points

14 points

15 points

16 points

89

7.4 - Analyse des résultats

Dans cette partie de ce mémoire, nous allons faire I'analyse des résultats.
L'algorithme a tourné pendant de nombreuses heures afin de générer des typologies de 7.4.2 - Pourcentage des scores par typologie
plans T2, T3 et T4. Afin de pouvoir comparer les résultats entre les différentes typologies,
le nombre de plans générés est sensiblement le méme dans chacune des catégories. Pour
rappel, les T2 ont un score maximal de 12 points, les T3 ont un score maximal de 14 points
et enfin les T4 ont un score maximal de 16 points.

Typologie de plan T2 T3 T4
Avant propos 1 pOiI’]t 0.33% 0% 0%
2 points 3% 1.22% 0%
_ /4.1 - Resultats de la génération de plans ’ : : ;i
Introduction 3 points 6.67% 0.82% 1.38%
Point historique 4 points 15.67% 9.38% 4.13%
5 points 22% 14.28% 8.72%
FralSmataue Typologie de plan T2 13 T4 6 points 23.33% 19.59% 16.97%
Nombre total de 300 245 218 7 points 15% 20.82% 19.27%
Etat de I'art plans SEMENSS
8 point 9.66% 17.55% 20.18%
Score maximal 12 points 14 points 16 points i 0 ’ ’
) 9 points 3.67% 9.39% 12.38%
Etapes de la recherche 1 point 1 0 0 D ’ ’ ’
10 point 0.67% 5.31% 6.42%
2 points 9 3 0 i 0 ’ ’
Résultat de la recherche 3 points 20 2 3 11 points 0% 0.82% 1.34%
12 point 0% 0.82% 2.75%
4 points 47 23 9 pointe ° ° °
‘E les de pl 13 point 0% 0.46%
cenerey L pans 5 points 66 35 19 i ’ ’
14 H 0, [0)
6 points 70 48 37 points % o
. 1 i 0
Comelusion 7 points 45 51 42 > points 0%
H [0}
8 points 29 43 44 16 points v
Notice d’utilisation Figure 7.4.2.a
9 pOil’ltS 11 23 27 Tableau des pourcentages des scores par typologie
© Arthur ROULAND
10 points 2 13 14
Bibliographie , . , . . . A
11 points 0 > 16 En répertoriant les données dans un tableau nous pouvons déja apercevoir que la génération semble étre
plus efficace pour un score moyen. Les graphiques permettent de visualiser cette donnée. En effet, les résultats
Glossaire 12 points 0 2 6 se voulaient aléatoires afin de générer une diversité infinie de plans. En suivant cette logique, il est normal que
: le résultat de chacune de ces générations suivent la loi normale.
13 points 0 1
Annexes 14 points 0 0 Définition de la loi normale (par soft-concept.com)
15 points 0 “La courbe de Gauss est connue aussi sous le nom de « courbe en cloche » ou encore de « courbe de la
16 oot 5 loi normale ». Elle permet de représenter graphiquement la distribution d’'une série et en particulier la densité de
points mesures d’une série, Elle se base sur les calculs de l'espérance et de Iécart-type de la série. Pour un échantillon
et important, il est généralement constatée une courbe en forme de cloche, c'est-a-dire une forte concentration des
Tableau des résultets de la génération de plans valeurs autour de la moyenne puis des valeurs de moins en moins nombreuses aux extrémités de la série”

© Arthur ROULAND

Arthur ROULAND 90 91

Avant propos

Introduction

Point historique

Problématique

La disposition des valeurs de départ de l'algorithme est aléatoire. En ce sens,
chacune des couleurs a autant de chance que les autres de tomber sur n'importe quelle
case de la grille. L'emplacement initial de ces paramétres de départ influe grandement sur
le score de la génération. Il est donc logique que nous n'obtenions que tres peu de scores
bas ainsi que de scores hauts. Les scores dit “moyens” ont quant a eux beaucoup plus
de possibilités d’étre générés et c’'est pourquoi ils sont majoritaires par rapport aux scores
bas et hauts.

Pour simplifier, la loi normale fonctionne comme une paire de dés. Chaque face
d’'un dé a une chance sur six d’apparaitre. Le score le plus bas est donc 2 (1 et 1) et le
score le plus haut 12 (6 et 6). lls ont tous les deux 1 chance sur 36 d’apparaitre. Cependant,
nous avons plus de chances de faire un score total de 4 par exemple. Les combinaisons
possibles sontdonc 1 et 3, 2 et 2 et 3 et 1. Cela nous donne 3 chances sur 36 d'obtenir un
3. Ainsi pour les valeurs du milieu comme 7, nous avons alors 6 combinaisons possibles
afin d’arriver a ce résultat, soit 6 chances sur 36 ou encore 1 chance sur 6.

7.4.3 - Graphique de la génération des T2

\ Loi normale

/ \

/ \
/ \
— W

I [\ [| [[[[| [I
Tpt 2pts 3pts 4pts Spts bpts 7pts 8pts 9pts 10pts 1Mpts 12 pts

Figure 7.4.3.a
Graphique des résultats de la génération de T2
© Arthur ROULAND

7.4.4 - Graphique de la génération des T3

Etat de I'art
1| 2] 3|4 5 6 o~
'\
Etapes de la recherche / .
1 2 3 4 5 6 7 / N Loi normale
/ \
Résultat de la recherche 2 3 4) 6 7 8 \
/
y 'Y
* Exemples de plans 3 4 5 6 7 8 9 \
générés /

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

5 6 / 8 9 10 11

6 / 8 9 10 11 12

Figure 7.4.2.b
Tableau de probabilité pour deux dés a 6 faces
© Arthur ROULAND

La loi de Gauss (ou la loi normale), nous dit que plus la série est grande, donc plus
nous allons générer de plans, plus les valeurs vont venir épouser la courbe. Cependant,
il est nécessaire de rappeler que I'ensemble de 'algorithme ne repose pas sur le hasard
et les lois de probabilités. En effet, le redécoupage des formes générées ainsi que I'ordre
de priorité des espaces dans les opérations booléennes peuvent faire varier ce résultat.
Cependant, étant donné que ces parameétres restent les mémes pour chaque plan génére,
nous pouvons supposer que ces opérations qui ne relevent pas de 'aléatoire, n'influent
que trés peu sur le fait que la série de plans générée suive la loi normale.

s

e

-— \

[[[[I [I [[\ [[[1
Tpt 2pts 3pts 4pts Spts 6pts /pts 8pts 9pts 10pts NMpts 12pts 13 pts 14 pts

Figure 7.4.4.a
Graphique des résultats de la génération de T3
© Arthur ROULAND

7.4.5 - Graphique de la génération des T4

/ \ Loi normale

/

/
-

—

[[[[[[I [I | [[[[
Tpt 2pts 3pts 4dpts Spts 6pts /pts 8pts 9pts 10pts 1Mpts 12pts 13 pts 14pts 15

Figure 7.4.5.a
Graphique des résultats de la génération de T4
© Arthur ROULAND

Arthur ROULAND 92

94

3

Conclusion

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

* Conclusion

Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

Le résultat de cette recherche est satisfaisant. En effet, I'idée initiale de ce
mémoire de recherche était d’élaborer un programme utilisable par tous et permettant de
constituer une base de données potentiellement infinie afin de I'utiliser dans le domaine de
la recherche en intelligence artificielle. Le programme fonctionne et permet la génération
d'une variété infinie de plans comme nous avons pu le voir dans la partie précédente.

Cependant, en effectuant cette recherche, j'ai dG faire des choix qui ont influence le
résultat. En effet, 'ordre des priorités des pieces les unes avec les autres est arbitraire. Les
scores et les résultats seraient différents si ce parameétre était modifié. De plus, une des
limites de cet algorithme est le lien que les espaces ont avec leur couleur. En effet, dans
ce mémoire, chaque couleur était dés le début associée a un espace. Une amélioration a
apporter serait de générer une partition impartiale qui évaluerait par la suite les espaces
afin d'identifier chaque piéce. Dans cette expérience, il est impossible d'intervertir deux
espaces. En ce sens, un séjour qui répond aux criteres d'une cuisine et une cuisine qui
répond aux critéres d'un séjour ne peuvent pas échanger leurs emplacements. Cela
constitue une limite a cette expérience car un plan spatialement intéressant avec cette
affectation de pieces peut se retrouver avec un score faible tandis que si I'on avait interverti
deux espaces entre eux, le score aurait pu étre plus élevé.

Un autre paramétre important que nous avons déja abordé dans ce mémoire
est la division de la grille. En effet, beaucoup de tentatives ont été nécessaires afin de
trouver une solution qui offrait un vaste domaine de possibilités. Le choix des automates
cellulaires a été fait dans le cadre de cette recherche mais d’autres méthodes peuvent
¢galement étre développées qui répondent ou non aux enjeux que je me suis fixé pour ce
mémoire. Une autre méthode de division d'une surface engendrera sans aucun doute des
résultats différents et constituera une base de données différentes pour la recherche dans
le domaine de lintelligence artificielle.

Une des limites a laquelle j'ai dU faire face est la forme du plan généré. Dans la
partie 5, nous avons pu voir plusieurs méthodes de division d'une surface. J'ai pu essayer le
composant Substrate qui estincapable de fonctionner sur une autre forme qu’un rectangle.
La méthode basée sur I'utilisation des automates cellulaires présente actuellement dans
ce mémoire la méme limite. En effet, méme en dessinant une surface plus complexe qu'un
rectangle, 'automate redessine une forme rectangulaire. Il doit cependant étre possible
d'adapter ce programme a une forme plus complexe afin de permettre la génération d'une
plus grande diversité de plans.

96

1

Enfin, un des derniers choix que j'ai pu faire influence également le générateur.
En effet, un des derniers composants ajoutés dans le programme GrassHopper est un
systeme d’'évaluation du score final. Cette partie de I'algorithme compare le score final
maximal possible et le score maximal final de la génération. En effet, la partie permettant
d'effectuer des opérations booléennes entre les surfaces peut parfois effacer un espace.
Dans ce cas précis, la piece disparait et une partie de I'algorithme dysfonctionne. Le
résultat de ce phénomeéne est que le score final de la génération n'est pas en adéquation
avec le score maximal possible. J'ai pris la décision arbitraire de ne pas enregistrer les
plans qui auraient un espace manquant dans le but de favoriser la qualité a la quantité. J'ai
pu remarquer que plus il y avait de pieces différentes dans un plan, plus ce phénomene
pouvait étre récurrent. Les trois algorithmes pour les T2, T3 et T4 sont tous les trois réglés
sur 20 secondes. lls générent donc théoriquement un plan toutes les 20 secondes (180
plans & I'heure) mais tous ne sont pas enregistrés afin d’éviter d’obtenir trop d’anomalies
et de se retrouver parfois avec des plans entierement blancs.

Pour terminer, contrairement aux plug-ins Marmot et Magnetizing Floor Plan
Generator, les pieces n'entretiennent pas de relations entre elles. Aucune logique de partition
n'est établie et nous pouvons parfois observer des pieces aveugles enclavees dans le plan.
Cela n'est pas forcement mauvais car il est intéressant d'observer ces anomalies. Les plans
genérés n'ont pas dorientation particuliere, d'ouvertures particulieres et I'on peut aussi
bien s'imaginer dans un immeuble des années 50 que dans une tiny-house dans la nature.
L'idee etait de générer et d'observer une grande diversité de plans afin d'obtenir parfois
des anomalies, des choses qui sortent de I'ordinaire qui ne sont pas conventionnelles mais
qui peuvent fonctionner et donner des idées nouvelles. Jean-Raphaél PIQUARD a lui aussi
generé des anomalies ou plutdt des «chimeres». Je pensais en obtenir aprés avoir teste
son programme avec ma base de données mais mon programme de génération de plan
geénere lui aussi des «chimeres» ce qui est intéressant.

97

9

Notice
d'utilisation

9 - Notice d'utilisation 6 - Dans la partie “Command” de Rhino, entrer le mot “Grasshopper”, puis cliquer sur “Enter”.

EENCK Y

1 - Installez Rhinoceros 3D version 6 ou 7 avec Grasshopper.

P

0
@,
=
&
o
8,
=
T

2 - Téléchargez le fichier et installez-le sur le disque dur de votre ordinateur.
Avant propos

3 - Ouvrez le fichier Rhino “PLAN GENERATOR.3dm".

Introduction

. . . & PLAN GENERATOR 01/11/2021 17:56 Rhino 3-D Model 33 Ko
Point historique

Problématique

4 - Veérifiez que le fond s'affiche en blanc.

@

Etat de I'art
& o B e o
Etapes de la recherche E}
5 2
&2 o
e
Résultat de la recherche 8 2
T s
‘/A
Exemples de plans @3,
générés
Conclusion
* Notice d’utilisation
Bibliographie 5 - Vérifiez que la vue courante est la vue “PLAN GENERATOR?". Cliquer sur la fleche a 8 - Allez dans le fichier téléchargé, entrez dans le dossier que vous souhaitez générer (T2, T3 ou T4) et lancez le
droite du nom de la vue. Se rendre dans “Set View” puis cliquez sur “PLAN GENERATOR”. fichier Grasshopper “PLAN GENERATOR T---".
- 8 x =
Glossaire
& o B e o

Annexes

QXA PR IDORE

Arthur ROULAND

100 101

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

* Notice d’utilisation

Bibliographie

Glossaire

Annexes

Arthur ROULAND

9 - Dans la partie supérieure du programme (partie 1), rentrez les paramétres du plan.
Longueur et largeur du plan, surface minimale, maximale et dimensions minimales des

cotés de chaque piece. Le tout en metres. Utilisez des points plutot que des virgules.

P - - n
Plan Surface I
1
Plan Langth - (meters) {] Total Surtace
o S
Plan width - (meters) ‘
Living Surface

Bedroom 1 Surface

Minimum Surface

Maximum Surface

Minimum dimensions on ons sida {
Kitchen Surface

Minimum Surface

Minimum dimensions on one side

Bathroom Surface

1
}
-}
{
Maximum Sutaca —
.

Minimum Surface

Maximum Surface {

(e e |

Entrance Surface

Minimum Surface

Maximum Surface

Minimum dimensions n one sde - |

WC Surface

Minimum Surface

Folder path { omiummmsge.

Score of generation

{

4

'

Maximum Score

¢ 12

10 - Toujours dans la partie 1, entrez le chemin d’accés au fichier ou vous souhaitez

enregistrer les plans générés a chaque itération.

Plan Surface

Plan Length - (meters)

Plan width - (meters) ‘ } .

Living Surface

Minimum Suface

Minimum dimensions on one side

I
Weximum Surfaca 1
}

Bedroom 1 Surface

Minimum Surface

Maximum Surface

Minimum dimensions on ans side

Kitchen Surface

Bathroom Surface

Minimum Surface

Maximum Surface

Minimum dimensions on one side |

Entrance Surface

Minimum Surface

Maximum Surface

Minimum dmersions nonesido { |

WC Surface

Minimum Surtace q

Score of generation

{

4

|
|

Maximum Score

12

|

102

11 - Par défaut, le script Python est éteint. Sélectionnez le. Appuyez sur la molette de votre souris. Cliquez sur le
bouton “On". Un premier plan devrait étre géneré.

e T L I S i

- E . - E
Script python Script python

c

Script python

12 - Allez au début de la partie 2 (tout & gauche du programme). Lancez le timer. Par défaut, le timer génére
de nouvelles valeurs toutes les 20 secondes. Cet intervalle est a régler en fonction des performances de votre
ordinateur.

‘ ié;g 20 seconds. i..oonooonoco.ococ.oc--------...-...-.-ooo'.

103

10

Bibliographie

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

* Bibliographie

Glossaire

Annexes

Arthur ROULAND

TRAVAUX DE RECHERCHE

* BEN ABDALLAH Yasmine

“Conception architecturale et modélisation paramétrique”,
Meémoire de recherche, Ecole Nationale Supérieure d’Architecture de
Toulouse, 2017

Disponible & I'adresse : https://dumas.ccsd.cnrs.fr/dumas-01807920/document

Consulté en Octobre 2021

« BEYLER Nathan

“Utiliser et transformer des critéres en esquisses de plan “
Mémoire de recherche, Ecole Nationale Supérieure d'Architecture de
Paris La Villette, 2019

Consulté le 4 Mai 2021

* CARADANT Dominique

“Les utilitaires et l'intelligence artificielle pour un systeme
d’aide a la conception en architecture”, Rapport de recherche, Ecole
Nationale Supérieure d’Architecture de Toulouse, Juin 1984.

Disponible a I'adresse : https://hal.archives-ouvertes.fr/hal-01888604/document

Consulté le 23 Novembre 2020

* CARTA Silvio

“Self-organizing Floor Plans’, Article de recherche, Head of Design,
University of Hertfordshire, UK, Publie¢ dans le Harvard Data Science
Review, 23 Juillet 2021

Disponible a I'adresse : https://assets.pubpub.org/cjin385t/51627069693624.pdf

* CARTA Silvio & ST LOE Stephanie

“Self-Organising Floor Plans in Care Homes”, Papier de recherche,
University of Hertfordshire, UK, Publication en ligne 27 Mai 2020, Publié
dans le journal Sustainability le 1er Juin 2020

Disponible & l'adresse : https://www.researchgate.net/publication/341720764 Self-
Organising Floor Plans in Care Homes

« CHAILLOU Stanislas

Al + Architecture, Towards a New Approach”, These, Harvard
Graduate School of Design, 2019.

Disponible a I'adresse : http://stanislaschaillou.com/articles.htm!

Consulté en Mars 2020

* HERR Christiane M. & FORD Ryan C.

“ADAPTING CELLULAR AUTOMATA AS ARCHITECTURAL
DESIGN TOOLS”, Papier de recherche, Xi'an lJiaotong-Liverpool
University, Suzhou, China, 2015, Publié dans le Conference on Computer-
Aided Architectural Design Research in Asia (CAADRIA) en 2015.

Disponible a I'adresse : http://papers.cumincad.org/data/works/att/caadria2015 139.

* KRAWCZYK Robert J.

“Architectural Interpretation of Cellular Automata”, Papier de recherche, lllinois
Institute of Technology, Pour I'International Conference on Generative Art, 2002 et publié sur
https://www.generativeart.com/ en 2002

content.pdf
106

Disponible & ladresse : https://www.researchgate.net/publication/2856485 Architectural Interpretation of

Cellular_Automata

* PIQUARD Jean-Raphaél

“L’apprentissage machine au service de la conception architecturale”, Mémoire de
recherche, Ecole Nationale Supérieure d’Architecture de Paris La Villette, 2020

Consulté en Décembre 2020

* SALINI Alex

“L’utilisation d’un réseau adversarial antagoniste (GAN) dans la création de plans
d’architecture”, Mémoire DPEA, Ecole Nationale Supérieure d'Architecture de Paris La
Villette laboratoire MAP MAACC, 2020

Consulté en Décembre 2020

« SHEKHAWAT Krishnendra

“Automated space allocation using mathematical techniques”, ler Avril 2015,
Department of Mathematics, University of Geneva, Switzerland, Publié dans le Ain Shams
Engineering Journal en 2015.

Disponible 3 I'adresse : https://www.sciencedirect.com/science/article/pii/
520904479150003494#:~:text=Space%20allocation%20is%20the%20computational,and%20topological %20
and%20geometric%20constraints

« SHEKHAWAT Krishnendra

“Space Allocation in Rectangular Floor Plan”, These, Décembre 2012, Department of
Mathematics, University of Geneva, Switzerland, Publié dans ELSA International Review en
2013.

Disponible al'adresse : https://www.researchgate.net/publication/262152582 Space_Allocation_in_Rectangular
floor Plan

* Zifeng Guo

“Evolutionary approach for spatial architecture layout design enhanced by an
agent-based topology finding system”, Papier de recherche, Janvier 2017, School of
Architecture, Southeast University, Nanjing 210096, Chine, Publié dans le journal Frontiers of
Architectural Research en 2017.

Disponible & ladresse : https://www.researchgate.net/publication/312263676 Evolutionary approach_for
spatial_architecture_layout_design_enhanced by_an_agent-based_topology finding_system

 Zifeng Guo

“Generated Building Layout”, date de publication inconnue.

Disponible a I'adresse : https://www.academia.edu/14081792/Generated Building_Layout

Consulté en Décembre 2021

107

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

* Bibliographie

Glossaire

Annexes

Arthur ROULAND

RESSOURCES EN LIGNE

* BIELIK Martin

“Magnetizing Floor Plan Generator”, Article, 23 Mars 2019

Disponible & l'adresse : https://toolbox.decodingspaces.net/magnetizing-floor-plan-
generator/

Consulté en Septembre 2021

* GUENA Francois

“TR707 Initiation a la modélisation paramétrique”, Cours de
Technique de Représentation, ENSAPLV

Disponible a I'adresse : http://maacc.paris-lavillette.archi.fr/TR707/

Consulté en Janvier 2021

* GUENA Francois

Cours 4 &b de “CTID 825 : Systémes numériques de la conception
digitale”, ENSAPLV

Disponible a 'adresse : http://194.199.196.229/CTID823/

Consulté en Juin 2021

VIDEOS

 CHAILLOU Stanislas

“IA & Architecture”, Conférence au Pavillon de I'arsenal, 27 Février
2020.

Disponible a I'adresse : https://www.facebook.com/PavillonArsenal/
videos/889535584839133/

Consulté en Mars 2020

* GAVRILOV Egor

“Magnetizing FloorPlanGenerator preview 1", Vidéo YouTube, 9
Mars 2019

Disponible & l'adresse : https://www.youtube.com/watch?v=VWQg8BtrbNU&ab
channel=EgorGavrilov

Consulté en Septembre 2021

108

* GAVRILOV Egor
“Magnetizing FloorPlanGenerator preview 2”, Vidéo YouTube, 9 Mars 2019

Disponible a I'adresse : https://www.youtube.com/watch?v=glajwXOuUO0I&ab_channel=EgorGavrilov

Consulté en Septembre 2021
* Yannick M

“Marmot demo video”, Vidéo YouTube, 4 Janvier 2020

Disponible a I'adresse : https://www.youtube.com/watch?v=XTwl6iR9_J4&ab channel=YannickM

Consulté en Septembre 2021

FICHIERS

 FOTADIS Peter

“Randoms_Unique_viaHashSet V1.gh”, Rhinoceros Forums, Real random numbers, 25
Février 2018.

Disponible a 'adresse : https://discourse.mcneel.com/t/real-random-numbers/56072/5

Consulté le 13 Octobre 2021
* RUTTEN David

“capture.gh”, Rhinoceros Forums, Capturing Rhino layout/viewport iterations - print or image
export, 12 Déecembre 2017.

Disponible & l'adresse : https://discourse.mcneel.com/t/capturing-rhino-layout-viewport-iterations-print-or-
image-export/51387

Consulté le 12 Octobre 2021
» Wallgren Arkitekter and BOX Bygg
“Finch 3D", 2019

Disponible a I'adresse : https://finch3d.com/

Disponible & I'adresse : https://www.archdaily.com/929300/can-a-machine-perform-the-work-of-an-architect-
a-chat-with-jesper-wallgren-founder-at-finch-3d

Consulté en 2020

109

110

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

* Glossaire

Annexes

Arthur ROULAND

Add-on : Logiciel congu pour étre greffé a un autre logiciel & travers une interface prévue
a cet effet, et apporter a ce dernier de nouvelles fonctionnalités.

Algorithme : Ensemble de regles opératoires dont I'application permet de résoudre un
probléme énoncé au moyen d’un nombre fini d’opérations. Un algorithme peut étre traduit,
grace a un langage de programmation, en un programme exécutable par un ordinateur.

Allocation spatiale : Disposition informatique des pieces dans un plan. C'est le processus
de détermination de la position et de la taille de différentes pieces dans un espace a deux
dimensions, en fonction des exigences de I'utilisateur et des contraintes topologiques et
géometriques.

Automate cellulaire : Un automate cellulaire consiste en une grille réguliére de « cellules
» contenant chacune un « état » choisi parmi un ensemble fini et qui peut évoluer au cours
du temps.

CAO/CAD : Conception Assistée par Ordinateur / Computer-Aided Design

Day & Night : Automate cellulaire bidimensionnel & deux états (« vivant » ou « mort »)

DWG : Format natif des fichiers de dessins AutoCAD. DWG est I'abréviation de DraWinG

GrassHopper : Grasshopper est un langage et un environnement de programmation
visuel qui s'exécute dans I'application de conception assistée par ordinateur (CAO)
Rhinoceros 3D

Intelligence Atrtificielle : Ensemble de théories et de techniques mises en ceuvre en vue
de réaliser des machines capables de simuler l'intelligence humaine.

Itération : Répétition d’'un calcul, d'une opération, d'un raisonnement.

Jeu de la vie : Automate cellulaire imaginé par John Horton Conway en 1970. Malgré
des regles tres simples, le jeu de la vie permet le développement de motifs extrémement
complexes.

Logiciel : Ensemble de programmes, qui permet a un ordinateur ou a un systéeme
informatique d’assurer une tache ou une fonction en particulier.

112

Opération booléenne : Ensemble d'opérations booléennes (AND, OR, NOT, XOR...)
effectuées sur un ou plusieurs ensembles de polygones en infographie.

‘" Two shapes

ptB ! panas l‘; Aunion B (OR)
A
! AnotB ! Aintersection B (AND)

(---f25) Bnota gzesi-=-y | AXORB

Figure 11.a
Schémas d'opérations booléennes
Source : wikipédia.org

Paramétrique : Qui contient un ou des parametres, c'est a dire une variable susceptible
de recevoir une valeur constante pour un cas déterminé et qui désigne certains coefficients
ou certaines quantités en fonction desquels on veut exprimer une proposition ou les
solutions d'un systeme d’équations.

Plug-in : Logiciel congu pour étre greffé a un autre logiciel a travers une interface prévue
a cet effet, et apporter a ce dernier de nouvelles fonctionnalités.

PNG : Portable Network Graphics. Format d'image numérique.
Python : Langage de programmation multiplateforme.

Rhinocéros 3D : Logiciel 3D de Conception Assistée par Ordinateur permettant la
modélisation d’objets complexes.

Systéme multi-agents : Systéme composé d'un ensemble d'agents (un processus,
un robot, un étre humain, une fourmi etc.), actifs dans un certain environnement et
interagissant selon certaines régles.

Voronoi : En mathématiques, un diagramme de Voronoi est un pavage (découpage) du
plan en cellules (régions adjacentes) a partir d'un ensemble discret de points appelés «
germes ». Chaque cellule renferme un seul germe, et forme I'ensemble des points du plan
plus proches de ce germe que d’aucun autre. La cellule représente en quelque sorte la «
zone d'influence » du germe.

R

Figure 11.b
Voronoi
Source : javalab.org

113

114

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

* Annexes

Arthur ROULAND

12.1 - Capture d’écran du timer

P> E® AT
using Rhinc
i A
o o
(
T S R R, G) R G, E0i ey G iy S o S A
)

116

12.1.2 - Code du timer

using System;
using System.Collections;
using System.Collections.Generic;

using Rhino;
using Rhino.Geometry;

g Grasshopper;

g Grasshopper.Kernel;

g Grasshopper.Kernel.Data;
g Grasshopper.Kernel. Types;

usin
us
us
usin

using System.|O;

using System.Ling;
using System.Data;
using System.Drawing;
using System.Reflection;
using System.Windows.Forms;

using System.Xml;

using System.Xml.Ling;

using System.Runtime.InteropServices;

using Rhino.DocObjects;
using Rhino.Collections;
using GH_IO;

using GH_IO.Serialization;

/// <summary>

/// This class will be instantiated on demand by the Script component.
/// </summary>

public class Script_Instance : GH_Scriptinstance

[

{

#region Utility functions
/// <summary>Print a String to the [Out] Parameter of the Script component.</summary>
/// <param name=»text»>String to print.</param>
private void Print(string text) { /* Implementation hidden. */ }

/// <summary>Print a formatted String to the [Out] Parameter of the Script component.</summary>
/// <param name=»format>>String format.</param>

/// <param name=»args»>Formatting parameters.</param>
te void Print(string format, params object[] args) { /* Implementation hidden. */ }
summary>Print useful information about an object instance to the [Out] Parameter of the Script component. </summary>
/// <param name=»obj»>0Object instance to parse.</param>
private void Reflect(object obj) { /* Implementation hidden. */ }
/// <summary>Print the signatures of all the overloads of a specific method to the [Out] Parameter of the Script component. </summary>
/// <param name=»obj»>0Object instance to parse.</param>
private void Reflect(object obj, string method_name) { /* Implementation hidden. */ }
#endregion

#region Members
/// <summary>Gets the current Rhino document.</summary>
private readonly RhinoDoc RhinoDocument;
/// <summary>Gets the Grasshopper document that owns this script.</summary>
private readonly GH_Document GrasshopperDocument;
/// <summary>Gets the Grasshopper script component that owns this script.</summary>
private readonly IGH_Component Component;
/// <summary>
/// Gets the current iteration count. The first call to RunScript() is associated with Iteration==0.
/// Any subsequent call within the same solution will increment the Iteration count.
/// </summary>
private readonly int lteration;
#endregion

/// <summary>

/// This procedure contains the user code. Input parameters are provided as regular arguments,

/// Output parameters as ref arguments. You don't have to assign output parameters,

/// they will have a default value

/// </summary>

private void RunScript(bool playltAgainSam, int N, int fate, int decimals, double min, double max, ref object A)

HashSet<double> randoms = new HashSet<double>();

for(inti=0;i< N;i++){
randoms.Add(Math.Round(rand.NextDouble(min, max), decimals));

Print(«For: {0} loops, unique doubles made: {1}», N, randoms.Count);
A = randoms;

}

// <Custom additional code>
RangedRandom rand = new RangedRandom();

class RangedRandom : System.Random
public RangedRandom(): base(){}
public RangedRandom(int seed): base(seed){}
public double NextDouble(double max){
return NextDouble() * max;
public double NextDouble(double min, double max){

return (max - min) * NextDouble() + min;

}

// </Custom additional code>

12.2.2 - Code du script Python

12.2 - Capture d’écran du script Python

«©»Provides a scripting component.

Grasshopper Python Script Editor
File Edit Tools Mode Help Inputs:
Zi;’iii? # seripting component. x: The x script variable
vi The ¥ serive variable y: The y script variable
ou cout variablen Output:
a: The 3 output variable
a: The a output variable»»»
_author__
Tversion_
author__ = «artro»
import rhinoscriptsyntax as rs _ -
as[] #sortie pour la boucle version__ = «2021.04.06»
-int(Longueur) — —
nint (Largeur)
xe{} #couleur future import rhinoscriptsyntax as rs

a=[] #sortie pour la boucle
m=int(Longueur)

#[0; n] # ligne du haut

"nilen] # Ligne du bas
o #multiples de n (colome du coté droit)
#in-1%nm0 #colonne de gauche n=int(Largeur)
x={} #couleur future

#voisins 3 exclure pour les cellules des bords de la grille

LigneDuHaut=[-1-n, -n, -n+1]

LignebuBas=[n-1,n,n+1]

ColonneGauche=[-n-1,-1,n-1]

Colonnedroite=[-n+1,1,n+1] #0: n] # ligne du haut

oisins=[-n,-1,41,n] #Tous les voisins d'une cellule, voisinnage de Von Neunann #llen-n:len] # Ligne du bas

Voisinss[-n,-1,41,n,-n-1,-n+1,n-1,n+1] #Tous les voisins d'une cellule, voisinnage de Moore N e L,

#i%n=0 #multiples de n (colonne du coté droit)

#i-n-1%n=0 #colonne de gauche

Avant propos

def over():
for 1 in range(0,len(C)):
if(C[i] == 0) :
. return False . .
Introduction return True #Voisins a exclure pour les cellules des bords de la grille
for 2 in range(se) : LigneDuHaut=[-1-n,-n,-n+1]
print(z)
for i in range(0,1en(C)): LigneDuBas=[n-1,n,n+1]
x[i)=0 —
. . . i 3[, : wand (N[1]>1) ColonneGauche=[-n-1,-1,n-1]
Point historique ColonneDroite=[-n+1,1,n+1]
#Ligne du haut
o e #Voisins=[-n,-1,+1,n] #Tous les voisins d'une cellule, voisinnage de Von Neumann
if i% is =|-n - -n-1 - - # sins d’ gj
it in Ligneduiaut and k not in ColomneGauche Voisins=[-n,-1,+1,n,-n-1,-n+1,n-1,n+1] #Tous les voisins d'une cellule, voisinnage de Moore
def over():
if k not in LigneDuHaut and k not in ColonneDroite: foriin ‘raﬂge@,‘eﬂ(C))I
Jeisk if(Cli] ==0) :
«if C[j
: ¢ return False
1se :
i kot in LigneduHaut: return True
i
! F c[i]1=0
Etat de I'art R NI for z in range(50) :
print(z)

for i in range(0,len(C)):
stigne du bas x[i]=0
if Cli]==0: #and (N[i]>=1):

elif i>=len(C)-n-1 and i<len(C):

for k in Voisins
£ i%

Etapes de la recherche e N
if kj:;::er\ LigneDuBas and k not in ColonneGauche: e‘?L\gﬂe du haut

«if C[j
: if i>=0and i<n:

N
elif (i+1)%n:
if k not in LigneDusas and k not in ColonneDroite:

for k in Voisins:

=itk
. SEF)10 if i%n==0:
Résultat de la recherche s W::]Li:‘:im: if k not in LigneDuHaut and k not in ColonneGauche:
jeisk j=i+k
i if C[j]!=0:
x[il=(C[j])

elif (i+1)%n=
if k not in LigneDuHaut and k not in ColonneDroite:

E)fer}ﬁples de plans #Cotome de gauche
générés j=itk
o i Clli=0:
3% K ot n Colonnacauche and K not n LigneduHaue: L=l
else:
ené‘n;még,m e 1cden©): o if k not in LigneDuHaut:
Con Cl u SIO n f lf‘n;:kln ColonneGauche and k not in LigneduBas: J?C‘:TL]‘ O
if C[j]!=0:
aiaet xlil=(Ch))
if k not in ColonneGauche:
jeisk
if c[j
X
Notice d’utilisation
#Colonne de droite #Ligne du bas
elif (101)? X
At g and dans elif i>=len(C)-n-1 and i<len(C):
if k not in ColonneDroite and k not in LigneduHaut: for K in Voisins:
Bibliographie e if 1%n==0:
elif i>=len(C)-n-1 and iclen(C): if k not in LigneDuBas and k not in ColonneGauche:
«if k not in ColonneDroite and k not in LigneduBas: J:H’k
“Jeitk
i clit=o if C[j]!1=0:
e o imera A0il-(CL)
Glossaire Juisk elif (i+1)%n==
Loy if k not in LigneDuBas and k not in ColonneDroite:
. :ehef;r K in Voisins: j=itk
e if CljJ1=0:
if c[j]!=e: .
Hion x[i1=(Cli)
. else:
* Annexes o if k not in LigneDuBas:
=) #future valeur de la case i j=i+k
if C[j]!1=0:

:f d , 1): — i
o 4 et Al-Cl)

if (over() == True) :
“break

print (len(c))
print (len(x))

for i in range(a,len(C)):
-a.append (x[1])

print(over())

#for a in range(e,len(a))
if a==1:
bleu.append (a)
elif

vert.append ()
13f a==3

rouge.append (a)
elif a==4:
jaune.append (a)
elif a==s5:
rose.append (a)

wwmw e

Arthur ROULAND 118 119

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

* Annexes

Arthur ROULAND

#Colonne de gauche

elif i%n==
for k in Voisins:
if i>=0 and i<n:
if k not in ColonneGauche and k not in LigneduHaut

j=i+k
if C[j]!=0:
x[i]=(C[j)

elif i>=len(C)-n-1 and i<len(C):
if k not in ColonneGauche and k not in LigneduBas:

j=i+k
if C[j]!=0:
x[i]=(C[j)
else
if k not in ColonneGauche:
j=itk

if C[j]!=0:
x[i]=(C[j)

#Colonne de droite

elif (i+1)%n==0:
for kin Voisins:
if i>=0 and i<n:
if k not in ColonneDroite and k not in LigneduHaut:

j=itk
if C[j]!=0:
x[i]=(C[j])

elif i>=len(C)-n-1 and i<len(C):
if k not in ColonneDroite and k not in LigneduBas:

j=itk

if C[j]!=0:
else

if k not in ColonneDroite:
j=itk
if C[j]!=0:
x[i]=(C[})
else :
for kin Voisins:

j=itk
if C[j]!=0:

x[i]=(C[i])

x[i]=Cli] #future valeur de la case i
for d in range(0,len(C)):
Cld] = x[d]

if (over() == True) :
break

print (len(C))
print (len(x))

for i in range(0,len(C)):
a.append (x[i])

print(over())

#for a in range(0,len(a)):
ifa==L:

bleu.append (a)
elifa==2:

vert.append (a)
elifa==3:

rouge.append (a)
elifa==4:

jaune.append (a)
elif a==b:

rose.append (a)

120

12.2.3 - Explication du script python

Python Script Editor

File Edit Tools Mode Help
“"“"provides a scripting component.
Inputs
+x: The x script variable
y: The y script variable
output
+++-+a: The a output variabl

_author__ = “artro"
version__ = "2021.04.06"

ingort. P

—
|

a=[] #sortie pour la boucle
meint(Longueur)
n=int(Largeur)

x={} #couleur future

] # ligne du haut
n;len] # Ligne du bas

#i%n=0 #multiples de n (colonne du cété droit)
#i-n-1%=0 #colonne de gauche

w
1

#Voisins a exclure pour les cellules des bords de la grille
LigneDuHaut=[-1-n, -n, -n+1]

LignebuBas=[n-1,n,n+1]

ColonneGauche=[-n-1,-1,n-1]

ColonneDroite=[-n+1,1,n+1]

~
1

|

#oisins=[-n,-1,+1,n] #Tous les voisins d'une cellule, voisinnage de Von Neumann
Voisinsa[-n,-1,+1,n,-n-1,-n+1,n-1,n+1] #Tous les voisins d'une cellule, voisinnage de Moore
def over()
for i in range(0,len(C)):
AF(C[1] == 0) :

return False
return True

for z in range(se) :

print(z)

+for i in range(e,len(C)):
x[i]=0
-if C[1]==0: #and (N[1]>=1)

Wligne du haut

if >20 and icn
for k in Voisins:

if i%n==o:
“if k not dn LigneDuHaut and k not in ColonneGauche:
eiek
if ol
X {§})

elif (i+1)%

t dn LigneDuHaut and k not in Colonneproite:
+

else
if Kk not in LigneDuHaut:
j=it)
if c[j]1=0:
x[i)=(c(3D)

TFliene v Das

-elif i>=len(C)-n-1 and i<len(C):
~for k in Voisins:
if i%n==0:
if Kk not in LignebuBas and k not in ColonneGauche:

)
if c[§]1=0:
x[i)=(c[3D

else:
if Kk not in LigneDugas:
jeitk
if c[j]'=0:
x[i]=(¢[3])

“#Colonne de gauche

elif i%n==0:
for k in Voisins:
if >0 and icn:
if k not in ColonneGauche and k not in LigneduHaut:
Jeik
if c[j]!=0:

- x[dl=(CliD)
elif i>=len(C)-n-1 and iclen(C):
if k not in ColonneGauche and k not in LigneduBas:
Jeik
if c[j]1=0:
. “x[)=(C13D)
else:
if k not in ColonneGauche:
<jeivk
if c[j

Script codé par GrassHopper

—— 7 - Définition des varibales

Texte d’information

Voisins & exclure
Voisinage des cellules

———— 6 - Boucle de répétition

—— / - Etude des bords de la grille

#Colonne de droite

elif (i+1)¥n==0:
for Kk in Voisins:
if 1>=0 and icn:
if k not dn Colonnebroite and k not in LigneduHaut:
=14
if c[j]1=0:
=(c[3])
elif i>=len(C)-n-1 and i<len(C):
if Kk not in ColonneDroite and k not in LigneduBas:

€

“x[4]
else:
if K not in Colonneproite:
if c[j]!=0:
X1)=CCI])

oTee

for k in Voisins:

welse :
-x[i]=C[4] #future valeur de la case i

~for d in range(8,len(C)):
-c[d] = x[d]

if (over() == True) :
print (len(c))
print (len(x))

for i in range(a,len(C)):
-a.append (x[1])

print(over())

#for a in range(e,len(a))
=1t
bleu.append (a)
elif a==2:
vert.append ()
£ a=e3

.
®

#

#

& eli
" rouge.append (a)
elif a==a:
Jaune. append (a)
elif a=ss:

* rose.append (a)

Output

8 - Etude des cellules génériques

9 - Affectation des couleurs

121

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

* Annexes

Arthur ROULAND

12.2.3.1 - Le script codé par grasshopper

Grasshopper Python Script Editor
File Edit Tools Mode Help

"""provides a scripting component.
+Inputs:
-x: The x script variable
-y: The y script variable
-Output:
:a: The a output variable"""

__author__ = "artro"
__version__ = "2021.04.06"

import rhinoscriptsyntax as rs

La premiére partie de ce script python est déja codée par défaut lors de I'ouverture
du composant. Aucune modification n'a été apportée.

12.2.3.2 - Définitions des variables

import rhinoscriptsyntax as rs
a=[] #sortie pour la boucle
m=int(Longueur)

n=int(Largeur)

x={} #couleur future

Dans cette deuxieme partie du script, nous paramétrons les deux entrées
“Longueur” et “Largeur” du composant ainsi que sa sortie “a”. C'est dans cette sortie
que vont étre stockées les informations finales. A cela nous avons rajouté une variable
“x". Cette variable va nous permettre de stocker les informations des cellules a chaque
itération. Cela permet au script de tourner sans envoyer les informations a chaque itération.
Sans cela, le programme évaluerait chaque itération tandis que nous souhaitons que le

programme n'évalue la grille d’une fois entierement divisée.

12.2.3.3 - Texte d’information

#[0; n] # ligne du haut

#[len-n;len] # Ligne du bas

#i%n=0 #multiples de n (colonne du cété droit)
#i-n-1%n=0 #colonne de gauche

Ce texte est informatif. Il est ici afin de rappeler comment identifier les cellules de
chaque bord de la grille.

122

12.2.3.4 - Voisins a exclure

#Voisins 3 exclure pour les cellules des bords de la grille
LigneDuHaut=[-1-n,-n, -n+1]

LigneDuBas=[n-1,n,n+1]

ColonneGauche=[-n-1,-1,n-1]

ColonneDroite=[-n+1,1,n+1]

Cette partie nous permet de renseigner les voisins a exclure pour les cellules se trouvant sur le bord de la
grille. Au lieu de préciser le voisinage a chaque opération, il suffit désormais de préciser I'un de ces quatre textes
afin d’exclure les voisins indésirables.

La “LigneDuHaut” exclut les voisins se situant au-dessus a gauche, au-dessus et au-dessus a droite.

La “LigneDuBas” exclut les voisins se situant en dessous a gauche, en dessous et en dessous a droite.
La “ColonneGauche” exclut les voisins se situant au-dessus a gauche, a gauche et en dessous a gauche.
La “ColonneDroite” exclut les voisins se situant au-dessus a droite, a droite et en dessous a droite.

12.2.3.5 - Voisinage des cellules

#Voisins=[-n,-1,+1,n] #Tous les voisins d'une cellule, voisinnage de Von Neumann
Voisins=[-n,-1,+1,n,-n-1,-n+1,n-1,n+1] #Tous les voisins d'une cellule, voisinnage de Moore

La cinquieme partie du script permet de sélectionner le voisinage souhaité. Pour cette recherche, jai
utilisé le voisinage de Moore. Cependant, il est possible d'activer le voisinage de Von Neumann en retirant le “#”
de la premiére ligne et en 'insérant au début de la seconde. Le “#” permet de préciser que nous écrivons du texte
et que le programme ne doit pas le prendre en compte. Ce voisinage sera utilisé par toutes les cellules. Dans les
cas particuliers qui sont les bords de la grille, il faudra exclure de ce voisinage les voisins indésirables précisés
dans la partie 4.

12.2.3.6 - Boucle de répétition

—def over():
«for i in range(@,len(C)):
<if(C[i] == @) :

-return False
-return True

for z in range(50) :
-print(z)
-for i in range(@,len(C)):
+x[i]=0
«if C[i]==0: #and (N[1]>=1):

C'est dans cette sixieme partie que I'algorithme commence a observer les cellules. Ce script observe
dans 'entiéreté de la grille s” il trouve une cellule ayant la valeur 0 (état éteint). Si tel est le cas, la fonction “over”
est fausse. Le cas échéant la fonction “over” est vraie, cette boucle s'arréte et le programme passe a la suite.

123

Avant propos

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

* Annexes

Arthur ROULAND

12.2.3.7 - Etude des bords de la grille

-#Ligne du haut

+if 1>=0@ and i<n:
-for k in Voisins:
-if i%n==0:
«if k not in LigneDuHaut and k not in ColonneGauche:
-j=i+k
-if Cc[j]!=0:
s x[1]1=(c[3D)
celif (i+1)%n==0:
+if k not in LigneDuHaut and k not in ColonneDroite:
-j=i+k
<if C[j]!=0:
x[1]=(C[3D)
-else :
-if k not in LigneDuHaut:
<j=i+k
-if c[j]!=0:
x[1]=(c[3])

-#Ligne du bas

-elif i>=len(C)-n-1 and i<len(C):
-for k in Voisins:
-if i%n==0:
+if k not in LigneDuBas and k not in ColonneGauche:
<j=i+k
-if c[j]!=0:
s x[1]=(c[3ID
-elif (i+1)%n==0:
+if k not in LigneDuBas and k not in ColonneDroite:
-j=i+k
<if C[j]!=0:
. x[1]=(c[3])
-else:
-if k not in LigneDuBas:
<j=i+k
-if c[j]!=0:
x[1]1=(c[3D)

-#Colonne de gauche

-elif i%n==0:
-for k in Voisins:
«if i>=0 and i<n:
+if k not in ColonneGauche and k not in LigheduHaut:
-j=i+k
<if C[j]!=0:
: x[1]=(C[3D)
-elif i>=len(C)-n-1 and i<len(C):
-if k not in ColonneGauche and k not in LigneduBas:
<j=i+k
-if Cc[j]!=0:
. x[1]=(c[3])
-else:
«if k not in ColonneGauche:
<j=i+k
-if c[j]!=e:
x[1]=(c[3ID

-#Colonne de droite

+elif (i+1)%n==0:
«for k in Vvoisins:
«if i>=0 and i<n:
+if k not in ColonneDroite and k not in LigheduHaut:
-j=i+k
<if C[j]!=0:
s x[1]=(C[3D)
-elif i>=len(C)-n-1 and i<len(C):
-if k not in ColonneDroite and k not in LigneduBas:
<j=i+k
-if Cc[j]!=0:
x[1]1=(c[3D)
-else:
+if k not in ColonneDroite:
<j=i+k
-if c[j]!=e:

x[1]=(c[3ID

124

Dans le cas ou “over” est faux, notre algorithme va venir dans cette partie qui est divisée en 4 éléments
presque identiques. La logique de ces 4 parties est la méme, seules les formules de voisinages varient en
fonction du bord étudié.

Prenons I'exemple de la ligne du haut. Dans ce cas, I'algorithme fonctionne de la maniére suivante.

Sii (notre cellule étudiée) est plus grand ou égal & 0 et que i est inférieur & n (cela correspond a la ligne du haut)
Dans ce cas, I'algorithme sait que la cellule se trouve donc sur la ligne du haut. Le cas échéant, il serait passé aux
autres étapes). Maintenant, afin d’exclure les voisins, il est nécessaire de vérifier si notre cellule ne se situe pas
dans un coin. Si elle se situe dans le coin en haut & gauche, nous allons exclure les voisins de LigneDuHaut et
de ColonneGauche. Si elle se situe dans le coin en haut a droite, nous allons exclure les voisins de LigneDuHaut
et de ColonneDroite. Autrement, nous n'allons exclure que les voisins se trouvant dans LigneDuHaut.

Cette opération est répétée pour la ligne du bas, la colonne de droite ainsi que la colonne de gauche.

12.2.3.8 - Etude des cellules génériques

celse :
-for k in Voisins:
-j=i+k
<if c[j]!=0:
x[1]=(C[3])

-else :
«x[1]=C[1i] #future valeur de la case i

Sila cellule étudiée ne rentre dans aucune des parties de la partie 7, cela équivaut a dire que cette cellule
ne se situe pas sur un des bords de la grille. Dans ce cas, le voisinage utilisé correspond au voisinage de Moore
au complet.

L'algorithme, dans la partie 7 et dans la partie 8 va regarder ses voisins. La seule différence est que
dans la partie 7 les voisins ne sont pas au complet. En regardant ses voisins, 'algorithme dit que si notre cellule
étudiée a au moins un voisin dont I'état est différent de zéro (cela signifie qu'il a une couleur autre que la noire),
alors notre cellule étudiée va stocker en mémoire la valeur de ce voisin. En effet, la cellule ne va pas tout de suite
changer d’état. Autrement, la prochaine cellule étudiée verra qu'elle a une couleur et cela fausserait le résultat.
Enfin, une fois que toutes les cellules de la grille auront été étudiées, toutes celles qui ont gardé une couleur en
meémoire vont se voir affecter cette couleur.

12.2.3.9 - Affectation des couleurs

-for d in range(@,len(C)):

C[d] = x[d]
-if (over() == True) :
-break

print (len(C))
print (len(x))

for i in range(@,len(C)):
-a.append (x[i])

print(over())

Suite a cette opération, I'algorithme revient & la partie 6. Cette partie va regarder s’ il reste une cellule a
I'état 0. Si c’est le cas, alors le script va tourner a nouveau. C'est une itération. Si aucune cellule n'est a I'état 0,
cela veut dire que chaque cellule a une couleur et donc que la division de la grille est terminée. La fonction “over”
est vraie. L'algorithme dit donc que toutes les cellules se trouvant entre 0 et la longueur de la grille (soit toutes
les cellules de la grille), vont stocker leur valeur respective dans le paramétre “a”. Pour rappel, “a” est la sortie du
composant python dans grasshopper, cela signifie que les valeurs sont envoyées dans la suite de I'algorithme.

125

Introduction

Point historique

Problématique

Etat de I'art

Etapes de la recherche

Résultat de la recherche

Exemples de plans
générés

Conclusion

Notice d’utilisation

Bibliographie

Glossaire

* Annexes

Arthur ROULAND

12.3 - Capture d'écran de 'enregistreur

Script ditor

[P ——

public class Script_Instance : G
«

scriptinstance

private void Runscript(string Dir, string Name, string Ve, bool Capture, object Trigger,
if (Capture) ret
if (string.Ish

(0ir)) return;
(Name)) return;

stem. 10.Path.DirectorySeparatorchar.
1. DirectorySeparatorchar;

string fileName ing.Format (Name, 0);

n jex ur
tem.10.File.Exists (£ileName))
- nt.M ;

g.Format (Name,

if (1Systen.T0.File.Exists (localName))

fileName = localvame;
breaks

hinoView view = Rhinobe
aptureToBitmap (

LEind(Ve, talse);

N false);

Cacne Racovartom cache

ref object

A

ok

126

12.3.2 - Code de I'enregistreur

using Rhino;
using Rhino.Geometry;

m.Windows.Forms;
m.Xml;
m.Xml.Ling;
m.Runtime.Intero

Srvices;

using Rhino.Doc
using Rhino.Coll
using GH_IO;

using GH_IO.Serialization;

be instantiated on demand by the Script component
ummary>
ss Script_Instance : GH_Scriptinstance

Utility functi
ummary>Prin

am
t, params object[{ /* Implementation hidden. */ }
Print useful information & a to the [Out] Parameter of the Script component. </summary>

Object instance to p

] am=
obj, string method_name)

Implementation hidden. */ }

urrent Rhino documen

mmary>

document that owns this script.</summary>
GrasshopperDocument;

ript ponent that owns this script.</summary>
mponent;

irst call to RunScript() is ciated with Iteration==0
bsequent call within the same solution will increment the Iteration count
/summary>

SeparatorChar.ToString()))

Dir += System.|O.Path.DirectorySeparatorChar;

// Do not create directories, only use existing ones.
if (!System.|O.Directory.Exists(Dir))
return;

ume index=0 f
string fileName = Dir + string.Format(Name.

// Try to increment the index un
if (Sy n.|0.File.Exists(fileName))
for (inti = 1;i < intMaxValue; i++)

ve find a name which doesn't exist yet.

string.Format(Name, i);

ksitr ng localName = Dir + s
0 fileName)

IName

m.|0.File.Exists(localName))

fileName = localName;
break;

/ = RhinoDocument.Vi
tureToBitmap(true, false,

Find(VP false);
se);

Custom additional code>

</Custom additional code>

127

128 129

IJF

T [T

struire I'architecture Arthur ROULAND Activités et Instrumentation de la conception

2021

Encadré par

Francois Guéna
Joaquim Silvestre
—

— Anne Tischer ensa paris === (a villette
MaaccC T

