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	 Étant étudiant en Master d’architecture dans le séminaire Activités et 
Instrumentation de la Conception à l’École Nationale Supérieure d’Architecture 
de Paris La Villette (ENSAPLV), et ayant été très intéressé et inspiré par les 
recherches du chercheur Stanislas Chaillou, j’ai voulu travailler sur la génération 
de plans. A l’origine, l’idée de ce mémoire était d’axer mes recherches sur une 
optimisation de plan. L’objectif aurait été d’obtenir un agencement d’espace 
permettant d’optimiser les plans et de réduire ainsi au maximum les circulations 
entre les logements mais également au sein même des logements. Cependant, 
en réfléchissant sur ce sujet et en faisant l’état de l’art, j’ai orienté ma recherche 
dans le domaine de la génération de plan à l’aide de l’Intelligence Artificielle, 
dans la continuité des recherches de différents étudiants de l’ENSAPLV. Après 
quelques semaines de recherches et d’apprentissage dans ce domaine, je me suis 
confronté à plusieurs problèmes majeurs. En effet, les recherches en Intelligence 
Artificielle nécessitent des connaissances en informatique et notamment en code 
informatique que je n’ai pas et que j’ai eu beaucoup de mal à assimiler. J’ai alors 
décidé d’aborder ce sujet d’une façon différente. Les recherches en génération 
de plans avec l’Intelligence Artificielle avancent chaque année, cependant chaque 
chercheur se confronte à un problème de taille qui est l’accès aux banques de 
données de plans. Les intelligences artificielles nécessitent ce que l’on appelle 
une phase d’entraînement durant laquelle les programmes s’exercent tout seuls 
à reconnaître des catégories d’objets avant de pouvoir les générer en s’appuyant 
sur ces bases de données. J’ai alors réorienté mes réflexions dans ce sens afin 
de m’inscrire dans la continuité des recherches effectuées dans le domaine. Ainsi, 
l’objectif de ce mémoire sera d’explorer une manière possible de générer des 
plans afin de pouvoir constituer une banque de données conséquente qui pourrait 
être utilisée par la suite en génération de plan avec l’Intelligence Artificielle.

Banque 
d’images

(Plans générés dans le cadre 
de cette recherche)

Echantillon de 
données

Schéma de fonctionnement d’un programme de Deep Learning (Intelligence Artificielle)

Valeurs 
aléatoires

Générateur Image générée

Discriminateur Evaluation de 
la génération
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• Avant propos 

Introduction

Point historique 

Problématique 

Etat de l’art 

Etapes de la recherche

Résultat de la recherche

Exemples de plans 
générés

Conclusion

Notice d’utilisation 

Bibliographie 

Glossaire 

Annexes

Arthur ROULAND

Figure 1
Schéma de fonctionnement d’un programme de Deep Learning
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	 Les outils de conception en architecture ne cessent de se développer. Ainsi, 
grâce à l’outil informatique de plus en plus performant et diversifié, de nouvelles 
possibilités s’offrent aux architectes en matière de forme, de calcul et de génération 
de formes. L’objet de ce mémoire porte sur l’utilisation des outils paramétriques 
dans la génération de plans.

	 Mon travail consiste donc en une recherche visant à développer un 
programme qui pourra générer des plans très diversifiés afin de les utiliser 
par la suite dans le domaine de la recherche en machine learning ou encore 
en deep learning. Ce programme réalisé sur Grasshopper permettra de générer 
une multitude d’agencements qui répondront à des critères de dimensions et de 
surfaces des différentes pièces à obtenir. Les plans se verront attribuer un score 
qui permettra leur évaluation afin que le programme puisse en juger la qualité. 

	 Dans un premier temps nous ferons un point historique de l’évolution de la 
conception. Nous verrons brièvement les étapes par lesquelles les architectes sont 
passés afin d’arriver à la situation que nous connaissons aujourd’hui. 

	 Nous aborderons ensuite le contexte dans lequel ce mémoire s’inscrit. Nous 
verrons dans cette partie la problématique que nous pouvons extraire en fonction 
des questionnements concernant ce sujet. Cela nous permettra alors d’établir une 
méthode expérimentale pour proposer une réponse à cette dite problématique. 

	 A l’issue de cela, nous ferons l’état de l’art. Il sera question ici de s’intéresser 
à ce qui se fait actuellement dans le vaste domaine de la Conception Assistée 
par Ordinateur (CAO ou CAD : Computer Aided Design) et plus précisément 
en architecture. Nous regarderons les différentes méthodes utilisées ainsi que 
les démarches des chercheurs ayant travaillé dans ce domaine afin d’avoir 
connaissance des possibilités. Cela nous permettra également de voir les limites 
de chacune des méthodes et proposer ainsi une nouvelle approche pour répondre 
à notre questionnement. 

	 Ensuite nous verrons les supports informatiques utilisés afin de réaliser cette expérience 
présentant ainsi leurs caractéristiques respectives ainsi que leurs domaines d’application. Puis nous 
ferons un bilan de l’évolution de la recherche, les étapes par lesquelles je suis passé avant d’arriver au 
résultat final ainsi que les problèmes que j’ai pu résoudre. Cette expérience n’est pas l’unique façon de 
générer des plans mais une des multiples manières d’y arriver. Nous verrons donc les choix que j’ai pu 
faire afin de résoudre certains problèmes qui ont, par la suite, eu un impact sur le résultat des plans 
générés. 

	 Une fois l’évolution de la recherche expliquée, nous regarderons le résultat de l’expérience de ce 
mémoire qui nous permettra de répondre à notre questionnement. Le fonctionnement du programme 
final sera développé en détail dans cette partie afin d’en faciliter la compréhension. Enfin, nous pourrons 
regarder un échantillon des plans générés. 

	 Pour terminer, nous verrons la notice d’utilisation du programme. Afin de s’inscrire dans une 
démarche de recherche, je souhaitais rendre accessible le fonctionnement du programme afin qu’une 
tierce personne puisse se l’approprier mais également que quiconque puisse faire fonctionner le 
programme simplement afin de générer une banque de plans. 
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	 Durant la Renaissance, un nouveau métier s’affirme : l’architecte. Bien que 
beaucoup de personnes ont exercé cette pratique bien avant la Renaissance, c’est 
à cette période, que le métier se définit à part entière dans le rôle qu’il occupe encore 
aujourd’hui. L’architecte était alors chargé de concevoir le projet mais aussi d’en 
assurer le bon déroulement tout au long de sa réalisation. Depuis bien longtemps, 
les architectes se sont munis d’outils pour les aider à concevoir. Tout d’abord de 
simples stylos, équerres, règles et compas. Cependant, une innovation va venir 
chambouler l’avenir de la manière de concevoir l’architecture et l’architecture elle-
même : l’invention de l’informatique. L’informatique est apparue progressivement 
et a évolué au fil du temps. L’invention n’est pas un processus linéaire, cela résulte 
de multitudes de tests d’améliorations parmi lesquelles il résulte ce qui a été 
sélectionné comme amélioration viable ou intéressante. On retrouve également 
beaucoup de tentatives ratées ou bien d’améliorations qui n’ont pas su trouver 
leur utilité à leur époque. Ce serait vers 1834 que Charles Babbage aurait conçu 
la première machine analytique : un calculateur mécanique programmable basé 
sur un système de cartes perforées reliées à un organe de commande. Herman 
Hollerith, invente quant à lui une machine électromécanique permettant de stocker 
des données sur une carte perforée en 1880. Au fur et à mesure de l’évolution de 
l’informatique, l’ordinateur a été inventé jusqu’à arriver à ce que nous connaissons 
aujourd’hui. Tout d’abord, dans les années 50, l’ordinateur a été développé dans 
un but militaire tout comme de nombreuses inventions. Il a peu à peu été adapté 
jusqu’à arriver à un usage civil, celui que nous connaissons aujourd’hui avec 
nos ordinateurs, smartphones, tablettes bien d’autres. Les premiers outils de 
Conception Assistée par Ordinateur (ou CAO ou CAD en anglais) apparaissent 
et ce n’est réellement que dans les années 70 qu’ils se développent afin que 
les architectes puissent les utiliser. Cependant, le CAD peut être appréhendé 
de multiples façons. Tout d’abord utilisé afin de faire sur ordinateur ce que les 
architectes faisaient avant sur papier en dessin en deux dimensions : un ensemble 
de traits ou de courbes qui créent des formes jusqu’à arriver à du CAD en trois 
dimensions. Jusqu’alors, ce CAD servait à dessiner, à créer, à concevoir sur un outil 
informatique, mais l’ordinateur n’intervenait pas réellement dans le processus de 
conception. Aujourd’hui, cette utilisation du CAD est globalement maîtrisée par 
l’ensemble du corps de métier. Cependant, la Conception Assistée par Ordinateur 
ne se limite pas à un simple changement de support de dessin et de conception. 

	 Avec l’apparition du paramétrique dans les années 80, le CAD s’ouvre à un nouveau champ des 
possibles. Dans cette branche du CAD, l’ordinateur joue un rôle majeur dans la notion de conception. 
En effet, dans le domaine du paramétrique, les objets virtuels ne sont pas dessinés par les architectes 
mais leurs paramètres sont décrits étape par étape. Ainsi, une boîte n’est pas simplement qu’un volume 
dessiné arbitrairement dans un espace virtuel mais devient un quadrilatère avec un grand côté de 
longueur x et un petit côté de longueur y, extrudé suivant la normale de ce plan d’une longueur z. Cette 
boîte a un point d’origine dans l’espace qui est défini par l’utilisateur et celle-ci est orientée dans les 
trois plans selon un angle également défini. Ainsi, chaque étape du processus de conception est définie, 
précisée et paramétrée par le concepteur qui ne va que très peu dessiner voire pas du tout. L’ordinateur 
va ainsi calculer l’ensemble des contraintes et paramètres définis lors du processus de conception afin 
d’arriver un modèle 2D ou 3D respectant l’ensemble de ces contraintes. Cette façon d’utiliser le CAD 
permet la création de nombreuses formes, objets complexes très difficiles voire impossibles à dessiner 
sans avoir recours à l’utilisation de l’informatique. Certains architectes et designers en ont même fait 
leur signature. L’utilisation de logiciels paramétriques dans l’utilisation du CAD est relativement récente 
et donc la plupart des architectes n’utilisent pas cette façon de concevoir. Cependant, la conception 
paramétrique n’est pas l’unique forme où la machine intervient amplement dans le processus de 
conception. Depuis quelques années, une nouvelle branche de la conception architecturale se développe 
grandement : l’utilisation de l’Intelligence Artificielle.
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	 Dans le domaine de la recherche en génération de plan, on peut retrouver 
plusieurs logiques expérimentales permettant d’arriver à ce résultat. Parmi elles, 
on trouve notamment la génération de plan en utilisant un programme de machine 
learning ou de deep learning qui sont des branches du domaine de l’intelligence 
artificielle. Cependant, comme nous avons pu l’évoquer précédemment, ce type de 
programme est fait pour apprendre et nécessite donc une phase d’entraînement. 
En somme, on va donner à un programme d’intelligence artificielle des informations 
sur lesquelles il va s’entraîner. Le but de l’entraînement peut être par exemple de 
reconnaître une certaine typologie de plan. Une fois cette phase d’apprentissage 
terminée, lorsque le programme ne se trompe que très peu (le taux d’erreur est 
convenable comparé au taux de réussite), alors il est possible d’utiliser cet outil 
afin de générer des formes aléatoires qu’il va reconnaître. Ainsi le programme 
ne va nous proposer que des résultats qu’il reconnaît et donc générer des plans 
correspondant aux critères que l’utilisateur lui soumet. 

	 Cependant, afin de générer des plans répondant à certaines exigences, 
la phase d’entraînement nécessite une grande quantité d’informations de départ 
sur laquelle le programme va s’exercer. Certains organismes répertorient des 
plans, ayant un aspect homogène et les mettent à disposition comme Rakuten 
par exemple. Il semble d’ailleurs que ce soit cette banque de données que le 
chercheur Stanislas Chaillou a utilisée pour le développement de son intelligence 
artificielle. Cependant, ces plans fournis par Rakuten répondent à des standards 
asiatiques, la phase d’entraînement est donc influencée par ce paramètre et les 
plans alors générés le sont pour leurs similarités avec ces données initiales. 

	 L’objectif de cette recherche est alors de créer un programme permettant de générer des plans 
simples, qui répondront à des critères paramétrables. Ainsi, on pourra obtenir une grande diversité de 
plans qui serviront par la suite comme banque de données dans la recherche en intelligence artificielle. 
Les plans générés seront évalués en fonction de certaines de leurs caractéristiques qui leur sont propres 
pour pouvoir les noter et les classer dans des catégories. 

	 Pour l’élaboration de cette expérience, j’ai souhaité utiliser des outils les plus simples possibles 
afin de permettre à une plus grande diversité de personnes d’avoir accès à cette recherche afin de la 
modifier, l’améliorer et ainsi pouvoir générer des plans adaptés à leurs attentes. L’objectif est de générer 
des formes simples mais avec un très large spectre de possibilités pour permettre l’élaboration d’une 
banque de données la plus diversifiée possible
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	 Cette partie qu’est celle de l’état de l’art va nous permettre de prendre 
connaissance de l’avancée du savoir  dans le domaine de la génération de 
plans. Cependant, comme nous avons pu le voir précédemment, nous pouvons 
appréhender ce sujet de plusieurs façons. Nous allons donc tout d’abord faire 
l’état de l’art de la génération de plan à l’aide de l’Intelligence artificielle, puis nous 
ferons l’état de l’art de ce sujet dans les domaines des automates cellulaires, des 
systèmes multi-agents ainsi que celui de l’allocation spatiale.

	 L’intelligence artificielle est l’ensemble de théories et de techniques mises 
en œuvre en vue de réaliser des machines capables de simuler l’intelligence 
humaine. Ces techniques sont aujourd’hui largement utilisées dans divers domaines 
utilisant la technologie comme nos smartphones, tablettes et ordinateurs. Certains 
chercheurs et architectes se sont alors penchés sur l’adaptation et l’utilisation de 
l’intelligence artificielle dans le domaine de l’architecture et donc de la génération 
de plans. 

4.2 - L’intelligence artificielle

4.1 - Introduction de l’état de l’art

	 Dans le domaine de la recherche en génération de plans pour l’architecture, 
les travaux de Stanislas CHAILLOU sont très souvent mentionnés. Ce chercheur 
a présenté en Février 2020 une conférence se tenant au Pavillon de l’arsenal à 
Paris intitulée : « AI & Architecture ». Cette conférence d’une vingtaine de minute 
disponible sur internet présente les travaux que Chaillou à pu faire ces dernières 
années. Évoluant essentiellement dans le domaine de l’intelligence artificielle, 
cet architecte chercheur a alors développé un programme de Deep Learning 
permettant de générer des plans d’architecture tout à fait convaincants par leur 
aspect, leur ordonnance etc. Dans la vidéo du Pavillon de l’Arsenal, il explique 
l’élaboration de son programme et les étapes par lesquelles il est passé afin de 
développer un tel dispositif. 

4.2.1 - Stanislas CHAILLOU

	 Le mémoire de Jean-Raphaël PIQUARD a également participé à l’élaboration de mon mémoire. 
Cet élève de l’École Nationale Supérieure d’Architecture de Paris La Villette (ENSAPLV), s’est intéressé 
à la génération de plan à l’aide de l’intelligence artificielle. Dans son mémoire on peut voir qu’il a tout 
d’abord commencé par générer des chiffres entre 0 et 9. Il a ensuite réussi à générer des formes 
géométriques simples comme des carrés, des triangles, des losanges etc. Après ces étapes de 
recherches, il a adapté son programme à la génération de formes noires dans un espace blanc. Quelque 
chose de très intéressant émerge de cette recherche car les formes générées par le programme de 
Jean-Raphaël Piquard peuvent appartenir à certaines catégories identifiables et reconnaissables mais 
son programme génère également ce qu’il appelle des chimères. Ces dernières n’appartiennent à 
aucune des catégories ou pourraient appartenir à plusieurs catégories en même temps. Ce résultat est 
intéressant car grâce à ce processus de recherche, il est possible de générer des plans chimériques 
appartenant à des typologies qui sortent de l’ordinaire.

4.2.2 - Jean Raphaël PIQUARD

	 Alex SALINI a lui aussi été étudiant à l’ENSAPLV. Durant son Post-Master Recherche en 
Architecture, il a rédigé en Septembre 2020, un carnet de recherche sur “L’utilisation d’un réseau 
adversarial antagoniste (GAN) dans la création de plans d’architecture”. Tout comme Jean-Raphaël 
PIQUARD, il s’est intéressé à l’utilisation de l’intelligence artificielle et s’est inspiré des travaux de 
Stanislas CHAILLOU. Cependant, il semble qu’Alex SALINI se soit directement attaqué à la génération 
de plans sans élaborer d’étapes dans son programme. La seconde différence importante est la banque 
de données. Il semble avoir fait le choix d’une banque de plans beaucoup plus précise, d’une qualité 
de résolution beaucoup plus élevée quitte à avoir une banque beaucoup plus réduite avec 250 plans 
(Jean-Raphaël PIQUARD utilisait des images de 50 par 50 pixels). Le résultat de son programme 
d’intelligence artificielle n’était pas concluant par rapport au résultat attendu mais les générations qu’il 
a pu faire demeurent très intéressantes et permettent tout de même de produire une multitude de 
propositions. 

4.2.3 - Alex SALINI
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Figure 4.2.1.b
Photo de Stanislas CHAILLOU
Source : pavillon-arsenal.com

Figure 4.2.1.c
Travail de Stanislas CHAILLOU
Source : paulvanderlaken.com

Figure 4.2.1.a
Travail de Stanislas CHAILLOU

Source : cahiers-techniques-batiment.fr

Figure 4.2.2.a
Exemple de génération

Source : Mémoire de Jean-Raphaël PIQUARD

Figure 4.2.3.a
Exemple de génération

Source : «L’utilisation d’un réseau adversarial antagoniste (GAN) dans la création de plans d’architecture»
Alex SALINI, 2020
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	 Un automate cellulaire consiste en une grille régulière de « cellules » 
contenant chacune un « état » choisi parmi un ensemble fini et qui peut évoluer au 
cours du temps. Cette méthode permet de générer en deux dimensions ou en trois 
dimensions un assemblage de cellules. Certains chercheurs se sont penchés sur 
ce sujet afin de l’adapter à la génération en architecture, qu’elle soit à l’échelle de 
plans, de bâtiments ou de quartiers de villes. L’utilisation des automates cellulaires 
est très intéressante car elle permet de paramétrer chaque unité à l’aide de 
l’informatique. Les formes ainsi générées répondent donc à des critères définis et 
variables dont on peut connaître les paramètres. 

	 Nathan BEYLER a également été étudiant à l’ENSAPLV et a rédigé son 
mémoire de recherche de master “Utiliser et transformer des critères en esquisses 
de plan” en 2019. Cet étudiant s’est donc intéressé à la génération de plan en se 
basant sur un principe d’automates cellulaires dans l’optique de soumettre des 
propositions aux architectes. Nathan BEYLER ne s’inscrit pas dans la continuité 
de la recherche en intelligence artificielle mais souhaite plutôt développer des 
esquisses de plans en prenant en compte différents paramètres tels que la lumière, 
le son et la chaleur. Sa recherche lui a permis d’élaborer une manière de diviser un 
plan en le transformant en une grille de cellules et en divisant cette grille avec un 
automate cellulaire afin de définir différents espaces de couleur. 

4.3 - Les automates cellulaires

4.3.1 - Nathan BEYLER

	 KRAWCZYK Robert J. est un professeur et chercheur du College of Architecture de l’Illinois 
Institute of Technology à Chicago aux Etats-Unis. Son papier de recherche intitulé “Architectural 
Interpretation of Cellular Automata” publié en 2002 porte comme son nom l’indique sur l’interprétation 
architecturale des automates cellulaires. Ce travail consiste à générer des relations entre des cellules 
sur un plan horizontal mais aussi vertical dans l’optique de produire des formes en trois dimensions 
ayant des relations. Les formes ainsi générées sont par la suite interprétées de différentes manières en 
utilisant différentes formes qui font varier le résultat final. On voit ici que les automates cellulaires ne 
sont qu’un support à la créativité. Les relations dans les deux plans sont générées selon des paramètres 
mais le résultat laisse place à différentes interprétations esthétiques et spatiales. 

4.3.2 - Robert J. KRAWCZYK

	 Christiane M. HERR est une enseignante et chercheuse à Southern University of Science and 
Technology à Shenzhen en Chine. Ryan C. FORD est quant à lui, un architecte Néo-Zélandais. Ces deux 
personnes ont collaboré sur un papier de recherche intitulé “Adapting Cellular Automata as Architectural 
Design Tools” publié en 2015. Tout comme KRAWCZYK, ces deux chercheurs tentent d’appliquer les 
automates cellulaires à la conception architecturale en modifiant les règles des automates cellulaires 
afin qu’ils correspondent à celles de l’architecture. Les formes générées dans cette recherche ne restent 
que formelles et l’interprétation est ensuite faite par l’humain. Le programme élaboré ne semble pas 
permettre de transformer ces formes en plans architecturaux. Cependant, le but de ce papier de recherche 
est plutôt de démontrer qu’il est possible d’appliquer ce système à l’architecture, de démocratiser ce 
support d’aide à la conception et de le considérer comme un réel outil dans le processus de conception. 

4.3.3 - Christiane M. HERR & Ryan C. FORD
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Figure 4.3.1.a
Exemple de génération

Source : «Utiliser et transformer des critères en esquisses de plan»
Nathan BEYLER, 2019

Figure 4.3.2.a
Travaux de Robert J. KRAWCZYK

Source : «Architectural Interpretation of Cellular Automata»
Robert J. KRAWCZYK, 2002

Figure 4.3.3.a
Travaux de Christiane M. HERR & Ryan C. Ford

Source : «Adapting Cellular Automata as Architectural Design Tools»
Christiane M. HERR & Ryan C. Ford ,2015
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	 Les systèmes multi-agents sont des systèmes composés d’un ensemble 
d’agents (un processus, un robot, un être humain, une fourmi etc.), actifs dans 
un certain environnement et interagissant selon certaines règles. Ce procédé se 
rapproche de celui des automates cellulaires mais ne se base pas forcément sur 
l’utilisation d’une grille. Les architectes et les chercheurs ont utilisé cette méthode 
afin de pouvoir générer des plans ordonnés répondant à des critères. Ces derniers 
sont souvent liés aux relations spatiales mais aussi fonctionnelles qu’entretiennent 
les espaces entre eux. Ce système appliqué en architecture se rapproche du 
principe d’allocation spatiale. Celle-ci est la disposition informatique des pièces 
dans un plan. C’est le processus de détermination de la position et de la taille de 
différentes pièces dans un espace à deux dimensions, en fonction des exigences 
de l’utilisateur et des contraintes topologiques et géométriques. L’allocation 
spatiale va généralement travailler dans un espace restreint, une forme visant à 
être agencée selon des paramètres contrairement au système multi-agents dont 
la forme va être générée par la création du plan. 

	 Zifeng Guo est un chercheur de l’Ecole Polytechnique Fédérale de Zurich en 
Suisse. Dans ses travaux intitulés “Evolutionary approach for spatial architecture 
layout design enhanced by an agent-based topology finding system” publiés en 2017, 
il aborde la génération en architecture en se basant sur un système multi-agents. 
Un système multi-agents est défini par wikipédia comme étant “[...] un système 
composé d’un ensemble d’agents (un processus, un robot, un être humain, une 
fourmi etc.), actifs dans un certain environnement et interagissant selon certaines 
règles”. A l’aide de cette méthode, ce chercheur dispose des espaces qui vont 
interagir entre eux de plusieurs manières : l’attraction, la répulsion, l’échange et la 
compression. Grâce à cette méthode, il arrive à imbriquer et organiser les espaces 
entre eux en plan mais également dans un univers virtuel en trois dimensions. Par 
la suite, il simplifie sa méthode en se basant sur un système de grille permettant 
d’obtenir des résultats très convaincants. 

4.4 - Les systèmes multi-agents et l’allocation spatiale

4.4.1 - Zifeng Guo

	 Le second article de ce chercheur auquel je me suis intéressé s’intitule “Generated Building 
Layout”. Cette recherche est également basée sur l’utilisation de systèmes multi-agents mais uniquement 
dans un environnement à deux dimensions. Dans ces travaux, il spécifie les noms des pièces ainsi que 
les relations qu’elles entretiennent avec les espaces avoisinants. Ces espaces sont alors disposés 
dans un rectangle dans lequel le plan final doit s’inscrire. L’ordinateur propose alors un agencement en 
disposant des cloisons et des ouvertures en façade afin de constituer un plan. 

	 Silvio CARTA est un enseignant chercheur ayant travaillé à l’université de Cagliari en Italie, à 
l’université de Rotterdam et à l’université de Delft aux Pays-Bas. Il travaille désormais à l’université de 
Hertfordshire au Royaume Uni. Ses travaux portent sur l’organisation autonome des plans à l’aide d’outils 
informatiques. Deux d’entre eux m’ont particulièrement intéressé : “Self-organizing Floor Plans” réalisé 
à l’université d’Hertfordshire et publié le 27 Mai 2020 et “Self-Organising Floor Plans in Care Homes” 
réalisé en Mai 2020 avec Stephanie St Loe également chercheuse à l’université d’Hertfordshire. Le 
premier travail de ce chercheur tend à une optimisation du plan à chaque génération. Ainsi, le meilleure 
agencement d’espaces est utilisé en entrée pour la génération suivante dans l’optique d’améliorer le 
résultat à chaque itération. Les premiers plans générés sont très intéressants car ils ne répondent pas 
aux standards d’architecture. Les formes et leur disposition sortent de l’ordinaire et cette approche 
permet d’explorer de nouvelles partitions. La seconde partie de cette recherche ressemble à un système 
multi-agents où l’utilisateur va venir disposer des espaces en spécifiant les connexions de chaque 
pièce. Le programme va venir générer une proposition de plan en respectant ces conditions. 

4.4.2 - Silvio CARTA
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Figure 4.4.1.a
Travaux de Zifeng Guo

Source : Evolutionnary approach for spatial architecture layout design enhanced by an agent-based typology finding system
2017

Figure 4.4.1.b
Travaux de Zifeng Guo

Source : Evolutionnary approach for spatial architecture layout design enhanced by an agent-based typology finding system
2017

Figure 4.4.1.C
Travaux de Zifeng Guo
Source : Evolutionnary approach for spatial archi-
tecture layout design enhanced by an agent-based 
typology finding system
2017

Figure 4.4.1.d
Travaux de Zifeng Guo
Source : Generated Building Layout

Figure 4.4.2.a
Travaux de Silvio CARTA

Source :Self-organizing Floor Plan
27 Mai 2020

Figure 4.4.2.b
Travaux de Silvio CARTA

Source :Self-organizing Floor Plan
27 Mai 2020
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	 Le second article auquel je me suis intéressé est “Self-Organising Floor 
Plans in Care Homes” réalisé avec Stephanie ST LOE. Ces deux travaux de 
recherche ont été publiés en Mai 2020 et portent sur le même sujet. Cependant, 
ce second travail intègre également le champ de vision depuis certains points 
du plan. Ainsi, les connexions qu’entretiennent les espaces peuvent traverser les 
pièces et évoluer selon le cheminement d’un potentiel usager. 

	 Blender est un logiciel de 3D gratuit et communautaire. Ainsi, les utilisateurs 
peuvent créer des plug-ins, des add-ons que tout le monde peut télécharger et 
utiliser. Durant l’année 2021 est sortie une nouveauté sur le logiciel Blender : le 
Building Generator with Geometry Nodes. Cet add-on gratuit permet la génération 
de bâtiments entiers. En paramétrant des textures, des formes de façades, de 
planchers, de structures et de percements, le logiciel est capable de générer en 
quelques secondes des bâtiments. Pour l’instant, il semble que l’add-on soit utilisé 
dans le but de créer les formes extérieures des bâtiments au détriment de la 
partition du plan. Cependant, cette méthode pourrait très facilement être appliquée 
à la génération de plans. 

4.4.3 - Buiding Generator with Geometry Nodes

	 Krishnendra SHEKHAWAT est un chercheur diplômé de l’Indian Institute of technology de Delhi 
(2008) et de l’université de Genève (2013). Il s’est notamment intéressé à la question de l’allocation 
spatiale en architecture qu’il définit comme ceci : “Space allocation is the computational arrangement 
of rooms (spaces) in a floor plan. In other words, it is the process of determining the position and size 
of different rooms in a two-dimensional space, according to the user’s requirements and topological 
and geometric constraints”. En somme nous pourrions le définir en français comme la disposition 
informatique des espaces dans un plan en déterminant la position et la taille de chaque espace du plan. 
Il a réalisé de nombreux travaux de recherche à ce sujet comme un article nommé “Automated space 
allocation using mathematical techniques” publié en Avril 2015. Dans cet article, ce chercheur a créé 
une méthode afin de disposer des espaces tendant à respecter les dimensions d’un rectangle d’or (le 
ratio du grand côté du rectangle sur le petit doit être égal à 1.618). Ainsi, il a divisé en 4 un plan ayant 
la forme d’une croix et ces 4 espaces sont alors divisés en pièces ayant également ce ratio doré. 

4.4.4 - Krishnendra SHEKHAWAT

	 Le second article de ce chercheur qui m’a particulièrement intéressé s’intitule “Space Allocation 
in Rectangular Floor Plan” et a été publié en Décembre 2012. Cette thèse réalisée pour l’Université 
de Genève semble être les prémisses de la recherche publiée en Avril 2015. Il y détaille sa démarche 
et les opérations mathématiques mises en œuvre afin de paramétrer les différents espaces ainsi que 
leurs proportions. Le résultat de ces recherches est très intéressant car la division et le rapport de 
surface qu’entretiennent les pièces entre elles lui permettent de hiérarchiser les espaces tout en créant 
les inscrivant dans des rectangles dorés (selon certains consensus, les proportions dorées sont les 
proportions parfaites que l’on peut retrouver dans le corps humain, la nature, certaines structures 
minérales etc…).
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Figure 4.4.2.c
Travaux de Silvio CARTA

Source :Self-organizing Floor Plan in Care Homes
Mai 2020

Figure 4.4.3.a
Exemple de génération

Source : Instagram @antoinebagattini
15 Novembre 2021

Figure 4.4.4.a
Travaux de Krishnendra SHEKHAWAT 

Source : Automated space allocation using mathematical techniques
1er Avril 2015

Figure 4.4.4.b
Travaux de Krishnendra SHEKHAWAT 

Source : Space Allocation in Rectangular Floor Plan
Décembre 2012
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	 L’agence d’architecture suédoise Wallgren Arkitekter et l’entreprise de 
construction suédoise BOX Bugg ont développé un plug-in de programmation 
visuelle sur Grasshopper. Après avoir dessiné les murs extérieurs d’un bâtiment 
ainsi que ses cloisons intérieures, ce plug-in permet d’agencer les espaces en 
dessinant du mobilier et des portes. Il est possible de faire mouvoir les cloisons 
et les murs, ainsi le plan s’adapte automatiquement aux nouveaux paramètres. 
Cet outil peut permettre d’aider les architectes à aménager leurs plans et leur 
proposer des solutions différentes de celles qu’ils auraient pu concevoir. Il semble 
cependant que ce programme ne propose qu’une seule partition de l’espace 
par plan et n’explore pas toutes les possibilités. De plus, les paramètres doivent 
être modifiés manuellement ou peuvent potentiellement être programmés par 
l’utilisateur. Cela reste une supposition. 

4.4.5  - Finch 3D

	 Pour conclure cet état de l’art, il semble que beaucoup de personnes s’intéressent au domaine 
de la génération en architecture. Cela peut prendre différentes formes à différentes échelles (celle 
d’un logement, d’un bâtiment ou d’un bout de ville). Diverses méthodes sont utilisées et il en existe 
certainement d’autres que nous n’avons pas pu évoquer ici. Cet état de l’art n’a pas pour but d’être 
exhaustif sur ce domaine mais plutôt de donner un aperçu de la situation actuelle dans le domaine 
de la génération en architecture. Nous avons ici pu voir différentes méthodes que sont l’intelligence 
artificielle, les automates cellulaires, les systèmes multi-agents ainsi que l’allocation spatiale. 

	 Nous verrons dans la partie 5 de ce mémoire de recherche que la méthode retenue est celle 
des automates cellulaires. En effet, j’ai pu suivre l’année dernière les cours “TR707 : Initiation à la 
modélisation paramétrique” ainsi que le cours “CTID 825 : systèmes de la conception digitale” dispensés 
à l’ENSAPLV par François GUENA. Ces cours portaient en partie sur l’utilisation de cette méthode pour 
la génération de formes sur Rhinocéros 3D à l’aide du plug-in Grasshopper. Cette méthode m’est donc 
relativement familière mais elle est également plus accessible que certaines autres comme l’utilisation 
de l’intelligence artificielle qui requiert un certain nombre de connaissances en langage informatique. 

4.5 - Conclusion de l’état de l’art
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Figure 4.4.5.a
Capture d’écran d’une vidéo

Source : archdaily.com
6 Décembre 2019

Figure 4.4.5.b
Capture d’écran d’une vidéo

Source : archdaily.com
6 Décembre 2019
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5.0 – Les logiciels

5.0.1 - Rhinoceros 3D

	 Pour réaliser cette expérience, j’ai choisi d’utiliser le logiciel Rhinoceros 3D. 
Ce logiciel Conception Assistée par Ordinateur a été sélectionné pour plusieurs 
raisons. Premièrement, il permet de générer des formes très variées et complexes 
ce qui laisse alors une grande liberté à l’utilisateur. Il est plus libre que certains 
autres logiciels utilisés en architecture comme Archicad ou Revit par exemple. 
Rhinoceros 3D est disponible sur PC et sur Mac ce qui pourra également permettre 
à un plus grand nombre de personnes d’accéder aux fichiers afin de pouvoir les 
modifier. Enfin, Rhinoceros 3D propose un plug-in nommé GrassHopper dont nous 
allons nous servir tout au long de cette expérimentation

5.0.2 - Grasshopper

	 Grasshopper (GH) est un plug-in de Rhinoceros 3D. Un plug-in (encore 
appelé module d’extension ou module externe) est un programme complétant les 
fonctionnalités d’un logiciel. Le plugin GrassHopper permet de créer des modèles 
paramétriques sur Rhinoceros grâce à de la programmation visuelle. GrassHopper 
a été sélectionné car il est utilisé par certains architectes concevant des projets à 
l’aide de l’outil paramétrique. Cette extension permet la création de formes variées 
et cela nous servira donc à générer des dispositions de plans dont on connaît les 
paramètres, que l’on peut faire varier mais dont on peut également en extraire les 
données. De plus, générer des formes à l’aide du paramétrique dans Rhinoceros 
3D avec GrassHopper permet de visualiser le résultat, offrant ainsi une meilleure 
appréhension et compréhension du programme

5.1 – Premières recherches avec le plug-in « Marmot »

	 Tout d’abord, j’ai voulu baser mes recherches sur des programmes déjà existants disponibles 
sur Food4Rhino afin de comprendre leur fonctionnement. J’ai donc pu analyser ce que ces programmes 
permettaient de générer mais j’ai également identifié leurs limites. J’ai notamment téléchargé et utilisé 
l’add-on « Marmot ». Cet add-on sert à générer une répartition d’espaces au sein d’un rectangle que 
l’utilisateur définit. En testant ce programme j’ai pu identifier des avantages et des inconvénients à 
baser mes recherches sur cet add-on. L’avantage aurait été la facilité d’utilisation. Marmot permet 
d’indiquer différentes pièces dans un plan qui est définissable par l’utilisateur. Il permet d’indiquer la 
surface de ces différentes pièces mais également les relations qu’elles entretiennent entre elles. C’est-
à-dire que l’on peut indiquer si l’on souhaite que la pièce 1 communique avec la pièce 2. Ce programme 
est assez efficace, cependant, la surface que l’on accorde à chaque pièce semble être approximative 
sans réelle surface minimale. L’ensemble des surfaces des pièces varie afin de trouver un équilibre pour 
occuper l’ensemble du plan. Les différents espaces n’ont pas de longueurs minimales, et en ce sens, 
une chambre de 10 mètres carrés pourrait être générée comme étant un rectangle de 10 mètres par 
1 mètre. Enfin, cet add-on ne semble fonctionner qu’avec une surface rectangulaire. Un test avec une 
surface polygonale plus quelconque a été réalisé mais le programme ne semble pas réussir à aménager 
le plan.

5.2 – Premières recherches avec le plug-in « Magnetizing Floor Plan Generator »

	 En continuant mes recherches sur l’avancement de la génération de plan, j’ai trouvé l’addon 
“Magnetizing Floor Plan Generator”. Ce programme est bien plus complet mais également plus 
complexe que l’add-on Marmot. Magnetizing Floor Plan Generator permet comme son nom l’indique de 
générer des plans. Tout comme pour Marmot, j’ai pu télécharger et essayer cet outil et j’ai identifié des 
avantages et des inconvénients à ce programme. En premier lieu, cette extension est plutôt complète 
et permet de générer des formes de plans très variées, en indiquant les différentes pièces souhaitées, 
d’afficher leurs surfaces respectives mais également les relations qu’elles entretiennent entre-elles 
comme dans l’extension Marmot. L’avantage est la diversité de paramètres sur lesquels l’utilisateur 
peut intervenir mais également la diversité des formes générées. Malheureusement, cet add-on est très 
complexe à utiliser et est très spécifique. Les données générées par ce programme sont au final peu 
exploitables dans le sens où il est difficile de récupérer ces données afin de les réutiliser en complétant 
le programme. Les surfaces des pièces sont strictement égales au paramètre prédéfini par l’utilisateur 
et ne peuvent pas varier. La relation qu’ont les pièces entre elles est certes très précise mais doit être 
changée manuellement. Dans ce mémoire, il est primordial que l’ordinateur puisse faire varier ces 
paramètres sans intervention humaine une fois l’algorithme lancé.
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Figure 5.0.1.a
Logo de Rhinoceros 3D
Source : food4rhino.com

Figure 5.0.2.a
Logo du plug-in GrassHopper
Source : food4rhino.com

Figure 5.1.a
Logo de l’add-on Marmot
Source : food4rhino.com

Figure 5.2.a
Logo de l’add-on Magnetizing Floor Plan Generator
Source : food4rhino.com
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5.3 – Division de la surface avec le composant « Substrate »

	 Après ces tentatives d’adaptation d’un programme existant à ma recherche, 
j’ai donc compris que la réussite de cette dernière reposerait sur le choix de la 
méthode de division d’une surface en différents espaces. L’enjeu est donc de 
trouver une façon de diviser une surface immuable en plusieurs espaces qui eux 
peuvent se trouver dans un domaine variable. 

	 Afin de tenter de résoudre ce problème, je me suis intéressé au composant 
“Substrate” de GrassHopper. Cet élément permet la division d’une surface en un 
nombre d’espaces donné. Par défaut, l’angle de cette division est aléatoire. En 
indiquant un angle “pi” j’ai pu obtenir une division où les espaces se rencontrent en 
formant des angles droits. Ainsi la surface principale a été découpée en plusieurs 
rectangles formant ainsi la partition du plan. En sortie de ce composant, j’ai pu 
récupérer ces surfaces. 

	 J’ai alors commencé à élaborer une partie d’algorithme me permettant 
d’évaluer les surfaces obtenues. A ce stade de la recherche, l’évaluation de la 
qualité des espaces ne repose que sur la surface au sol des pièces. Grâce à ce 
système, il est donc possible de savoir si la superficie d’une pièce se situe dans un 
intervalle que j’ai pu indiquer. En sortie de cette évaluation, si la surface se trouve 
dans l’intervalle, alor, sa valeur sort de l’algorithme. Si sa surface est trop petite ou 
trop grande, alors la valeur 0 sort de l’algorithme. Les sorties de chaque pièce sont 
alors regroupées afin de constituer le score final. 

	 Pour optimiser les résultats, j’ai choisi d’utiliser un module de design 
génératif intégré à GrassHopper : “Galapagos”. Ce composant récupère une ou 
plusieurs valeurs et peut agir sur des paramètres que l’on définit afin de les faire 
varier dans l’optique d’optimiser ou de minimiser la valeur de sortie. A cette étape 
de la recherche, l’utilisation de Galapagos n’a pas été convaincante car le système 
d’évaluation donnait en sortie des surfaces et non pas des scores. Galapagos 
cherchait donc soit à les optimiser, soit à les minimiser.

5. 4 – Modification du système d’évaluation

	 Dans cette nouvelle étape, j’ai donc modifié mon système d’évaluation afin qu’il n’évalue non 
plus la valeur des surfaces mais si ces dernières respectent ou non les critères que je leur demandais. 
Pour ce faire, les surfaces étaient évaluées afin de voir si elles se trouvaient toujours dans l’intervalle 
de valeur prédéfini. Au lieu d’envoyer leur valeur en sortie, elles se voyaient attribuer un score : 0 ou 1. 
Ainsi, si les pièces respectent les surfaces demandées, elles obtiennent 1 point. Cependant, la surface 
ne reste qu’un indice de qualité d’espace : une chambre de 15m² peut paraître très confortable dans 
un logement mais si cette chambre fait 15 mètres de long sur 1 mètre de large alors l’espace n’est pas 
praticable. Afin de résoudre ce problème, un nouveau module d’évaluation est venu s’ajouter au premier 
me permettant d’évaluer la longueur des côtés. Cette partie de l’algorithme permet donc de vérifier si 
les côtés sont égaux ou supérieurs à une valeur donnée. Si c’est le cas, alors on va attribuer 1 point à 
la pièce, dans le cas contraire : 0 point. 

	 A l’issue de cela, j’ai tenté de réutiliser Galapagos pour optimiser cette fois -ci le résultat qui 
sortait des modules d’évaluation. Plus le score est élevé, plus il respecte les critères que l’utilisateur 
demande au programme de génération.
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Figure 5.3.c
Logo de l’add-on Galapagos
Source : food4rhino.com

Figure 5.4.a
Système de points

© Arthur ROULAND

Figure 5.4.b
Premiers résultats obtenus avec Galapagos

© Arthur ROULAND

Figure 5.3.b
Premier programme d’évaluation
© Arthur ROULAND

Figure 5.3.a
Illustration du composant «Substrate»

© Arthur ROULAND
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5.5 – Recherches sur la division de la surface

5.5.1 - Division en  voronï

	 En utilisant le composant Substrate, Galapagos ne pouvait intervenir que 
sur un seul paramètre d’entrée : Seed (graine). Cette Seed peut être modifiée en 
changeant la valeur d’entrée. Cependant, aucune logique apparente ne se dessine 
entre la Seed 1, la Seed 2, la Seed 3 etc… Galapagos cherche à trouver une valeur 
optimisée et cela n’est pas possible avec un paramètre Seed. Afin d’optimiser les 
chances de résultats, j’ai indiqué que ce paramètre pouvait prendre un large panel 
de valeurs afin d’en trouver potentiellement une qui permettrait d’avoir un résultat 
satisfaisant. Cependant, j’ai découvert que les Seeds n’étaient pas infinies. Les 
données de ces dernières se répètent. Ainsi, par exemple, la Seed numéro 17 peut 
être la même que la Seed 1017. Galapagos n’était donc pas en mesure d’influer 
correctement sur les valeurs de départ afin de chercher à optimiser le résultat de 
sortie. 

	 Il a donc fallu chercher une nouvelle méthode de division de la surface. 
Je me suis alors penché sur une division en voronoï. Cette méthode permet de 
placer un nombre de points définis sur une surface et de diviser cette surface 
en cellules. Malheureusement, les différents composants permettant d’appliquer 
cette méthode ne permettaient pas d’obtenir des angles de 90°, de paramétrer 
le nombre de côtés de chaque espace formé ou encore de régler la position et la 
forme précises des cellules. Cette piste a donc été écartée. 

5.5.2 - Division par segments

	 Une autre piste explorée afin de diviser une surface a été de me baser sur le Cours Transversal 
Intra-Domaine “Systèmes numériques de la conception digitale” que j’ai pu suivre quelques mois 
auparavant avec François Guéna à l’ENSAPLV. J’ai donc repris le programme que j’avais réalisé 
pendant ce cours et j’ai tenté de l’adapter aux enjeux de ma recherche. Ainsi j’ai pu disposer 5 points 
sur la périphérie du plan afin de tracer des segments venant découper la surface originale. Cela créait 
alors différentes zones correspondant à des pièces. Cependant, avec cette méthode, le nombre de 
pièces obtenues était trop grand. J’ai alors tenté d’approfondir le programme afin que certains traits 
puissent s’arrêter lorsqu’il rencontraient d’autres segments. Cette piste n’a pas été concluante et j’ai 
donc continué mes expérimentations. 

5.5.3 - Division de la surface en une grille 

	 En continuant mes recherches sur les méthodes de division d’une surface je me suis intéressé 
au composant “Quad Grid” de l’add-on LunchBox de GrassHopper. LunchBox permet d’explorer les 
formes mathématiques, les panneaux, les structures et d’autres choses pour ensuite les représenter en 
3D dans GrassHopper dans Rhinoceros 3D. J’ai tenté d’utiliser cet add-on afin de pouvoir diviser une 
surface rectangulaire en une multitude de carrés. L’idée était à cette étape de la recherche de grouper 
ces carrés/cellules afin de diviser le plan en plusieurs formes rectangulaires utilisant toutes les axes X 
et Y afin de former des angles droits entre les différents espaces. N’ayant pas trouvé de manières pour 
regrouper les cellules, cette piste a été mise de côté.

Avant propos 

Introduction

Point historique 

Problématique 

Etat de l’art 

• Etapes de la recherche

Résultat de la recherche

Exemples de plans 
générés

Conclusion

Notice d’utilisation 

Bibliographie 

Glossaire 

Annexes

Arthur ROULAND

Figure  5.5.3.b
Logo de l’add-on LunchBox
Source : food4rhino.com

Figure 5.5.1.a
Résultat obtenus avec un système de voronoï

© Arthur ROULAND

Figure 5.5.2.a
Résultat obtenu avec une division par des segments

© Arthur ROULAND

Figure 5.5.2.b
Système de division par des segments

© Arthur ROULAND

Figure 5.5.1.b
Système de voronoï

© Arthur ROULAND

Figure 5.5.3.a
Résultat obtenu avec Quad Grid

© Arthur ROULAND
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5.6 – Automate cellulaire

	 Durant mon Master à l’ENSAPLV, j’ai eu l’occasion de suivre deux cours 
dispensés par François Guéna. Ces cours 4 et 5 du CTID825 : “Systèmes 
numériques de la conception digitale” dispensés en semestre 8 à l’ENSAPLV 
portaient sur l’utilisation des automates cellulaires dans GrassHopper. Dans ce 
cours, il était possible grâce au plug-in “Anemone” de Grasshopper, de créer des 
boucles de répétition d’une opération à l’aide d’un composant codé en langage 
Python. Cet exercice était basé sur deux automates cellulaires “Day& Night” et 
“Le jeu de la vie”. Dans cet exercice il était possible de changer la valeur d’une 
ou plusieurs des cellules appartenant à une surface. A cette valeur on pouvait 
attribuer une couleur afin qu’elle soit visible dans l’interface de Rhinoceros 3D. Sur 
ce principe j’ai décidé d’essayer de modifier ce programme afin de créer non plus 
2 valeurs (une allumée et une éteinte) mais 6 valeurs (une valeur éteinte : 0 et 5 
valeurs de couleur). Ainsi j’ai pu diviser une surface en une multitude de surfaces 
appartenant à 6 catégories. Cette méthode offre de nombreuses possibilités car 
la répartition des valeurs va être faite par le composant Python. De cette manière, 
selon le code Python que l’on créé/utilise, il est possible de régler la répartition des 
différentes valeurs/couleurs selon ce que l’on souhaite obtenir.

5.7 – Division par propagation

	 Dans cette méthode, la surface est divisée en une grille. A chacune des cellules de cette grille 
est attribuée la valeur 0 excepté 5 d’entre elles ayant respectivement la valeur 1, 2, 3, 4 et 5. Ces 
5 valeurs vont par la suite être récupérées afin de former une surface correspondant à une pièce. 
L’utilisation de cette méthode implique un script Python ce qui a été une nouveauté pour moi. En me 
basant sur le cours portant sur les automates cellulaires, j’ai tenté d’écrire un programme afin que les 
cellules “allumées” puissent se propager à l’instar de taches d’encre. Dans ce cours, nous utilisons un 
voisinage paramétré dans GrassHopper qui a été ensuite envoyé dans une des entrées du composant 
Python. Dans cet exemple, j’ai tenté d’effectuer une propagation pour les valeurs 1 et 2 uniquement afin 
de voir si cela marchait et comment les valeurs réagiraient lorsqu’elles allaient se rencontrer. Comme on 
peut le voir sur les images ci-dessous, le résultat n’était pas très concluant.
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Figure 5.6.c
Logo de l’add-on Anemone
Source : food4rhino.com

Figure 5.6.a
Premiers résultats obtenus avec un automate cellulaire

© Arthur ROULAND

Figure 5.7.a
Premiers tests de propagation par l’automate cellulaire

© Arthur ROULAND

Figure 5.7.b
Programme de l’automate cellulaire

© Arthur ROULAND

Figure 5.7.c
Premier script Python pour la propagation par automate cellulaire

© Arthur ROULAND

Figure 5.6.b
Programme de l’automate cellulaire

© Arthur ROULAND
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5.8  – Le script Python

	 La recherche repose sur la collaboration et sur l’aide. Les chercheurs 
se basent sur des thèses, des articles ou encore des papiers de recherche. Ils 
publient ensuite leurs productions afin que d’autres personnes puissent s’appuyer 
dessus. En m’inscrivant dans cette démarche, je me suis basé sur des écrits mais 
j’ai également fait appel à mon réseau afin de m’aider dans ma recherche. Mon 
ami Ewen COSSEC ayant effectué des études dans la programmation de jeux 
vidéos a accepté de m’aider à coder les commandes que je souhaitais réaliser. 
Grâce à son aide, j’ai pu clarifier mes intentions et approfondir ma compréhension 
du langage Python. Cependant, cela n’a pas été chose aisée, beaucoup d’essais 
ont été nécessaires avant d’arriver à un résultat satisfaisant. Nous avons, à cette 
étape de la recherche, réussi à propager les valeurs (et donc les couleurs) à la 
manière de taches d’encre comme je le souhaitais.

	 Un paramètre important qui influe beaucoup sur le résultat de l’automate 
cellulaire est le voisinage. Le voisinage consiste à définir quels sont les voisins d’une 
cellule. Il existe plusieurs voisinages remarquables dont deux que j’ai pu utiliser : 
le voisinage de Moore et le voisinage de Von Neumann. Celui de Von Neumann 
va regarder 4 voisins d’une cellule. Le voisin du dessus, celui du dessous, celui de 
gauche et celui de droite. Le voisinage de Moore, quant à lui, va regarder ces 4 
cellules mais également les 4 cellules se trouvant dans ses angles afin d’inscrire 
la cellule étudiée dans un carré. Afin de limiter les diagonales et tenter d’avoir, 
dès l’étape de l’automate, un résultat le plus rectangulaire possible, j’ai décidé de 
baser ma recherche sur l’utilisation du voisinage de Moore. 

Voisinage de Von Neumann

Voisinage de Moore

	 Cependant, le code que nous avons élaboré à ce moment de la recherche présentait encore 
plusieurs problèmes. En effet, la définition de la grille est un réel sujet dans l’utilisation d’un automate 
cellulaire. La grille ne connaît pas ses propres limites. C’est à l’utilisateur de le lui indiquer dans le script 
Python. Ce problème n’avait été que partiellement réglé et les couleurs pouvaient se propager d’un côté 
à l’autre de la grille sans raison apparente comme on peut le voir sur les images ci-dessous. Cependant, 
le résultat engendré par ce code me permettait de continuer à avancer sur la suite du programme 
malgré ces problèmes.
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Figure 5.8.a
Schéma illustrant le système
de propagation par tache d’encre
© Arthur ROULAND

Figure 5.8.b
Schéma illustrant les voisinages
de Von Neumann et de Moore
© Arthur ROULAND

Figure 5.8.c
Evolution des résultats lors de l’écriture du script Python

© Arthur ROULAND

Figure 5.8.d
Evolution des résultats lors de l’écriture du script Python

© Arthur ROULAND

Figure 5.8.e
Evolution des résultats lors de l’écriture du script Python

© Arthur ROULAND

Figure 5.8.f
Evolution des résultats lors de l’écriture du script Python

© Arthur ROULAND
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Figure 5.8.g
Résultat de l’écriture du script Python

© Arthur ROULAND

Figure 5.8.h
Script Python

© Arthur ROULAND

Figure 5.8.i
Script Python

© Arthur ROULAND

Figure 5.8.j
Itérations générées avec le script Python
© Arthur ROULAND

Figure 5.8.k
Itérations générées avec le script Python
© Arthur ROULAND

Figure 5.8.l
Itérations générées avec le script Python
© Arthur ROULAND

Figure 5.8.m
Itérations générées avec le script Python
© Arthur ROULAND

Figure 5.8.n
Résultat de la génération avec le script Python
© Arthur ROULAND
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5.9 – Inclusion du code Python dans l’ensemble du programme

	 Afin de continuer l’élaboration de l’algorithme, j’ai densifié la définition de 
la grille afin d’arriver à une précision de l’ordre de la dizaine de centimètre. La 
surface est ainsi divisée en cellules de 10 centimètres par 10 centimètres. L’étape 
suivante était de récupérer ces surfaces afin de les utiliser pour former des pièces. 
Les formes générées sont biscornues, peu praticables et peu communes. Afin 
d’arriver à un résultat plus “classique” j’ai décidé de rajouter une partie dans le 
programme me permettant d’inscrire les surfaces générées dans des rectangles 
pour simplifier la partition du logement. Cependant, en augmentant la précision 
de la grille, j’ai également augmenté le temps de calcul de mon programme qui 
pouvait parfois mettre plusieurs minutes pour générer mes taches d’encre.

	 J’ai également commencé à m’intéresser à la manière dont les premières 
valeurs allaient être disposées sur la grille. L’idée était de générer des valeurs 
aléatoires afin que les premières gouttes des taches d’encre puissent se placer 
seules et aléatoirement. A ce stade de la recherche, la manière de disposer ces 
cellules de départ aléatoirement n’avait pas encore été trouvée tout comme 
l’inscription des formes dans des rectangles.

5.10 – Itération régulières et enregistrement

	 La solution à laquelle j’ai pensé pour palier à ce problème était la création d’un timer (minuteur). 
Pour cela j’avais besoin de deux choses. Un composant me permettant de générer des valeurs 
aléatoires et un second composant pouvant activer le premier à intervalles réguliers. Ainsi, j’ai utilisé le 
composant “Timer” associé au composant “Deconstruct Date” afin de pouvoir envoyer un signal “True” 
au composant “Random”. Le timer est réglé sur 120 000 secondes (2 minutes) car cela correspond 
à peu près au temps de génération d’un plan. Toutes les 2 minutes, cet élément active le composant 
“Random”. Ce dernier avait comme paramètres d’entrée 12 pour le nombre de valeurs à générer (2 par 
pièces, une valeur en X et une valeur en Y) et un domaine dans lequel devaient se trouver les valeurs 
(entre 0.00 et 1.00). En effet, les dimensions de la surface générale ont été “reparamétrisées”. Cela 
signifie que quelque soit la taille du plan, l’algorithme va appréhender la surface comme étant un axe 
dont 0 est le début et 1 en est la fin. Cela permet de pouvoir rentrer les valeurs que l’on souhaite pour 
la taille du plan sans avoir à manipuler les coordonnées de départ des pièces. Avec cet algorithme, 12 
valeurs aléatoires correspondant à 6 coordonnées sur le plan étaient générées toutes les 2 minutes.

Avant propos 

Introduction

Point historique 

Problématique 

Etat de l’art 

• Etapes de la recherche

Résultat de la recherche

Exemples de plans 
générés

Conclusion

Notice d’utilisation 

Bibliographie 

Glossaire 

Annexes

Arthur ROULAND

Figure 5.9.a
Image de la grille avec une définition de 10 cm par 10 cm

© Arthur ROULAND

Figure 5.9.b
Problème d’inscription de la forme dans un rectangle

© Arthur ROULAND

Figure 5.9.c
Tentative de génération de valeurs aléatoires

© Arthur ROULAND

Figure 5.10.a
Timer

© Arthur ROULAND

Figure 5.10.b
Illustration du «reparamétrage» d’une surface

© Arthur ROULAND

Coordonnée 0;0 Coordonnées 1;0

Coordonnées 1;1
Coordonnée 0;1

Coordonnée 0,5 ; 0,5
Coordonnée 0,25 ; 0,6
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	 A ce stade, je me suis également penché sur les opérations entre les 
surfaces. En effet, nous avons vu dans l’étape précédente que les formes générées 
avaient pour vocation d’être inscrites dans des rectangles. Malgré le fait que cette 
étape ne fonctionnait pas parfaitement, il était possible de commencer à régler les 
opérations qui allaient s’opérer entre ces éléments. Pour cela j’ai créé une partie 
de l’algorithme permettant d’effectuer des opérations booléennes. Ces opérations 
consistent à supprimer une partie d’une surface lorsqu’elle se superpose avec 
une autre. Il est important de noter que cette démarche implique un ordre de 
priorité. Ainsi les pièces ont été connectées afin que le séjour soit la pièce la plus 
importante, puis la chambre, puis la cuisine etc...	 	 Pour terminer, j’ai également orienté mes recherches sur la façon d’enregistrer les plans générés 

à chaque itération. Je me suis tout d’abord basé sur le mémoire de Jean-Raphael PIQUARD qui avait 
lui aussi eu besoin d’enregistrer ses itérations. Malheureusement, pour une raison inconnue, cela ne 
fonctionnait pas. J’ai donc essayé diverses méthodes afin d’enregistrer mes plans. A cette étape, j’étais 
en mesure d’enregistrer les plans au format .dwg (drawing). Ce format est très utilisé par les architectes 
et d’autres corps de métier pour travailler. Ce format enregistre des formes, des couleurs et des attributs 
propres aux formes dans un format qu’il est possible d’ouvrir pour le modifier. Il était nécessaire pour 
cette expérimentation d’enregistrer les plans au format image (.jpg, .png, .tiff etc…). L’enregistrement 
au format .dwg n’était donc pas la solution appropriée. Cependant, cela m’a permis de commencer à 
élaborer un algorithme d’enregistrement et de pouvoir vérifier qu’il fonctionnait correctement.
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Figure 5.10.c
Inscription des surfaces dans des rectangles et opérations booléennes

© Arthur ROULAND

Figure 5.10.d
Programme d’opération booléenne

© Arthur ROULAND

Figure 5.10.e
Schéma d’une opération booléenne

© Arthur ROULAND

Figure 5.10.f
Premier programme d’enregistrement des itérations

© Arthur ROULAND
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5.11 – Résolution des problèmes du composant Python

	 Afin de solutionner le problème lié au programme Python, j’ai appelé une 
seconde fois mon ami Ewen COSSEC. Nous avons finalement réussi à solution-
ner le problème de passage des couleurs d’un côté à l’autre. Cependant, mes 
recherches ayant avancé, je lui ai fait part de mes intentions afin d’améliorer le 
programme. En effet, jusqu’à présent, il était nécessaire d’indiquer à l’algorithme 
le nombre d’itérations souhaité pour générer un plan. Ce nombre d’itérations était 
variable en fonction du positionnement des cellules de départ et de la taille du 
plan. J’avais réglé par défaut un nombre surévalué. Cela affectait les performances 
de mon ordinateur et donc le temps nécessaire à la génération d’un plan. De plus, 
jusqu’à présent, j’avais besoin de visualiser l’état de propagation des couleurs sur 
la grille. Cela me permettait de tester mes scripts Python afin de m’assurer que 
le programme fonctionnait correctement. Le problème étant réglé, je n’avais plus 
besoin de visualiser chaque itération. Cela était également souhaité car l’algo-
rithme envoyait en sortie chaque étape de la répartition des couleurs. De ce fait, 
chaque étape était alors ensuite envoyée dans la création de rectangles, dans le 
système d’opération, dans le système d’évaluation etc … Cela ralentissait consi-
dérablement mon ordinateur alors que je n’avais pas besoin de ces évaluations 
intermédiaires. Nous avons donc travaillé sur une amélioration du programme qui 
allait nous permettre d’effectuer toutes les itérations dans le script Python pour 
n’envoyer en sortie que le résultat final une fois la grille entièrement colorée. Grâce 
à ce changement, le temps de génération d’un plan passait de 120 000 secondes 
(2 minutes) à moins de 20 secondes. Le voisinage étant déjà paramétré dans le 
script Python, deux étapes présentes dans GrassHopper n’étaient plus d’aucune 
utilité ce qui a largement participé à la simplification du programme. L’utilisation 
de l’add-on “Anemone” a donc été arrêtée à cette étape car le programme pouvait 
désormais savoir s’ il était nécessaire de continuer ou non sans avoir recours à 
Anemone.

5.12 - Premiers enregistrements

	 Suite à cela, j’ai pu continuer mes recherches concernant l’enregistrement des plans. Je me 
suis rendu sur le site Rhinoceros Forums sur lequel j’ai pu récupérer un composant “Script C#” qu’un 
dénommé David Rutten avait mis en ligne. 

https://discourse.mcneel.com/t/capturing-rhino-layout-viewport-iterations-print-or-image-ex-
port/51387

	 Ce composant était exactement ce que je cherchais. Il m’a donc permis d’enregistrer chaque 
itération dans un dossier spécifique, au format .png en donnant un nom à chaque image. J’avais pu 
essayer d’enregistrer différemment au cours de ma recherche notamment à l’aide de l’add-on LadyBug. 
J’ai pu enregistrer quelques images mais cette méthode présentait un défaut très important. L’idée de 
ce programme était d’enregistrer les plans, de 6 points par exemple, de la manière suivante : 

Sa destination : L’enregistrer dans le dossier de sa typologie (par exemple T2)

Sa vue : Une vue a été configurée dans Rhinoceros afin de paramétrer le cadrage d’enregistrement du 
plan

Son nom : Plan 6 pts {0}.png

	 Le nom du fichier est très important. En effet, en utilisant LadyBug, les plans s’enregistrent les 
uns sur les autres. C’est-à- dire que le nouveau plan à 6 points supprimait l’ancien. En utilisant le script 
C# de David Rutten, le “{0}” permettait à l’ordinateur de donner un numéro au plan. Ainsi le premier 
plan enregistré s’appellera “Plan 6 points 0.png” et le suivant “Plan 6 points 1 .png”. Cela m’a donc 
permis de catégoriser les plans en leur donnant un nom identifiable mais unique afin de pouvoir tous 
les enregistrer. J’ai tout de même eu quelques imprévus. Après avoir modifié certaines parties de mon 
programme, celui-ci n’enregistrait que des images vides ou incomplètes. Le problème était que le com-
posant Script C# doit être le composant le plus en avant dans l’espace GrassHopper. Ce problème a été 
réglé en copiant et collant simplement le composant afin de le placer en avant dans le plan de travail 
de GrassHopper. 
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Figure 5.12.b
Logo de l’add-on LadyBug
Source : food4rhino.com

Figure 5.11.a
Désactivation de l’add-on Anemone

© Arthur ROULAND

Figure 5.11.b
Résolution du problème de propagation des couleurs 

© Arthur ROULAND

Figure 5.12.a
Script C# pour l’enregistrement 

© Arthur ROULAND



58 59

	 En parallèle, j’ai également remarqué que le composant “Random” qui 
me servait à générer des valeurs aléatoires comprises entre 0.00 et 1.00 ne 
fonctionnait pas véritablement comme je le souhaitais. En effet, au bout de quelques 
générations, j’ai noté que les valeurs étaient identiques à celles des premières 
générations. L’aspect aléatoire des valeurs est très important dans cette recherche 
afin d’obtenir une diversité infinie de plans. Le fait que les générations se répètent 
va engendrer des générations de plans identiques et cela n’est pas souhaitable. 
J’ai donc cherché un moyen d’obtenir réellement des valeurs aléatoires pour mon 
programme. Je me suis rendu sur le site Rhinoceros Forums et j’ai pu tester un 
programme intitulé “Randoms_Unique_viaHashSet_V1.gh” posté sur le forum par 
un certain Peter Fotiadis. 

https://discourse.mcneel.com/t/real-random-numbers/56072/5

	 J’ai adapté le programme contenu dans ce fichier et après plusieurs tests 
afin de vérifier le caractère aléatoire des valeurs j’ai décidé de le conserver et de 
l’utiliser dans le cadre de ma recherche. Grâce à ces programmes, j’étais alors en 
mesure de générer aléatoirement un plan toutes les 20 secondes et de l’enregistrer 
correctement sur mon disque dur. 
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Figure 5.12.c
Ajout du script C# dans le timer 

© Arthur ROULAND

Figure 5.12.d
Premiers enregistrements
© Arthur ROULAND

Figure 5.12.e
Premiers enregistrements
© Arthur ROULAND

Figure 5.12.f
Premiers enregistrements
© Arthur ROULAND

Figure 5.12.g
Premiers enregistrements
© Arthur ROULAND

5.12.h
Premiers enregistrements
© Arthur ROULAND
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6.0.1 - Vue d’ensemble du programme final
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Figure 6.0.1.a
Vue d’ensemble du programme final

© Arthur ROULAND
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6.0.2 - Présentation générale de l’algorithme

L’algorithme final se compose en 12 parties ayant chacune une fonction spécifique. 

- La partie 1 propose à l’utilisateur d’agir sur certains paramètres 

- La partie 2 sert à définir la surface et à la diviser 

- La partie 3 permet de générer des valeurs aléatoires à intervalle régulier. 

- La partie 4 est le script Python qui va nous permettre de diviser la surface en plusieurs 
zones distinctes. 

- La partie 5 attribue à chaque zone une couleur différente afin de pouvoir les identifier. 

- La partie 6 consiste en la simplification des surfaces générées en les inscrivant chacune 
dans un rectangle. 

- La partie 7 réalise des opérations booléennes entre les différentes surfaces afin qu’aucune 
d’entre elles ne se chevauchent. 

- La partie 8 est la récupération des contours des surfaces finales 

- La partie 9 permet de regarder si les surfaces générées et découpées répondent aux 
paramètres de départ et leur attribuent des scores. 

- La partie 10 évalue le score total du plan et le score maximal qu’il aurait pu obtenir. 

- La partie 11 récupère les périmètres des différents espaces et crée des lignes noires 
épaisses symbolisant des cloisons intérieures et des murs extérieurs. 

- La partie 12 permet l’enregistrement des plans dans un dossier sur le disque de 
l’ordinateur. 

6.1 - Paramètres de départ

	 La première partie de ce programme permet de définir les paramètres de départ sur lesquels nous 
pouvons agir. Dans un premier temps, nous pouvons indiquer la longueur et la largeur du plan en entrant une 
valeur en mètre dans les panneaux blancs. Ces deux valeurs sont ensuite multipliées afin d’afficher la surface 
totale du plan que l’on souhaite générer. 

	 En dessous, nous retrouvons 6 groupes, chacun d’une couleur différente. Ce programme étant pour la 
génération de T2, il ne comporte que 6 espaces (séjour, chambre, cuisine, salle de bain, entrée et WC). Dans le 
programme pour la génération de T3 nous retrouverons une chambre en plus et dans le programme qui génère 
des T4, 2 chambres en plus. 

	 Chacun de ces groupes est donc identifié avec une couleur et le nom de l’espace correspondant en 
anglais afin de permettre au plus grand nombre de comprendre ce programme. Il est demandé de rentrer la 
surface minimale ainsi que la surface maximale souhaitée pour chacune des pièces. Il est également demandé 
la dimension minimale d’un côté. En effet, sans ce paramètre un séjour de 15 m² pourrait être une surface de 
15 mètres par 1 mètre et cela n’est pas souhaitable. Ensuite, nous pouvons renseigner le chemin d’accès dans 
lequel nous souhaitons enregistrer nos plans. Sans cela, aucun plan ne sera enregistré. 

	 Pour terminer nous retrouvons un panneau renseignant le score de la génération ainsi que le score 
maximum qu’il aurait pu atteindre.
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Figure 6.0.2.a
Schéma des parties du programme final

© Arthur ROULAND

Figure 6.1.a
Partie 1 du programme final

© Arthur ROULAND
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6.2 - Définition de la grille

	 La deuxième partie de cet algorithme récupère la longueur et la largeur du plan 
souhaité et crée une surface. Cette surface, ici de 7,5 mètres par 6 mètres, est divisée 
10 fois plus précisément. On obtient alors une grille avec une précision de 10 cm. Ce 
paramètre peut être modifié afin d’obtenir des plans plus ou moins précis. Cela va influer 
sur la rapidité de la génération du plan ainsi que sur le résultat obtenu.

6.3 - Valeurs aléatoires de départ

	 La grille obtenue dans la partie 2 est récupérée dans la partie 3. Avant cela, un timer a été élaboré 
afin de permettre de générer des plans à intervalle régulier sans avoir à relancer le programme après chaque 
génération. Ici, on peut voir que le timer est réglé sur 20 secondes. Ce composant de grasshopper va activer 
toutes les 20 secondes le “Boolean Toggle”. Ce dernier va envoyer un signal “True” au composant “Stream Filter”. 
Ce composant va ordonner aux autres éléments de s’activer. Le timer est à adapter à chaque ordinateur. Si 
l’ordinateur est puissant quelques dizaines de secondes suffisent. Si l’ordinateur n’a pas des capacités de calcul 
très élevées, alors un temps plus long sera nécessaire. 

	 On retrouve ensuite un code avec des sliders. Ce composant de code va nous permettre de générer 
des valeurs aléatoires. Les sliders permettent de paramétrer le nombre de valeurs qui vont en sortir. Pour ce 
programme générant des T2 de 6 pièces, nous avons besoin de deux fois six valeurs. C’est pourquoi le slider “N” 
(pour number) est réglé à 12. Les autres sliders indiquent le domaine dans lequel vont se trouver ces valeurs 
aléatoires. Ici, on voit que l’on va générer 12 valeurs, comprises entre 0 et 1 avec au maximum 3 décimales. 

	 Enfin, les données générées sont affichées dans un composant “Panel” en jaune. Dans cet exemple, 
12 valeurs sont générées, numérotées de 0 à 11. Elles ne sont ni logiques, ni rangées dans quelconque ordre. 
En dessous, nous retrouvons le composant “List Item”. Cet élément permet de récupérer une liste et d’en sortir 
certains éléments. On voit en sortie que chaque valeur aléatoire est utilisée séparément des autres afin d’être 
envoyée dans la suite de cette partie de l’algorithme.
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Figure 6.2.a
Partie 2 du programme final

© Arthur ROULAND

Figure 6.3.a
Partie 3 du programme final : Timer et valeurs aléatoires

© Arthur ROULAND
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	 Après la génération de 12 valeurs aléatoires, l’algorithme se divise en 6 parties 
identiques. Chacune de ces parties va donc correspondre à une pièce. Pour chaque pièce, 
nous avons besoin d’une valeur de départ (cela sera expliqué plus précisément dans la 
partie 4). Le programme récupère donc deux valeurs aléatoires générées précédemment 
afin de les utiliser comme coordonnées afin de placer un point au hasard sur la grille 
générée dans la partie 2. Chaque valeur va être disposée sur la grille. Une première valeur 
sur l’axe X est comprise entre 0 et 1. 0 étant le point le plus à gauche du plan et 1 le 
point le plus à droite du plan (dans cet exemple 7,5 mètres). Une seconde valeur sur l’axe 
Y entre 0 et 1 (ici entre 0 et 6 mètres). Ce point est donc disposé sur la surface et est 
associé à une cellule du plan. Cette valeur a été multipliée par la longueur du plan sur ce 
même axe. On obtient 2 valeurs. Dans cet exemple de T2 de 7,5 mètres par 6 mètres, les 
coordonnées possibles sont comprises en X entre 0 et 75 et en Y entre 0 et 60. 

Ces deux valeurs sont ensuites utilisées dans un composant “Expression” qui contient la 
formule suivant : L x j + i 
i et j sont ici les deux valeurs des coordonnées finales. Cependant, il est nécessaire 
d’expliquer que la grille est composée de cellules (ici 75 x 60 = 4 500 cellules) numérotées 
de 0 à 4 499. Cependant, cela forme une ligne et nous souhaitons paramétrer ces cellules 
afin qu’elles forment un rectangle. Ce composant nous permet de dire que notre grille sera 
composée de 75 colonnes de chacune 60 cellules. Nous obtenons donc pour la première 
pièce de ce plan, des coordonnées indiquant la colonne 45 et la ligne 52. A cet endroit se 
trouve une cellule et cette dernière se voit attribuer la valeur 1 par le composant “List Item”. 
Cela s’applique aussi à chacune des 5 autres pièces ayant chacune des coordonnées 
aléatoires en X et en Y afin de définir la première cellule de chaque espace.

6.4 - Division de la grille

	 La quatrième partie est composée d’un seul élément : un script python. Comme nous avons pu le voir 
précédemment dans la partie 5 de ce mémoire, la division “aléatoire” du plan était un réel enjeu afin d’obtenir des 
résultats différents à chaque itération. Pour le programme final, j’ai opté pour un système que je définis comme 
un système en taches d’encre. Imaginons une feuille blanche imbibée d’eau sur laquelle nous venons déposer 6 
gouttes d’encre de différentes couleurs. Ces gouttes vont s’étaler sur cette feuille, se rencontrer afin que la feuille 
soit entièrement recouverte de couleurs. Ce script python a pour rôle d’utiliser nos cellules initiales afin de les 
faire s’étaler de cette même manière. Le script python est disponible et détaillé dans son intégralité dans la partie 
“Documents annexes”. 

	 Le script utilise 3 entrées différentes. Une entrée C dans laquelle est renseignée les coordonnées de 
départ de chaque cellule initiale avec sa valeur. Une valeur correspond à une pièce (qui va par la suite être 
visualisée par une couleur). On retrouve également une entrée “Longueur” et une entrée “Largeur”. Ces entrées 
sont reliées à la multiplication de la longueur et de la largeur par 10. Pour le plan de 7,5 mètres par 6 mètres on 
a comme paramètre de longueur la valeur 75 et pour le paramètre de largeur, 60. La grille est organisée de la 
manière suivante.
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Figure 6.4.a
Partie 4 du programme final

© Arthur ROULAND

Figure 6.4.b
Schéma d’organisation de la grille

© Arthur ROULAND

Figure 6.3.b
Partie 3 du programme final : Activation des cellules initiales

© Arthur ROULAND
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	 Cette grille est donc organisée en cellules ayant pour la plupart 8 voisins : 3 au-
dessus, 3 en dessous et 1 de chaque côté, ce qui correspond au voisinage de Moore 
expliqué précédemment dans la partie 5.8. Afin de faire fonctionner ce programme il a 
fallu identifier les cellules qui ne correspondaient pas à ces cellules dites “standards”. 
Il s’agit donc de toutes les cellules se trouvant sur les bordures de notre grille. Pour ce 
faire, j’ai créé quatre paramètres correspondant chacun à une des bordures de la grille : 
LigneDuHaut, LigneDuBas, ColonneGauche et ColonneDroite. Chacun de ces composants 
contient les voisins à exclure pour que le programme fonctionne correctement. Exception 
dans l’exception, les cellules situées dans les coins de la grille doivent exclure plus de 
voisins que les cellules qui sont simplement en bordure de la grille.

	 Notre automate cellulaire fonctionne en observant les voisins de chaque cellule. 
On souhaite que toutes les cellules soient à l’état 0 sauf 6 d’entre elles ayant pour valeur 
un numéro entre 1 et 6 chacune correspondant à une couleur. A chaque itération du script 
python, les cellules à l’état 0 vont regarder autour d’elles si un de leur voisin a une valeur 
(et donc une couleur). Si elle n’ont pas de voisin de couleur, elles restent à l’état 0 (noir). 
Si un de leur voisin a une couleur (par exemple vert, correspondant à la valeur 2), alors la 
cellule va s’attribuer la valeur 2 et devenir verte. Cependant, notre programme étudie les 
cellules de la cellule 0 à la cellule C (C correspondant à la longueur totale de la grille, soit, 
la dernière cellule). Si une cellule devient verte, lorsque la prochaine cellule va regarder 
ses voisins, elle verra une cellule verte et donc prendra également sa couleur. Cela fausse 
donc le résultat. Pour ce faire, notre algorithme dit à chaque cellule que si elle a un voisin 
de couleur, alors elle va mémoriser cette valeur et lorsque toutes les cellules auront été 
étudiées, seules les cellules ayant une valeur différente de zéro pourront à ce moment là, 
changer d’état. Cette opération est répétée en boucle jusqu’à ce que toutes les cellules de 
la grille aient une couleur différente du noir (état 0).

6.5 - Attribution des couleurs

	 La cinquième partie consiste à identifier les différentes surfaces obtenues. Afin de mieux visualiser lors 
de l’élaboration de l’algorithme de génération de plan, j’ai décidé d’attribuer à chaque valeur une couleur afin de 
comprendre l’organisation du plan au premier coup d’œil. Ainsi, chaque valeur va se voir attribuer une couleur. 
La valeur 0 est noire, la valeur 1 est bleue, la 2 est verte, la 3 est rouge, la 4 est jaune, la 5 est rose et la 6 est 
violette. Pour les générateurs de plan de T3 et de T4, une ou deux couleurs supplémentaires ont été ajoutées 
correspondant à une nouvelle pièce. 

	 Le programme se divise à nouveau en 6 parties (pour les 6 pièces du plan). Pour chaque pièce, sa 
couleur est utilisée afin de mieux se retrouver dans le programme. A la sortie de l’attribution des couleurs, on 
récupère le nombre de cellules de chaque couleur ainsi que leur numéro d’identification (compris ici entre 0 et 
4 499). Chaque cellule est ensuite transformée en une surface (de 10 centimètres par 10 centimètres dans ce 
cas-ci). Les cellules sont ensuite assemblées entre elles afin de former la surface totale de chaque couleur. Cette 
surface totale est ensuite décomposée afin d’en extraire, la surface ainsi que son périmètre.
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Figure 6.4.c
Etude des voisins d’une cellule

© Arthur ROULAND

Figure 6.5.a
Partie 5 du programme final
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6.6 - Simplification des surfaces

	 Cette sixième partie permet d’inscrire les surfaces complexes générées dans des 
rectangles de mêmes dimensions afin de simplifier le plan. La surface obtenue en sortie 
de la cinquième partie est utilisée par le composant “Dimensions”. Ce composant de 
GrassHopper permet d’évaluer la dimension en U et en V d’un élément. Comprenez ici en 
X et en Y. Ces données vont être utilisées afin de générer un rectangle avec les mêmes 
dimensions U et V afin d’inscrire parfaitement la surface générée dans un rectangle. Le 
composant utilisé afin de créer ce rectangle est le composant “Center Box”. Mon choix 
s’est porté sur ce composant car il permet de renseigner facilement le centre d’une boîte. 
Par défaut, chaque boîte est construite comme ayant pour centre le point X=0 et Y=0. Le 
composant “Center Box” crée des boîtes à partir de son centre. Si l’on rentre la valeur 2 
en X et 3 en Y, ce composant va créer un objet de 2 unités en -X, de deux unités en X, de 
3 unités en -Y et de 3 unités en Y. Au lieu d’obtenir un rectangle de 6 m² de surface, on 
obtient un rectangle de 24 m² de surface. Afin d’y remédier, les valeurs en U et en V sont 
multipliées par 0.5 afin d’avoir un rectangle ayant les dimensions souhaitées. La valeur Z 
est de 0 car nous cherchons à obtenir une surface et non pas un volume. 

	 Afin de récupérer le centre de chaque surface, les dimensions en X et en Y vont 
être étudiées comme allant de 0 à 1. Ainsi avec la valeur 0.5 en X et en Y, on obtient le 
centre de la surface complexe générée et on utilise ce même point comme centre de 
référence de la surface rectangle.
 
	 En sortie de cette partie numéro 6, on obtient donc 6 surfaces rectangulaires 
s’inscrivant dans le plan mais se superposant.

6.7 - Opérations entre les surfaces

	 La septième partie va nous permettre de récupérer les surfaces générées dans la sixième partie et de les 
découper afin qu’aucune d’entre elles ne se superpose. Pour ce faire j’utilise le composant “Region Difference” 
de GrassHopper. Ce composant permet de créer des opérations booléennes entre les surfaces. Si deux surfaces 
se superposent, alors l’une d’entre elles est prioritaire sur l’autre. La seconde surface va donc être coupée par la 
première comme on peut le voir sur le schéma ci-dessous. 

	 Cette opération implique un ordre de priorité de certains espaces sur les autres. Dans ce programme, 
l’espace du séjour (Living) est prioritaire sur toutes les autres surfaces. Ensuite, la chambre (Bedroom) est 
prioritaire sur tous les espaces sauf sur celui du séjour. Puis vient le tour de la cuisine (Kitchen), puis de la salle 
de bain (Bathroom), de l’entrée (Entrance) et enfin des sanitaires (WC). Dans le programme de génération de 
plan de T3 et de T4, une à deux chambres sont ajoutées entre la chambre 1 et la cuisine. Ainsi la chambre 1 est 
prioritaire sur la chambre 2 qui elle même est prioritaire sur la chambre 3 (pour les plans de T4). Ainsi, on obtient 
en sortie 6 surfaces qui ne se superposent plus et qui sont découpées afin que l’entièreté du plan soit utilisée. 
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Figure 6.6.A

Partie 6 du programme final
© Arthur ROULAND

Figure 6.7.b
Partie 7 du programme final

© Arthur ROULAND

Figure 6.7.a
Schéma de principe d’une opération booléenne

© Arthur ROULAND
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6.8 - Récupération des contours

	 La partie numéro 8 consiste uniquement à récupérer les contours des surfaces 
finales afin de pouvoir les visualiser facilement si besoin. Elles sont ensuite envoyées dans 
les parties 9 et 11.

6.9 - Evaluation des scores

	 La neuvième partie permet d’évaluer le score de chaque espace. Chaque surface est récupérée et utilisée 
dans 2 algorithmes. 

	 Le premier permet de vérifier si les dimensions de chaque espace correspondent aux valeurs rentrées 
dans la partie 1. A l’aide du composant “Dimensions” nous obtenons les valeurs en U et en V (en X et en Y) 
de chaque surface. Ces valeurs sont comparées à la valeur renseignée dans la partie 1 à l’aide du composant 
“Larger Than”. Si la valeur par exemple en X est supérieure ou égale à la valeur minimale souhaitée alors le 
composant “Stream Filter” va générer la valeur 1. Si elle est inférieure, ce composant va générer la valeur 0. Cette 
opération est appliquée à la longueur et à la largeur de la surface. Ces deux valeurs sont ensuite multipliées entre 
elles afin d’obtenir un score de 1 point ou de 0 point. Ainsi chaque surface obtient 1 point pour son respect de la 
dimension minimale de la pièce. 

	 Dans un second temps, la surface est elle aussi évaluée. Le composant “Area” permet de connaître 
la surface d’un objet complexe. On utilise ici les composants “Larger Than” et “Smaller Than” afin d’évaluer 
si notre surface est comprise dans les valeurs souhaitées. La surface maximale du salon est volontairement 
grande afin que cette pièce puisse être la plus grande possible. Les composants “Larger Than” et “Smaller 
Than” se rejoignent ensuite dans l’élément “Gate And”. Cela permet de réunir les deux informations. Si les deux 
évaluations sont positives, alors le composant “Stream Filter” va envoyer la valeur 1. Si l’une des deux évaluations 
s’avère être mauvaise, alors il enverra la valeur 0. Ainsi chaque surface obtient 1 point pour son respect de la 
surface de la pièce.
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Figure 6.8.a
Partie 8 du programme final

© Arthur ROULAND

Figure 6.9.a
Partie 9 du programme final

© Arthur ROULAND
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6.10 - Score final de la génération

	 La dixième partie de cet algorithme permet de réunir l’ensemble des scores 
obtenus pour le respect de la dimension minimale et l’ensemble des scores pour le respect 
de la surface. Nous avons donc deux fois six points donc un score maximal de 12 points. 
L’ensemble des scores obtenus dans chaque catégorie sont additionnés afin de visualiser 
le score général pour le respect de la dimension minimale et le score général pour le 
respect de la surface. Ensuite, ces deux scores sont additionnés afin d’obtenir le score 
final du plan.

6.11 - Dessin du plan

	 La onzième partie est reliée à la partie 8. Pour rappel, la partie 8 servait à récupérer les contours des 
surfaces de chaque espace final avant l’évaluation. 

	 Chaque contour va être divisé en plusieurs segments à l’aide du composant “Deconstruct Brep”. En 
utilisant l’option flatten, les courbes ne seront plus rangées dans des listes séparées mais toutes vont appartenir 
à une et même liste. Le composant “Deconstruct Domain” va nous servir à obtenir le point de départ et le point 
d’arrivée de chaque segment afin d’en faire des lignes. Dans le premier “Panel” , nous voyons que l’épaisseur 
des cloisons est renseignée, ici 0.07 mètre soit 7 cm. Cette valeur est divisée par 2 afin d’obtenir la valeur de 3,5 
cm. Cette valeur va être multipliée par -1 afin d’obtenir un décalage de notre ligne de 3,5 cm et de -3,5 cm afin 
que la cloison ait pour axe notre ligne de départ et fasse bien 7 cm. Ces deux lignes sont ensuite transformées 
en surface grâce au composant “Loft”. Si on le souhaite, le composant “Extrusion” permet de fabriquer un modèle 
3D du plan généré. La hauteur d’extrusion est paramétrable grâce au slider. 

	 Dans un deuxième temps, les contours de notre plan sont récupérés afin d’y apporter un décalage de 0.2 
mètre soit 20 cm. Cela permet de créer une épaisseur plus importante sur le contour du plan. 

	 Enfin, la dernière étape de la partie 11 consiste à assigner une couleur aux surfaces. Afin que les plans 
soient le plus visible possible, j’ai choisi de leur donner la couleur noire (le fond étant blanc cela créé un fort 
constraste). Pour cela, j’utilise le composant “Colour CMYK”. Dans les entrées “Cyan”, “Magenta” et “Yellow” 
j’entre la valeur 1 afin d’obtenir un noir. Le composant “Create Material” permet de diffuser cette couleur et enfin 
le composant “Custom Preview” permet d’assigner cette couleur à la géométrie formée par les cloisons et les 
murs formant le contour du plan.
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Figure 6.10.a
Partie 10 du programme final

© Arthur ROULAND

Figure 6.11.a
Partie 11 du programme final
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6.12 - Enregistrement de la génération

	 La douzième et dernière partie de cet algorithme va nous permettre de donner un 
nom en fonction du score du plan généré et de l’enregistrer dans un dossier sur le disque 
de l’ordinateur (l’emplacement du fichier est renseigné par l’utilisateur dans la partie 1). 
Pour les T2, cette partie numéro 12 est divisée en 12 parties pour chacun des 12 points. 
Pour les T3, elle est composée de 14 parties et pour les T4 de 16 parties. 

	 Tout d’abord, j’utilise le composant “List Length” dans la partie 3 afin d’obtenir le 
score final maximal souhaité pour chaque plan. 12 points pour un T2, 14 points pour un T3 
et 16 points pour un T4. Cette valeur est comparée au score maximal obtenu dans la partie 
10. Cette opération est nécessaire car si une ou plusieurs surfaces prioritaires suppriment 
une surface, alors la pièce n’existe plus. Par exemple, si le séjour et la chambre recouvrent 
totalement la salle de bain avant la partie 7 (opération booléennes entre les surfaces) 
alors le score maximal diminue et le plan n’a plus les pièces souhaitées. 

	 J’utilise alors le composant «Equality» afin que le programme sache si le score 
maximal est bien le bon. Si tel est le cas, la valeur 1 sort de ce composant, sinon la valeur 
0 est obtenue. 

	 Le score total de la génération est comparé dans chacune des parties afin de lui 
attribuer un nom. Ainsi chaque partie a pour entrée une valeur comprise entre 1 et 12 
pour les T2. Lorsque le plan généré a un score de 6 points, seul le composant “Equality” 
se situant dans la partie du score de 6 points va dire que l’égalité est bien respectée et 
envoyer la valeur 1. Toutes les autres vont envoyer la valeur 0. 
Ces deux égalités sont ensuite réunies dans le composant “Gate And”. Cette opération 
permet de vérifier que le score maximal est le bon (qu’il ne manque pas de pièces) et de 
donner le score du plan comme nom de l’image à enregistrer. Si ces deux paramètres sont 
respectés alors le composant suivant “Stream Filter” va envoyer la valeur 1. Si l’une de ces 
deux conditions n’est pas respectée alors il va envoyer la valeur 0. La valeur 1 va activer le 
script C# permettant l’enregistrement du plan. La valeur 0 ne le permet pas. 

	 Le dernier composant de cet algorithme demande plusieurs entrées. Pour ce 
programme nous n’utilisons pas l’entrée “trigger”. 

	 L’entrée “Dir” nous demande la direction de l’enregistrement. Elles sont déjà toutes 
préréglées afin d’avoir pour destination ce que l’utilisateur aura précisé dans la partie 1. 
L’entrée “Name” demande le nom de l’image à enregistrer. Pour chaque score le nom est 
le suivant “Plan (score) points {0} .png” Chaque plan va donc avoir comme nom son score. 
Le “{0}” nous permet d’enregistrer les plans avec un nombre comme suffixe afin que 
chaque nom soit différent et que les plans ne s’écrivent pas les uns sur les autres. Cela 
aurait pour conséquence de supprimer chaque plan généré à chaque itération. Le “.png” 
permet de renseigner sur le type de format d’image que l’on souhaite enregistrer. 

	 L’entrée “VP” nous demande le “ViewPort” soit la vue que l’on souhaite enregistrer. 
Chacun des trois programmes (T2, T3 et T4) a un fichier GrassHopper unique qui doit 
être ouvert dans le fichier Rhino. Ce fichier Rhino a subi quelques modifications afin de 
faciliter l’enregistrement des plans. L’environnement Rhino a été rendu blanc afin d’obtenir 
le contraste le plus fort. Les axes X et Y ainsi que le quadrillage de l’environnement ont 
été changés en blanc afin de devenir invisibles. Enfin, une vue par défaut a été créée afin 
d’obtenir des plans ayant les mêmes cadrages et les mêmes proportions.
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Figure 6.12.a
Schéma de suppression 
d’une pièce lors d’une 
opération booléenne
© Arthur ROULAND

Figure 6.12.b
Partie 12 du programme final

© Arthur ROULAND
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6.13 - Récapitulatif des étapes

Etape 1 : paramètres de départ

Etape 2 : Définition de la grille

Etape 3 : Valeurs aléatoires de départ

Etape 4 : Division de la grille

Etape 5 : Attribution des couleurs

Etape 6 : Simplification des surfaces

Etape 7 : Opérations entre les surfaces

Etape 8 : Récupération des contours

Etape 9 : Evaluation des scores

Etape 10 : Score final de la génération

Etape 11 : Dessin du plan

Etape 12 : Enregistrement de la génération
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7.1 - Génération de T2 (de 1 à 12 points)

1 point

2 points

5 points

3 points

4 points

6 points

8 points

11 points

9 points

12 points

10 points

7 points
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7.2 - Génération de T3 (de 1 à 14 points)
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7.3 - Génération de T4 (de 1 à 16 points)

8 points
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7.4 - Analyse des résultats

7.4.1 - Résultats de la génération de plans

	 Dans cette partie de ce mémoire, nous allons faire l’analyse des résultats. 
L’algorithme a tourné pendant de nombreuses heures afin de générer des typologies de 
plans T2, T3 et T4. Afin de pouvoir comparer les résultats entre les différentes typologies, 
le nombre de plans générés est sensiblement le même dans chacune des catégories. Pour 
rappel, les T2 ont un score maximal de 12 points, les T3 ont un score maximal de 14 points 
et enfin les T4 ont un score maximal de 16 points.

	 En répertoriant les données dans un tableau nous pouvons déjà apercevoir que la génération semble être 
plus efficace pour un score moyen. Les graphiques permettent de visualiser cette donnée. En effet, les résultats 
se voulaient aléatoires afin de générer une diversité infinie de plans. En suivant cette logique, il est normal que 
le résultat de chacune de ces générations suivent la loi normale. 

Définition de la loi normale (par soft-concept.com)

	 “La courbe de Gauss est connue aussi sous le nom de « courbe en cloche » ou encore de « courbe de la 
loi normale ». Elle permet de représenter graphiquement la distribution d’une série et en particulier la densité de 
mesures d’une série. Elle se base sur les calculs de l’espérance et de l’écart-type de la série. Pour un échantillon 
important, il est généralement constatée une courbe en forme de cloche, c’est-à-dire une forte concentration des 
valeurs autour de la moyenne puis des valeurs de moins en moins nombreuses aux extrémités de la série.”

7.4.2 - Pourcentage des scores par typologie

Typologie de plan

Nombre total de 
plans générés 300 245 218

1 point 1 0 0

Score maximal 12 points 14 points 16 points

3 points 20 2 3

6 points 70 48 37

9 points 11 23 27

12 points 0 2 6

15 points 0

2 points 9 3 0

5 points 66 35 19

8 points 29 43 44

11 points 0 2 16

14 points 0 0

4 points 47 23 9

7 points 45 51 42

10 points 2 13 14

13 points 0 1

16 points 0

T2 T3 T4

Typologie de plan

1 point 0.33% 0% 0%

3 points 6.67% 0.82% 1.38%

6 points 23.33% 19.59% 16.97%

9 points 3.67% 9.39% 12.38%

12 points 0% 0.82% 2.75%

15 points 0%

2 points 3% 1.22% 0%

5 points 22% 14.28% 8.72%

8 points 9.66% 17.55% 20.18%

11 points 0% 0.82% 7.34%

14 points 0% 0%

4 points 15.67% 9.38% 4.13%

7 points 15% 20.82% 19.27%

10 points 0.67% 5.31% 6.42%

13 points 0% 0.46%

16 points 0%

T2 T3 T4

Avant propos 

Introduction

Point historique 

Problématique 

Etat de l’art 

Etapes de la recherche

Résultat de la recherche

• Exemples de plans 
générés

Conclusion

Notice d’utilisation 

Bibliographie 

Glossaire 

Annexes

Arthur ROULAND

Figure 7.4.1.a
Tableau des résultats de la génération de plans

© Arthur ROULAND

Figure 7.4.2.a
Tableau des pourcentages des scores par typologie
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	 La disposition des valeurs de départ de l’algorithme est aléatoire. En ce sens, 
chacune des couleurs a autant de chance que les autres de tomber sur n’importe quelle 
case de la grille. L’emplacement initial de ces paramètres de départ influe grandement sur 
le score de la génération. Il est donc logique que nous n’obtenions que très peu de scores 
bas ainsi que de scores hauts. Les scores dit “moyens” ont quant à eux beaucoup plus 
de possibilités d’être générés et c’est pourquoi ils sont majoritaires par rapport aux scores 
bas et hauts. 

	 Pour simplifier, la loi normale fonctionne comme une paire de dés. Chaque face 
d’un dé a une chance sur six d’apparaître. Le score le plus bas est donc 2 (1 et 1) et le 
score le plus haut 12 (6 et 6). Ils ont tous les deux 1 chance sur 36 d’apparaître. Cependant, 
nous avons plus de chances de faire un score total de 4 par exemple. Les combinaisons 
possibles sont donc 1 et 3, 2 et 2 et 3 et 1. Cela nous donne 3 chances sur 36 d’obtenir un 
3. Ainsi pour les valeurs du milieu comme 7, nous avons alors 6 combinaisons possibles 
afin d’arriver à ce résultat, soit 6 chances sur 36 ou encore 1 chance sur 6. 

	 La loi de Gauss (ou la loi normale), nous dit que plus la série est grande, donc plus 
nous allons générer de plans, plus les valeurs vont venir épouser la courbe. Cependant, 
il est nécessaire de rappeler que l’ensemble de l’algorithme ne repose pas sur le hasard 
et les lois de probabilités. En effet, le redécoupage des formes générées ainsi que l’ordre 
de priorité des espaces dans les opérations booléennes peuvent faire varier ce résultat. 
Cependant, étant donné que ces paramètres restent les mêmes pour chaque plan généré, 
nous pouvons supposer que ces opérations qui ne relèvent pas de l’aléatoire, n’influent 
que très peu sur le fait que la série de plans générée suive la loi normale.

7.4.3 - Graphique de la génération des T2

7.4.4 - Graphique de la génération des T3

7.4.5 - Graphique de la génération des T4

Avant propos 

Introduction

Point historique 

Problématique 

Etat de l’art 

Etapes de la recherche

Résultat de la recherche

• Exemples de plans 
générés

Conclusion

Notice d’utilisation 

Bibliographie 

Glossaire 

Annexes

Arthur ROULAND

Figure 7.4.2.b
Tableau de probabilité pour deux dés à 6 faces

© Arthur ROULAND

Figure 7.4.3.a
Graphique des résultats de la génération de T2

© Arthur ROULAND

Figure 7.4.4.a
Graphique des résultats de la génération de T3

© Arthur ROULAND

Figure 7.4.5.a
Graphique des résultats de la génération de T4

© Arthur ROULAND

Loi normale
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	 Le résultat de cette recherche est satisfaisant. En effet, l’idée initiale de ce 
mémoire de recherche était d’élaborer un programme utilisable par tous et permettant de 
constituer une base de données potentiellement infinie afin de l’utiliser dans le domaine de 
la recherche en intelligence artificielle. Le programme fonctionne et permet la génération 
d’une variété infinie de plans comme nous avons pu le voir dans la partie précédente. 

	 Cependant, en effectuant cette recherche, j’ai dû faire des choix qui ont influencé le 
résultat. En effet, l’ordre des priorités des pièces les unes avec les autres est arbitraire. Les 
scores et les résultats seraient différents si ce paramètre était modifié. De plus, une des 
limites de cet algorithme est le lien que les espaces ont avec leur couleur. En effet, dans 
ce mémoire, chaque couleur était dès le début associée à un espace. Une amélioration à 
apporter serait de générer une partition impartiale qui évaluerait par la suite les espaces 
afin d’identifier chaque pièce. Dans cette expérience, il est impossible d’intervertir deux 
espaces. En ce sens, un séjour qui répond aux critères d’une cuisine et une cuisine qui 
répond aux critères d’un séjour ne peuvent pas échanger leurs emplacements. Cela 
constitue une limite à cette expérience car un plan spatialement intéressant avec cette 
affectation de pièces peut se retrouver avec un score faible tandis que si l’on avait interverti 
deux espaces entre eux, le score aurait pu être plus élevé. 

	 Un autre paramètre important que nous avons déjà abordé dans ce mémoire 
est la division de la grille. En effet, beaucoup de tentatives ont été nécessaires afin de 
trouver une solution qui offrait un vaste domaine de possibilités. Le choix des automates 
cellulaires a été fait dans le cadre de cette recherche mais d’autres méthodes peuvent 
également être développées qui répondent ou non aux enjeux que je me suis fixé pour ce 
mémoire. Une autre méthode de division d’une surface engendrera sans aucun doute des 
résultats différents et constituera une base de données différentes pour la recherche dans 
le domaine de l’intelligence artificielle. 

	 Une des limites à laquelle j’ai dû faire face est la forme du plan généré. Dans la 
partie 5, nous avons pu voir plusieurs méthodes de division d’une surface. J’ai pu essayer le 
composant Substrate qui est incapable de fonctionner sur une autre forme qu’un rectangle. 
La méthode basée sur l’utilisation des automates cellulaires présente actuellement dans 
ce mémoire la même limite. En effet, même en dessinant une surface plus complexe qu’un 
rectangle, l’automate redessine une forme rectangulaire. Il doit cependant être possible 
d’adapter ce programme à une forme plus complexe afin de permettre la génération d’une 
plus grande diversité de plans.

	 Enfin, un des derniers choix que j’ai pu faire influence également le générateur. 
En effet, un des derniers composants ajoutés dans le programme GrassHopper est un 
système d’évaluation du score final. Cette partie de l’algorithme compare le score final 
maximal possible et le score maximal final de la génération. En effet, la partie permettant 
d’effectuer des opérations booléennes entre les surfaces peut parfois effacer un espace. 
Dans ce cas précis, la pièce disparaît et une partie de l’algorithme dysfonctionne. Le 
résultat de ce phénomène est que le score final de la génération n’est pas en adéquation 
avec le score maximal possible. J’ai pris la décision arbitraire de ne pas enregistrer les 
plans qui auraient un espace manquant dans le but de favoriser la qualité à la quantité. J’ai 
pu remarquer que plus il y avait de pièces différentes dans un plan, plus ce phénomène 
pouvait être récurrent. Les trois algorithmes pour les T2, T3 et T4 sont tous les trois réglés 
sur 20 secondes. Ils génèrent donc théoriquement un plan toutes les 20 secondes (180 
plans à l’heure) mais tous ne sont pas enregistrés afin d’éviter d’obtenir trop d’anomalies 
et de se retrouver parfois avec des plans entièrement blancs. 

	 Pour terminer, contrairement aux plug-ins Marmot et Magnetizing Floor Plan 
Generator, les pièces n’entretiennent pas de relations entre elles. Aucune logique de partition 
n’est établie et nous pouvons parfois observer des pièces aveugles enclavées dans le plan. 
Cela n’est pas forcément mauvais car il est intéressant d’observer ces anomalies. Les plans 
générés n’ont pas d’orientation particulière, d’ouvertures particulières et l’on peut aussi 
bien s’imaginer dans un immeuble des années 50 que dans une tiny-house dans la nature. 
L’idée était de générer et d’observer une grande diversité de plans afin d’obtenir parfois 
des anomalies, des choses qui sortent de l’ordinaire qui ne sont pas conventionnelles mais 
qui peuvent fonctionner et donner des idées nouvelles. Jean-Raphaël PIQUARD a lui aussi 
généré des anomalies ou plutôt des «chimères». Je pensais en obtenir après avoir testé 
son programme avec ma base de données mais mon programme de génération de plan 
génère lui aussi des «chimères» ce qui est intéressant.
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1 - Installez Rhinoceros 3D version 6 ou 7 avec Grasshopper. 

2 - Téléchargez le fichier et installez-le sur le disque dur de votre ordinateur. 

3 - Ouvrez le fichier Rhino “PLAN GENERATOR.3dm”.

4 - Vérifiez que le fond s’affiche en blanc.

5 - Vérifiez que la vue courante est la vue “PLAN GENERATOR”. Cliquer sur la flèche à 
droite du nom de la vue. Se rendre dans “Set View” puis cliquez sur “PLAN GENERATOR”.

9 - Notice d’utilisation

7 - Cliquez sur “File” puis “Open Document”.

8 - Allez dans le fichier téléchargé, entrez dans le dossier que vous souhaitez générer (T2, T3 ou T4) et lancez le 
fichier Grasshopper “PLAN GENERATOR T…”.

6 - Dans la partie “Command” de Rhino, entrer le mot “Grasshopper”, puis cliquer sur “Enter”.

Avant propos 

Introduction

Point historique 

Problématique 

Etat de l’art 

Etapes de la recherche

Résultat de la recherche

Exemples de plans 
générés

Conclusion

• Notice d’utilisation 

Bibliographie 

Glossaire 

Annexes

Arthur ROULAND



102 103

9 - Dans la partie supérieure du programme (partie 1), rentrez les paramètres du plan. 
Longueur et largeur du plan, surface minimale, maximale et dimensions minimales des 
côtés de chaque pièce. Le tout en mètres. Utilisez des points plutôt que des virgules. 

10 - Toujours dans la partie 1, entrez le chemin d’accès au fichier où vous souhaitez 
enregistrer les plans générés à chaque itération. 

11 - Par défaut, le script Python est éteint. Sélectionnez le. Appuyez sur la molette de votre souris. Cliquez sur le 
bouton “On”. Un premier plan devrait être généré. 

12 - Allez au début de la partie 2 (tout à gauche du programme). Lancez le timer. Par défaut, le timer génère 
de nouvelles valeurs toutes les 20 secondes. Cet intervalle est à régler en fonction des performances de votre 
ordinateur.  
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Add-on :  Logiciel conçu pour être greffé à un autre logiciel à travers une interface prévue 
à cet effet, et apporter à ce dernier de nouvelles fonctionnalités.

Algorithme : Ensemble de règles opératoires dont l’application permet de résoudre un 
problème énoncé au moyen d’un nombre fini d’opérations. Un algorithme peut être traduit, 
grâce à un langage de programmation, en un programme exécutable par un ordinateur.

Allocation spatiale : Disposition informatique des pièces dans un plan. C’est le processus 
de détermination de la position et de la taille de différentes pièces dans un espace à deux 
dimensions, en fonction des exigences de l’utilisateur et des contraintes topologiques et 
géométriques.

Automate cellulaire : Un automate cellulaire consiste en une grille régulière de « cellules 
» contenant chacune un « état » choisi parmi un ensemble fini et qui peut évoluer au cours 
du temps. 

CAO/CAD : Conception Assistée par Ordinateur / Computer-Aided Design

Day & Night : Automate cellulaire bidimensionnel à deux états (« vivant » ou « mort »)

DWG : Format natif des fichiers de dessins AutoCAD. DWG est l’abréviation de DraWinG

GrassHopper : Grasshopper est un langage et un environnement de programmation 
visuel qui s’exécute dans l’application de conception assistée par ordinateur (CAO) 
Rhinoceros 3D

Intelligence Artificielle : Ensemble de théories et de techniques mises en œuvre en vue 
de réaliser des machines capables de simuler l’intelligence humaine.

Itération : Répétition d’un calcul, d’une opération, d’un raisonnement.

Jeu de la vie : Automate cellulaire imaginé par John Horton Conway en 1970. Malgré 
des règles très simples, le jeu de la vie permet le développement de motifs extrêmement 
complexes.

Logiciel : Ensemble de programmes, qui permet à un ordinateur ou à un système 
informatique d’assurer une tâche ou une fonction en particulier.

Opération booléenne : Ensemble d’opérations booléennes (AND, OR, NOT, XOR...) 
effectuées sur un ou plusieurs ensembles de polygones en infographie.

Paramétrique : Qui contient un ou des paramètres, c’est à dire une variable susceptible 
de recevoir une valeur constante pour un cas déterminé et qui désigne certains coefficients 
ou certaines quantités en fonction desquels on veut exprimer une proposition ou les 
solutions d’un système d’équations.

Plug-in :   Logiciel conçu pour être greffé à un autre logiciel à travers une interface prévue 
à cet effet, et apporter à ce dernier de nouvelles fonctionnalités.

PNG : Portable Network Graphics. Format d’image numérique.

Python : Langage de programmation multiplateforme.

Rhinocéros 3D : Logiciel 3D de Conception Assistée par Ordinateur permettant la 
modélisation d’objets complexes.

Système multi-agents : Système composé d’un ensemble d’agents (un processus, 
un robot, un être humain, une fourmi etc.), actifs dans un certain environnement et 
interagissant selon certaines règles.

Voronoï : En mathématiques, un diagramme de Voronoï est un pavage (découpage) du 
plan en cellules (régions adjacentes) à partir d’un ensemble discret de points appelés « 
germes ». Chaque cellule renferme un seul germe, et forme l’ensemble des points du plan 
plus proches de ce germe que d’aucun autre. La cellule représente en quelque sorte la « 
zone d’influence » du germe.
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Figure 11.a
Schémas d’opérations booléennes

Source : wikipédia.org

Figure 11.b
Voronoï

Source : javalab.org



114 115

Annexes
12



116 117

12.1 - Capture d’écran du timer

12.1.2 - Code du timer

using System;
using System.Collections;
using System.Collections.Generic;

using Rhino;
using Rhino.Geometry;

using Grasshopper;
using Grasshopper.Kernel;
using Grasshopper.Kernel.Data;
using Grasshopper.Kernel.Types;

using System.IO;
using System.Linq;
using System.Data;
using System.Drawing;
using System.Reflection;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Linq;
using System.Runtime.InteropServices;

using Rhino.DocObjects;
using Rhino.Collections;
using GH_IO;
using GH_IO.Serialization;

/// <summary>
/// This class will be instantiated on demand by the Script component.
/// </summary>
public class Script_Instance : GH_ScriptInstance
{
#region Utility functions
  /// <summary>Print a String to the [Out] Parameter of the Script component.</summary>
  /// <param name=»text»>String to print.</param>
  private void Print(string text) { /* Implementation hidden. */ }
  /// <summary>Print a formatted String to the [Out] Parameter of the Script component.</summary>
  /// <param name=»format»>String format.</param>
  /// <param name=»args»>Formatting parameters.</param>
  private void Print(string format, params object[] args) { /* Implementation hidden. */ }
  /// <summary>Print useful information about an object instance to the [Out] Parameter of the Script component. </summary>
  /// <param name=»obj»>Object instance to parse.</param>
  private void Reflect(object obj) { /* Implementation hidden. */ }
  /// <summary>Print the signatures of all the overloads of a specific method to the [Out] Parameter of the Script component. </summary>
  /// <param name=»obj»>Object instance to parse.</param>
  private void Reflect(object obj, string method_name) { /* Implementation hidden. */ }
#endregion

#region Members
  /// <summary>Gets the current Rhino document.</summary>
  private readonly RhinoDoc RhinoDocument;
  /// <summary>Gets the Grasshopper document that owns this script.</summary>
  private readonly GH_Document GrasshopperDocument;
  /// <summary>Gets the Grasshopper script component that owns this script.</summary>
  private readonly IGH_Component Component;
  /// <summary>
  /// Gets the current iteration count. The first call to RunScript() is associated with Iteration==0.
  /// Any subsequent call within the same solution will increment the Iteration count.
  /// </summary>
  private readonly int Iteration;
#endregion

  /// <summary>
  /// This procedure contains the user code. Input parameters are provided as regular arguments,
  /// Output parameters as ref arguments. You don’t have to assign output parameters,
  /// they will have a default value.
  /// </summary>
  private void RunScript(bool playItAgainSam, int N, int fate, int decimals, double min, double max, ref object A)
  {
    HashSet<double> randoms = new HashSet<double>();
    for(int i = 0; i < N; i++){
      randoms.Add(Math.Round(rand.NextDouble(min, max), decimals));
    }

    Print(«For: {0} loops, unique doubles made: {1}», N, randoms.Count);
    A = randoms;
  }

  // <Custom additional code> 
  RangedRandom rand = new RangedRandom();

  class RangedRandom : System.Random
  {
    public RangedRandom(): base(){}

    public RangedRandom(int seed): base(seed){}

    public double NextDouble(double max){
      return NextDouble() * max;
    }

    public double NextDouble(double min, double max){
      return (max - min) * NextDouble() + min;
    }
  }
  // </Custom additional code> 
}
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12.2 - Capture d’écran du script Python 12.2.2 - Code du script Python

«»»Provides a scripting component.
    Inputs:
        x: The x script variable
        y: The y script variable
    Output:
        a: The a output variable»»»

__author__ = «artro»
__version__ = «2021.04.06»

import rhinoscriptsyntax as rs
a=[]    #sortie pour la boucle
m=int(Longueur)
n=int(Largeur)
x={}    #couleur future

#[0; n ] # ligne du haut
#[len-n;len] # Ligne du bas
#i%n=0 #multiples de n (colonne du côté droit)
#i-n-1%n=0 #colonne de gauche

#Voisins à exclure pour les cellules des bords de la grille
LigneDuHaut=[-1-n,-n,-n+1]
LigneDuBas=[n-1,n,n+1]
ColonneGauche=[-n-1,-1,n-1]
ColonneDroite=[-n+1,1,n+1]

#Voisins=[-n,-1,+1,n] #Tous les voisins d’une cellule, voisinnage de Von Neumann
Voisins=[-n,-1,+1,n,-n-1,-n+1,n-1,n+1] #Tous les voisins d’une cellule, voisinnage de Moore

def over():
    for i in range(0,len(C)):
        if(C[i] == 0) :
            return False
    return True

for z in range(50) :
    print(z)
    for i in range(0,len(C)):
        x[i]=0
        if C[i]==0: #and (N[i]>=1):
    
    #Ligne du haut
    
            if i>=0 and i<n:
                for k in Voisins:
                    if i%n==0: 
                        if k not in LigneDuHaut and k not in ColonneGauche:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
                    elif (i+1)%n==0:
                        if k not in LigneDuHaut and k not in ColonneDroite:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
                    else :
                        if k not in LigneDuHaut:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
    
    
    
    
    #Ligne du bas
    
            elif i>=len(C)-n-1 and i<len(C):
                for k in Voisins:
                    if i%n==0: 
                        if k not in LigneDuBas and k not in ColonneGauche:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
                    elif (i+1)%n==0:
                        if k not in LigneDuBas and k not in ColonneDroite:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
                    else:
                        if k not in LigneDuBas:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
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    #Colonne de gauche
    
            elif i%n==0:
                for k in Voisins:
                    if i>=0 and i<n:
                        if k not in ColonneGauche and k not in LigneduHaut:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
                    elif i>=len(C)-n-1 and i<len(C):
                        if k not in ColonneGauche and k not in LigneduBas:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
                    else:
                        if k not in ColonneGauche:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
    
    
    
    #Colonne de droite
    
            elif (i+1)%n==0:
                for k in Voisins:
                    if i>=0 and i<n:
                        if k not in ColonneDroite and k not in LigneduHaut:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
                    elif i>=len(C)-n-1 and i<len(C):
                        if k not in ColonneDroite and k not in LigneduBas:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
                    else:
                        if k not in ColonneDroite:
                            j=i+k
                            if C[j]!=0:
                                x[i]=(C[j])
            else :
                for k in Voisins:
                    j=i+k
                    if C[j]!=0:
                        x[i]=(C[j])
    
    
    
        else :
            x[i]=C[i]            #future valeur de la case i
            
      
    for d in range(0,len(C)):
        C[d] = x[d]
    
    if (over() == True) :
        break
        
print (len(C))
print (len(x))

for i in range(0,len(C)):
    a.append (x[i])

print(over())

#for a in range(0,len(a)):
#    if a==1:
#        bleu.append (a)
#    elif a==2:
#        vert.append (a)
#    elif a==3:
#        rouge.append (a)
#    elif a==4:
#        jaune.append (a)
#    elif a==5:
#        rose.append (a)

12.2.3 - Explication du script python

1 - Script codé par GrassHopper

2 - Définition des varibales

3 - Texte d’information

4 - Voisins à exclure
5 - Voisinage des cellules

6 - Boucle de répétition

7 - Etude des bords de la grille

8 - Etude des cellules génériques

9 - Affectation des couleurs
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12.2.3.1 - Le script codé par grasshopper

12.2.3.2 - Définitions des variables

12.2.3.3 - Texte d’information

	 La première partie de ce script python est déjà codée par défaut lors de l’ouverture 
du composant. Aucune modification n’a été apportée. 

	 Dans cette deuxième partie du script, nous paramétrons les deux entrées 
“Longueur” et “Largeur” du composant ainsi que sa sortie “a”. C’est dans cette sortie 
que vont être stockées les informations finales. A celà nous avons rajouté une variable 
“x”. Cette variable va nous permettre de stocker les informations des cellules à chaque 
itération. Cela permet au script de tourner sans envoyer les informations à chaque itération. 
Sans cela, le programme évaluerait chaque itération tandis que nous souhaitons que le 
programme n’évalue la grille d’une fois entièrement divisée. 

	 Ce texte est informatif. Il est ici afin de rappeler comment identifier les cellules de 
chaque bord de la grille. 

12.2.3.4 - Voisins à exclure

12.2.3.5 - Voisinage des cellules

12.2.3.6 - Boucle de répétition

	 Cette partie nous permet de renseigner les voisins à exclure pour les cellules se trouvant sur le bord de la 
grille. Au lieu de préciser le voisinage à chaque opération, il suffit désormais de préciser l’un de ces quatre textes 
afin d’exclure les voisins indésirables. 
La “LigneDuHaut” exclut les voisins se situant au-dessus à gauche, au-dessus et au-dessus à droite. 
La “LigneDuBas” exclut les voisins se situant en dessous à gauche, en dessous et en dessous à droite. 
La “ColonneGauche” exclut les voisins se situant au-dessus à gauche, à gauche et en dessous à gauche. 
La “ColonneDroite” exclut les voisins se situant au-dessus à droite, à droite et en dessous à droite. 

	 La cinquième partie du script permet de sélectionner le voisinage souhaité. Pour cette recherche, j’ai 
utilisé le voisinage de Moore. Cependant, il est possible d’activer le voisinage de Von Neumann en retirant le “#” 
de la première ligne et en l’insérant au début de la seconde. Le “#” permet de préciser que nous écrivons du texte 
et que le programme ne doit pas le prendre en compte. Ce voisinage sera utilisé par toutes les cellules. Dans les 
cas particuliers qui sont les bords de la grille, il faudra exclure de ce voisinage les voisins indésirables précisés 
dans la partie 4. 

	 C’est dans cette sixième partie que l’algorithme commence à observer les cellules. Ce script observe 
dans l’entièreté de la grille s’ il trouve une cellule ayant la valeur 0 (état éteint). Si tel est le cas, la fonction “over” 
est fausse. Le cas échéant la fonction “over” est vraie, cette boucle s’arrête et le programme passe à la suite. 
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12.2.3.7 - Etude des bords de la grille

12.2.3.8 - Etude des cellules génériques

12.2.3.9 - Affectation des couleurs

	 Dans le cas où “over” est faux, notre algorithme va venir dans cette partie qui est divisée en 4 éléments 
presque identiques. La logique de ces 4 parties est la même, seules les formules de voisinages varient en 
fonction du bord étudié. 
Prenons l’exemple de la ligne du haut. Dans ce cas, l’algorithme fonctionne de la manière suivante. 
Si i (notre cellule étudiée) est plus grand ou égal à 0 et que i est inférieur à n (cela correspond à la ligne du haut) 
Dans ce cas, l’algorithme sait que la cellule se trouve donc sur la ligne du haut. Le cas échéant, il serait passé aux 
autres étapes). Maintenant, afin d’exclure les voisins, il est nécessaire de vérifier si notre cellule ne se situe pas 
dans un coin. Si elle se situe dans le coin en haut à gauche, nous allons exclure les voisins de LigneDuHaut et 
de ColonneGauche. Si elle se situe dans le coin en haut à droite, nous allons exclure les voisins de LigneDuHaut 
et de ColonneDroite. Autrement, nous n’allons exclure que les voisins se trouvant dans LigneDuHaut. 
Cette opération est répétée pour la ligne du bas, la colonne de droite ainsi que la colonne de gauche. 

	 Si la cellule étudiée ne rentre dans aucune des parties de la partie 7, cela équivaut à dire que cette cellule 
ne se situe pas sur un des bords de la grille. Dans ce cas, le voisinage utilisé correspond au voisinage de Moore 
au complet. 

	 L’algorithme, dans la partie 7 et dans la partie 8 va regarder ses voisins. La seule différence est que 
dans la partie 7 les voisins ne sont pas au complet. En regardant ses voisins, l’algorithme dit que si notre cellule 
étudiée a au moins un voisin dont l’état est différent de zéro (cela signifie qu’il a une couleur autre que la noire), 
alors notre cellule étudiée va stocker en mémoire la valeur de ce voisin. En effet, la cellule ne va pas tout de suite 
changer d’état. Autrement, la prochaine cellule étudiée verra qu’elle a une couleur et cela fausserait le résultat. 
Enfin, une fois que toutes les cellules de la grille auront été étudiées, toutes celles qui ont gardé une couleur en 
mémoire vont se voir affecter cette couleur. 

	 Suite à cette opération, l’algorithme revient à la partie 6. Cette partie va regarder s’ il reste une cellule à 
l’état 0. Si c’est le cas, alors le script va tourner à nouveau. C’est une itération. Si aucune cellule n’est à l’état 0, 
cela veut dire que chaque cellule a une couleur et donc que la division de la grille est terminée. La fonction “over” 
est vraie. L’algorithme dit donc que toutes les cellules se trouvant entre 0 et la longueur de la grille (soit toutes 
les cellules de la grille), vont stocker leur valeur respective dans le paramètre “a”. Pour rappel, “a” est la sortie du 
composant python dans grasshopper, cela signifie que les valeurs sont envoyées dans la suite de l’algorithme. 
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12.3 - Capture d’écran de l’enregistreur

12.3.2 - Code de l’enregistreur

using System;
using System.Collections;
using System.Collections.Generic;

using Rhino;
using Rhino.Geometry;

using Grasshopper;
using Grasshopper.Kernel;
using Grasshopper.Kernel.Data;
using Grasshopper.Kernel.Types;

using System.IO;
using System.Linq;
using System.Data;
using System.Drawing;
using System.Reflection;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Linq;
using System.Runtime.InteropServices;

using Rhino.DocObjects;
using Rhino.Collections;
using GH_IO;
using GH_IO.Serialization;

/// <summary>
/// This class will be instantiated on demand by the Script component.
/// </summary>
public class Script_Instance : GH_ScriptInstance
{
#region Utility functions
  /// <summary>Print a String to the [Out] Parameter of the Script component.</summary>
  /// <param name=»text»>String to print.</param>
  private void Print(string text) { /* Implementation hidden. */ }
  /// <summary>Print a formatted String to the [Out] Parameter of the Script component.</summary>
  /// <param name=»format»>String format.</param>
  /// <param name=»args»>Formatting parameters.</param>
  private void Print(string format, params object[] args) { /* Implementation hidden. */ }
  /// <summary>Print useful information about an object instance to the [Out] Parameter of the Script component. </summary>
  /// <param name=»obj»>Object instance to parse.</param>
  private void Reflect(object obj) { /* Implementation hidden. */ }
  /// <summary>Print the signatures of all the overloads of a specific method to the [Out] Parameter of the Script component. </summary>
  /// <param name=»obj»>Object instance to parse.</param>
  private void Reflect(object obj, string method_name) { /* Implementation hidden. */ }
#endregion

#region Members
  /// <summary>Gets the current Rhino document.</summary>
  private readonly RhinoDoc RhinoDocument;
  /// <summary>Gets the Grasshopper document that owns this script.</summary>
  private readonly GH_Document GrasshopperDocument;
  /// <summary>Gets the Grasshopper script component that owns this script.</summary>
  private readonly IGH_Component Component;
  /// <summary>
  /// Gets the current iteration count. The first call to RunScript() is associated with Iteration==0.
  /// Any subsequent call within the same solution will increment the Iteration count.
  /// </summary>
  private readonly int Iteration;
#endregion

  /// <summary>
  /// This procedure contains the user code. Input parameters are provided as regular arguments,
  /// Output parameters as ref arguments. You don’t have to assign output parameters,
  /// they will have a default value.
  /// </summary>
  private void RunScript(string Dir, string Name, string VP, bool Capture, object Trigger, ref object A)
  {
    if (!Capture) return;
    if (string.IsNullOrWhiteSpace(Dir)) return;
    if (string.IsNullOrWhiteSpace(Name)) return;

    // Make sure the directory ends with a \
    if (!Dir.EndsWith(System.IO.Path.DirectorySeparatorChar.ToString()))
      Dir += System.IO.Path.DirectorySeparatorChar;

    // Do not create directories, only use existing ones.
    if (!System.IO.Directory.Exists(Dir))
      return;

    // Assume index=0 for the first filename.
    string fileName = Dir + string.Format(Name, 0);

    // Try to increment the index until we find a name which doesn’t exist yet.
    if (System.IO.File.Exists(fileName))
      for (int i = 1; i < int.MaxValue; i++)
      {
        string localName = Dir + string.Format(Name, i);
        if (localName == fileName)
          return;

        if (!System.IO.File.Exists(localName))
        {
          fileName = localName;
          break;
        }
      }

    Rhino.Display.RhinoView view = RhinoDocument.Views.Find(VP, false);
    Bitmap image = view.CaptureToBitmap(true, false, false);
    A = image.Width;
    image.Save(fileName);
    image.Dispose();

    A = fileName;
  }

  // <Custom additional code> 

  // </Custom additional code> 
}
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