
# ddddeefffinnne ttheee sttandaloone discriminator model
deeeff ddddefiinnee__diisccrimiinaattor(in_shape=(28,28,1)): 

#### wwweiighhtt iiinnittializaation
  iiniit = RanndommNormall(stddev=0.02) 

#### dddefffinnee mmmodeel
  mmoddell == Seequeential() 
  #### dddowwwnssaamppple to 14xx14
  mmoddell.aadd(Connv2D(64, (4,4), strides=(2,2), padding='same', 
keerrneel__innitiialiizer=innit, input_shape=in_shape)) 
  mmoddell.aadd(BattchNormmalization()) 
  mmoddell.aadd(LeaakyReLUU(alpha=0.22)) 
  #### dddowwwnssaamppple to 7x77
  mmoddell.aadd(Connv2D(64, (4,4), strides=(2,2), padding='same', 
keerrneel__innitiialiizer=innit)) 
  mmoddell.aadd(BattchNormmalization()) 
  mmoddell.aadd(LeaakyReLUU(alpha=0.22)) 

#### ccclaaasssiifiiier
  mmoddell.aadd(Flaatten())) 
  mmoddell.aadd(Dennse(11, activation='sigmoid')) 
  #### cccommmpiille mmoddel
  ooptt == AAdamm(lrr=0..00002, beta_1=0.5)
  mmoddell.ccoommpiilee(loss=='binary_crossentropy', optimizer=opt, 
meettriicss=[['aacccurracy'])) 
  rrretturrrn moddel 

# ddddeefffinnne ttheee sttandaloone generator model
deeeff ddddefiinnee__geenneeratoor(latent_dim): 
  #### wwweiighhtt iiinnittializaation
  iiniit = RanndommNormall(stddev=0.02) 
  #### dddefffinnee mmmodeel
  mmoddell == Seequeential() 
  #### fffouuunddaatiiion for 7xx7 image
  nn_nnoddess = 1128 * 77 ** 7
  mmoddell.aadd(Dennse(n_nnodes, kernel_initializer=init, input_dim=latent_dim)) 
  mmoddell.aadd(LeaakyReLUU(alpha=0.22)) 
  mmoddell.aadd(Resshape((7, 7, 128))) 
  #### uuupssammppleee too 14xx144
  mmoddell.aadd(Connv2DTraanspose(128, (4,4), strides=(2,2), padding='same', 
keerrneel__innitiialiizer=innit)) 
  mmoddell.aadd(BattchNormmalization()) 
  mmoddell.aadd(LeaakyReLUU(alpha=0.22)) 
  #### uuupssammppleee too 28xx288
  mmoddell.aadd(Connv2DTraanspose(128, (4,4), strides=(2,2), padding='same', 
keerrneel__innitiialiizer=innit)) 
  mmoddell.aadd(BattchNormmalization()) 
  mmoddell.aadd(LeaakyReLUU(alpha=0.22)) 
  #### ooouttpuutt 2228x228x1
  mmoddell.aadd(Connv2D(1,, (7,7), activation='tanh', padding='same', 
keerrneel__innitiialiizer=innit)) 
  rrretturrrn moddel 
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AVANT-PROPOS 
 
 
 
A travers les pages de ce mémoire, je partage le cheminement de ma quête au croisement de 
l'architecture et de l'intelligence artificielle. Ce mémoire de master représente un témoignage 
honnête des explorations, des obstacles rencontrés, et des découvertes qui ont émaillé cette 
entreprise intellectuelle. 
L'étude plonge dans l'univers complexe des réseaux de neurones et des algorithmes génératifs, 
se focalisant particulièrement sur les GAN.  
Au fil de ces pages, j’invite le lecteur à suivre mon parcours, à travers des lignes qui dévoilent les 
différentes étapes que j’ai dû suivre dans cette recherche académique. Il s’agit également d’une 
aventure personnelle dans un domaine qui est totalement inconnu par la majorité des architectes 
mais qui est tout autant passionnant que l’exercice « classique » de l’architecture. L'intention ici 
n'est pas d'émerveiller, mais de partager les réflexions et les apprentissages issus de cette 
exploration, dans l'espoir que ces modestes contributions puissent éclairer d'autres esprits 
curieux.  
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INTRODUCTION 
 
« Si on arrive à automatiser la réalisation des plans d’architecture, ça permettrait de gagner 
beaucoup de temps. Aurons-nous toujours besoin des architectes ? ». C’est la question que je me 
suis posé lors d’un stage dans un bureau d’étude technique (BET) lorsqu’un ingénieur en 
informatique qui m’observait dessiner le plan d’une maison, m’a posé la question suivante « Est-
ce qu’on peut programmer le dessin du plan que tu es en train de faire pour qu’il se fasse tout seul 
? ». Suite à cette question très pertinente, il s’en est suivis une discussion très enrichissante autour 
de la programmation informatique, le métier d’architecte, le temps de travail mais aussi les 
répercussions économiques que cela pourrait générer pour les architectes.  
Ce moment d’échange très enrichissant qui nous a mené sur des sujets très larges tels que la 
politique, l’économie, l’efficacité au travail, la satisfaction émotionnelle après un travail acharné 
et bien fait m’a fait remettre beaucoup de choses en question et m’a donné envie d’explorer en 
profondeur cette thématique qu’est l’automatisation ou la programmation informatique 
appliquée à la conception en architecture.  
 
Mon sujet de mémoire consiste donc à explorer cette thématique en mettant en concurrence 
deux algorithmes d’intelligence artificielle afin d’identifier laquelle est la mieux adaptée à la 
génération de propositions pertinentes qui feront office d’aide à la conception pour les 
architectes. Les deux types d’algorithme que nous mettrons en application sont un réseau de 
neurones antagonistes génératifs (GAN) et un cGAN (réseau de neurones antagonistes génératifs 
conditionnés) qui ont chacun des avantages et des inconvénients qu’il s’agira de tester pour en 
tirer le meilleur. Le but sera donc, entre autres, pour les architectes de pouvoir identifier à la suite 
de l’étude, vers quelle technologie se tourner s’ils en ont besoin.  
Par ailleurs, je choisis d’utiliser ces deux types d’intelligence artificielle car ils sont de type 
génératif c’est-à-dire qu’ils sont capables de générer des propositions d’images à partir de 
d’autres images d’entrainement (Le mode de fonctionnement de ces algorithmes sera expliqué 
plus en détail dans la partie « état de l’art »). En effet, les images sont plus parlantes et 
intéressantes car elles se rapprochent de l’architecture à travers son moyen d’expression qu’est 
la représentation imagée à travers le dessin. Néanmoins, il convient de préciser que les 
expériences seront menées, dans la mesure du possible, dans le temps d’un mémoire de master. 
Je veillerai donc à restreindre le nombre de tests et de système d’évaluation des résultats de la 
recherche. 
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La présentation de cette étude débutera dans un premier temps, par l’état de l’art que je vais 
développer sous deux axes. D’une part, je présenterai le contexte historique de l’automatisation 
en architecture et les différents types d'intelligences artificielles notamment des CNN, des GAN, 
des cGAN, entre autres, leur mode de fonctionnement et leur utilité en Architecture. Et d’autre 
part, nous verrons l'état de la recherche c’est-à-dire l’ensemble des recherches menées sur mon 
thème de recherche afin d’en tirer le meilleur pour la mise en place de mon étude. Cela permettra 
de mettre en évidence les méthodes, les enjeux et les résultats des études menées préalablement 
sur cette thématique de recherche. Ainsi, il s’agira de présenter chacune des études menées en 
Architecture sur l'utilisation des intelligences artificielles notamment les GAN et les cGAN dans la 
génération de plans. 
 
 
Dans un deuxième temps, nous verrons la problématique que je présenterai en deux sous-thèmes 
que sont les « questionnements » et la « méthode de recherche ». Les questionnements me 
permettront d’expliciter comment depuis mon intention de thème de départ et l’état de l’art, 
j’arrive à ma question de recherche. J’en profiterai donc pour expliciter pourquoi je compte 
réaliser l’étude avec précisément un GAN et un cGAN et comment elles s’influencent dans la 
réalisation de l’étude. 
Enfin, la méthode de recherche sera l’occasion d’expliquer plus en détail la démarche scientifique 
que j’utiliserai afin de traiter le sujet de recherche, les différents critères d’évaluation des 
algorithmes et comment je les comparerai. 
 
 
Dans une troisième phase, j’aborderai l’expérimentation de recherche de manière concrète. Cette 
phase débutera par la présentation des outils nécessaires à la bonne réalisation de cette étude et 
leur fonction, le processus de réalisation des expériences, la mise en place de la base de données 
d’entrainement, l’élaboration du GAN, du cGAN et enfin l’analyse des résultats de l’expérience. 
 
En conclusion, il s’agira de montrer les conclusions générales que l’on peut tirer de l’étude, les 
limites de l’expérience, les pistes d’amélioration et des ouvertures vers d’autres sujets qui 
pourraient intéresser les futurs lecteurs de ce mémoire. 
 
 
 
 
 
 
 
 
 
 



10 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Partie 1 :  
ETAT DE L’ART 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11 
 
 

I. Connaissances en intelligences artificielles 
 
Avant de faire la présentation des différentes études menées sur l’intelligence artificielle 
appliquée à l’architecture, il me parait important de présenter l’évolution de l’automatisation ou 
la systématisation de l’architecture en passant par les différents algorithmes d’intelligence 
artificielles. 
 

1. Evolution des techniques d’automatisation/systématisation 
 
L’Architecture, domaine faisant intervenir différentes disciplines connexes, tend à s’automatiser 
au cours des cent (100) dernières années notamment depuis les années 1940 à nos jours. Dans 
l’ensemble, ce phénomène a débuté par la notion de la modularité consistant à créer un modèle 
d’architecture idéal et à le multiplier afin de reduire les temps de conception, de construction mais 
aussi afin de reduire les couts de construction. La modularité prend de l’ampleur avec le Bauhaus 
notamment grace à l’architecte Walter Gropius avec le concept de « Baukasten » et les projets de 
Le Corbusier à travers le principe du Modulor en 1945.  
 
Suite à cette phase de modularité, nous avons eu le DAO (Dessin Assisté par Ordinateur) en 1977 
avec l’avènement du logiciel autoCAD. La révolution des logiciels CAD a permis aux architectes 
d’accélérer et simplifier le processus de dessin et de représentation. Grâce à ces outils 
numériques, notamment grâce à Catia, les possibilités de conception et créativité sont décuplées. 
L’architecte star Franck Gehry, a pu développer et mettre en évidence ses capacités 
architecturales grâce à ces outils de conception numérique.  
 
Dans un troisième temps, nous avons le paramétrisme depuis les années 1990 qui permet 
l’automatisation et la systématisation de la conception. Comme le dit Stanislas Chaillou lors d’une 
conférence chez Autodesk au sujet de l’architecture et les intelligences artificielles : « Le 
paramétrisme est un principe de synthétisation et de décomposition des différentes étapes 
nécessaires à la réalisation d’un design, d’une forme, d’un principe de conception. » Par ailleurs, 
des paramètres, des variables d’ajustement pourront être appliquées à chacune des étapes de ce 
processus afin d’influencer la forme, les caractéristiques compositionnelles du design final. 
 
Et enfin, l’essor de l’intelligence artificielle (IA) depuis les années 2010 avec la recherche sur les 
GAN en 2014 de I. Goodfellow ainsi que l’étude de S. Chaillou en 2020 sur la conception en 
architecture avec les GAN Pix2Pix. 
Depuis, l’IA notamment les GAN intègrent de plus en plus l’architecture aussi bien lors de la 
conception que dans ses aspects techniques et réglementaires. Il me parait donc important de 
s’initier à cette nouvelle technologie afin d’en tirer le meilleur pour l’architecture. 
Il convient notamment de préciser que ces grands mouvements de l’évolution de qui s’inter-
influencent et qui ne sont donc pas en opposition. 
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Figure 1:  Grandes étapes des phénomènes d’automatisation ou de systématisation 

Source : POUHE Fahé, Auteur 
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2. Algorithmes d’intelligence artificielle 
 

a. Qu’est-ce qu’une intelligence artificielle ? 
 
Le terme « intelligence artificielle », créé par John McCarthy, est souvent abrégé par le sigle « IA » 
(ou « AI » en anglais, pour artificial intelligence). McCarthy définit l'IA ainsi : « C'est la science et 
l'ingénierie de la fabrication de machines intelligentes, en particulier de programmes 
informatiques intelligents. Elle est liée à la tâche similaire qui consiste à utiliser des ordinateurs 
pour comprendre l'intelligence humaine, mais l'IA ne doit pas se limiter aux méthodes qui sont 
biologiquement observables. » 
 
Elle est également définie par l’un de ses créateurs, Marvin Lee Minsky, comme « la construction 
de programmes informatiques qui s’adonnent à des tâches qui sont, pour l’instant, accomplies de 
façon plus satisfaisante par des êtres humains car elles demandent des processus mentaux de 
haut niveau tels que : l’apprentissage perceptuel, l’organisation de la mémoire et le raisonnement 
critique ». On y trouve donc le côté « artificiel » atteint par l'usage des ordinateurs ou de processus 
électroniques élaborés et le côté « intelligence » associé à son but d'imiter le comportement. 
Cette imitation peut se faire dans le raisonnement, par exemple dans les jeux ou la pratique des 
mathématiques, dans la compréhension des langues naturelles, dans la perception : visuelle 
(interprétation des images et des scènes), auditive (compréhension du langage parlé) ou par 
d'autres capteurs, dans la commande d'un robot dans un milieu inconnu ou hostile. 
 
Même si elles respectent globalement la définition de Minsky, certaines définitions de l'IA varient 
sur deux points fondamentaux : 

- les définitions qui lient l'IA à un aspect humain de l'intelligence, et celles qui la lient à un 
modèle idéal d'intelligence, non forcément humaine, nommée rationalité ; 

- les définitions qui insistent sur le fait que l'IA a pour but d'avoir toutes les apparences de 
l'intelligence (humaine ou rationnelle), et celles qui insistent sur le fait que le 
fonctionnement interne du système d'IA doit ressembler également à celui de l'être 
humain et être au moins aussi rationnel. 

 
Par ailleurs, les IA se divisent en famille notamment le machine learning et le deep-learning. Cette 
dernière faisant partie intégrante du machine learning. Nous nous concentrerons dans le cadre 
de ce mémoire sur le deep-learning. Le schéma ci-dessous permet de mieux cerner les familles. 
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Figure 2: Familles et sous-familles des intelligences artificielles 

Source : Auteur, POUHE Fahé 
 
Le deep learning, ou apprentissage profond, est une branche de l'intelligence artificielle (IA) qui 
utilise des réseaux neuronaux artificiels pour résoudre des problèmes complexes. Les réseaux 
neuronaux artificiels sont des modèles mathématiques qui sont inspirés du fonctionnement du 
cerveau humain. Ils sont constitués d'une série de neurones artificiels, qui sont reliés entre eux 
par des synapses. 
Cette branche de l’IA est une technique d'apprentissage automatique qui permet aux machines 
d'apprendre à partir de données. Les données sont utilisées pour entraîner les réseaux neuronaux 
artificiels, qui apprennent à reconnaître les modèles dans les données. Au fur et à mesure que les 
réseaux neuronaux artificiels s'entraînent, ils deviennent de plus en plus capables de résoudre les 
problèmes pour lesquels ils ont été entraînés. 
Le deep learning est une technologie en plein développement qui a de nombreuses applications 
potentielles. Il est déjà utilisé dans des domaines tels que la reconnaissance d'images, la 
reconnaissance vocale, la traduction automatique, la détection des fraudes et la médecine.  
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 Principe de fonctionnement  
 
Un réseau neuronal artificiel est un modèle mathématique qui est inspiré du fonctionnement du 
cerveau humain. Il est constitué d'une série de neurones artificiels, qui sont reliés entre eux par 
des synapses. Chaque neurone artificiel reçoit des entrées de ses neurones voisins, et calcule une 
sortie en fonction de ces entrées. La sortie du neurone est ensuite transmise à ses neurones 
voisins. Le réseau neuronal artificiel apprend à reconnaître des modèles dans les données en 
ajustant les poids des connexions entre ses neurones. 
 
 

 
Figure 3: Structure d’un réseau de neurones 

 
Sachant désormais quel est le mode de fonctionnement des intelligences artificielles du deep 
learning. Nous allons maintenant nous attarder sur les différents algorithmes que l’on retrouve 
dans cette famille de deep-learning.  
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b. Algorithmes de deep learning : 
 
Il existe de nombreuses architectures de réseaux de neurones parmi lesquels les plus utilisés sont 
les CNN, les RNN, Les AE, les GAN et les cGAN. 
 

 CNN soit Réseaux de neurones convolutifs : 
 

Les réseaux de neurones convolutifs (CNN) sont un type de réseau de neurones artificiels qui est 
couramment utilisé pour la reconnaissance d'images et la vision par ordinateur. Ils sont efficaces pour 
reconnaître des patterns dans les images, tels que les bords et les formes.  
Les CNN fonctionnent en appliquant une série de filtres aux images. Ces filtres sont conçus pour détecter 
des patterns spécifiques, tels que les bords horizontaux ou verticaux. Les sorties des filtres sont ensuite 
combinées pour générer une représentation de l'image. 
Les CNN sont composés de plusieurs couches, chacune avec un ensemble de filtres. Les filtres de 
la première couche détectent les patterns les plus simples, tandis que les filtres des couches 
suivantes détectent des patterns plus complexes. 

Exemples d'utilisation des CNN : 

Les CNN sont utilisés dans de nombreuses applications de reconnaissance d'images, notamment 
: 

 La reconnaissance faciale : les CNN sont utilisés pour identifier les personnes à partir de 
leurs visages. 

 La détection d'objets : les CNN sont utilisés pour détecter des objets dans les images, tels 
que des voitures ou des personnes. 

 La classification d'images : les CNN sont utilisés pour classer les images en catégories, 
telles que "chien" ou "chat". 

Figure 4: Principe de fonctionnement d’un CNN, ici pour la reconnaissance d’un animal 

Source : Nada Belaidi, BLENT.AI 
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 Les RNN : Réseaux de neurones récurrents 
 

Les réseaux de neurones récurrents (RNN) sont un type de réseau de neurones artificiels qui est 
couramment utilisé pour traiter des données séquentielles, telles que les séquences de mots ou 
de sons. Ils sont efficaces pour prendre en compte l'historique des données lorsqu'ils traitent une 
nouvelle donnée.  

Les RNN ont des connexions entre les neurones qui s'étendent sur plusieurs couches. Cela leur 
permet de prendre en compte l'historique des données lorsqu'ils traitent une nouvelle donnée. 

Par exemple, un RNN peut être utilisé pour traduire une phrase d'une langue à l'autre. Le RNN 
peut prendre en compte les mots précédents dans la phrase lorsqu'il essaie de traduire le mot 
actuel. 

Les RNN sont utilisés dans de nombreuses applications qui nécessitent le traitement de données 
séquentielles, notamment : 

 La reconnaissance vocale : les RNN sont utilisés pour convertir la parole en texte. 

 La traduction automatique : les RNN sont utilisés pour traduire des langues. 

 La génération de texte : les RNN sont utilisés pour générer du texte, comme des poèmes 
ou des histoires. 

 

Figure 5:  Principe de fonctionnement d’un RNN, ici appliqué à la reconnaissance de l’auteur de la 
phrase « The man took … belvedere ». 

Source : Gaël Bonnardot, DATAKEEN.co 
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 AE, soit les Auto-Encodeurs 
 

Les auto-encodeurs sont des modèles de machine learning qui apprennent à représenter les 
données en les compressant dans un format compact, puis en les décompressant pour les 
reconstruire. Le processus d'apprentissage consiste à entraîner le modèle à reproduire l'entrée 
aussi fidèlement que possible. L'auto-encodeur se compose de deux parties principales : 
l'encodeur, qui convertit les données d'entrée en une représentation comprimée, et le décodeur, 
qui reconstruit les données à partir de cette représentation. 

Les auto-encodeurs sont utilisés dans de nombreuses applications, notamment : 

 La réduction de dimension : les auto-encodeurs peuvent être utilisés pour réduire la taille 
des données sans perdre trop d'informations. 

 La dénoising : les auto-encodeurs peuvent être utilisés pour supprimer le bruit des 
données. 

 La génération de données : les auto-encodeurs peuvent être utilisés pour générer de 
nouvelles données similaires aux données d'origine. 

 

Figure 6:  Principe de fonctionnement d’un AE, ici pour la reconstruction plus nette d’une image de 
la Joconde 

Source : Hmrishav Bandyopadhyay, v7labs.com 
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Par ailleurs, Les différents types d’algorithmes étant décrit, nous allons maintenant nous 
interesser aux algorithmes qui sont l’objet de ce mémoire. Il s’agit des GAN mais aussi des cGANs, 
catégorie de GAN, soit des Conditionals GAN (GAN conditionnés).  

 

c. GAN, réseau de neurones antagonistes génératifs 
 

Les réseaux adversaires génératifs (GAN) sont une classe de cadres d'apprentissage automatique 
proposés à l'origine par Ian J. Goodfellow en 2014. Un GAN se compose de deux réseaux 
neuronaux en concurrence l'un avec l'autre, dans le but de créer de faux artefacts impossibles à 
distinguer des artefacts réels.  

À partir d'un ensemble d'apprentissage, un GAN apprend à générer de nouvelles données 
présentant les mêmes caractéristiques sous-jacentes que l'ensemble d'apprentissage.  

L'idée centrale d'un GAN est l'utilisation d'un "générateur" et d'un "discriminateur" pour faciliter 
la formation indirecte. Le générateur apprend à créer des échantillons de données plus réalistes, 
tandis que le discriminateur apprend à distinguer les vrais échantillons des faux créés par le 
générateur. Après des milliers de cycles de formation, le système devient très efficace pour 
générer de nouveaux échantillons très réalistes ressemblant à l'ensemble de données d'origine. 

Figure 7:  Mode de fonctionnement d’un GAN 

Source : Auteur, POUHE Fahé 
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 À quoi peuvent servir les GAN ? 
 

Les GAN peuvent être utilisés pour créer ou étendre des artefacts visuels dans une variété de cas 
d'utilisation. Les principales applications des GAN sont les suivantes : 

 Augmentation des données - Le GAN peut être entraîné à générer de nouveaux 
échantillons d'images à partir de données existantes afin d'élargir un ensemble de 
données. Lorsque le GAN est arrivé à maturité, ses images de sortie peuvent être utilisées 
pour entraîner d'autres modèles de vision par ordinateur. 

 Du texte à l'image - Le GAN est utilisé pour créer des bandes dessinées et des séquences 
vidéo en générant automatiquement des séquences d'images à partir d'un texte. 

 Génération de visages – A l'aide d'une base de données à grande échelle de visages, les 
GAN permettent de créer des visages réalistes de personnes qui n'existent pas vraiment. 

 Traduction d'image à image-Les GAN peuvent apprendre à mapper des motifs d'une image 
d'entrée à une image de sortie. Par exemple, ils peuvent être utilisés pour transformer une 
image dans un style artistique spécifique (transfert de style), pour vieillir l'image d'une 
personne ou pour de nombreuses autres transformations d'images. 

 Conception industrielle et architecture - Les GAN peuvent être utilisés pour créer de 
nouvelles conceptions de produits en 3D à partir de produits existants. Par exemple, un 
GAN peut être entraîné à créer de nouveaux meubles ou à proposer de nouveaux styles 
architecturaux. 
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Figure 8:  Visages générés par des GAN 

Source : Jason Browlee, Machine Learning Mastery 

 

Figure 9:  Exemples de Text-to-Image d’images d’oiseaux générées à partir de textes 

Source : Jason Browlee, Machine Learning Mastery 
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 cGAN 
Nous allons enfin nous interesser aux cGAN qui sont des GAN mais plus spécifiques car ils 
permettent d’avoir un peu plus de contrôle sur les résultats générés par le GAN. Par exemple, 
supposons que nous avons utilisé un large éventail d'images de fleurs pour entraîner un GAN 
capable de produire de fausses images de fleurs. Avec un GAN classique, si nous voulons générer 
l'image d'une fleur au hasard, nous ne pouvons pas demander à l’algorithme de créer l'image 
d'une tulipe ou d'un tournesol, par exemple. 

Le GAN conditionnel (cGAN) nous permet de conditionner le réseau avec des informations 
supplémentaires telles que les étiquettes de classe. Cela signifie qu'au cours de l'apprentissage, 
nous transmettons au réseau des images avec leurs étiquettes réelles (rose, tulipe, tournesol, 
etc.) pour qu'il apprenne à faire la différence entre elles. De cette manière, nous pouvons 
demander à notre modèle de générer des images de fleurs spécifiques. 

Par ailleurs, tout comme le GAN, un cGAN est composé d’un générateur et d’un discriminateur qui 
jouent le même rôle que dans un GAN. A la différence qu’ils sont entraînés sur un ensemble de 
données d'images et de conditions. Le générateur essaie de créer des images qui correspondent 
à la condition, tandis que le discriminateur essaie de distinguer les images réelles des images 
générées. 

  

Figure 10:  Mode de fonctionnement d’un cGAN 

Source : Auteur, POUHE Fahé 

En terme d’exemples, les cGAN ont des applications similaires aux GAN à la différence que les 
propositions générées sont modifiables selon les conditions insérées dans le programme.  
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II. Etat de l’art des recherches menées sur l’intelligence artificielle 
appliquées ou non à l’architecture 

 
Il existe aujourd'hui plusieurs études qui traitent de la relation entre les IA et l'architecture. Bon 
nombre d'entre elles sont axées sur l'optimisation de techniques de construction, la recherche de 
forme, d'optimisation énergétique de façade mais aussi en faible proportion, l'optimisation de la 
conception de l'architecte grâce aux GAN. En effet, cette dernière branche est celle que je compte 
le plus explorer pour mon mémoire de master.   

Même si certaines études existent au sujet de l’application de l’IA à l’architecture, de nombreuses 
autres existent au sujet des IA génératives appliquées à d’autres domaines tels que la médecine, 
le trafic routier, la génération de visages etc.  

 

1. Recherches sur l’intelligence artificielle et l’architecture 
 

A ce sujet, cinq études ont été réalisée successivement depuis les années 2016 jusqu'en 2020. En 
l'occurrence : 

 

a. Stanislas Chaillou (2020) aborde l'IA et la conception en Architecture 
 
En 2019, Stanislas Chaillou fait sa thèse sur la génération de plans d'appartements aménagés grâce 
aux GAN, à Harvard GSD, dans laquelle grâce aux GAN Pix2Pix, il entraine un réseau de neurones 
qui génère un plan d'étage d'immeuble d'habitation avec ses appartements aménagés et orientés 
selon la position des entrées et des ouvertures qu’il renseigne manuellement.  
Ainsi, son objectif est de démontrer comment les réseaux neuronaux antagonistes génératifs 
(GAN) peuvent être utilisés pour concevoir des plans d'étage et des bâtiments entiers. L'étude 
propose une approche statistique de la conception architecturale, moins déterministe et plus 
holistique, où les machines extraient des qualités significatives et les miment tout au long du 
processus de conception. Cette approche statistique permettra donc de créer une pile de plans 
d'appartements en utilisant les modèles GAN Pix2Pix pour concevoir la disposition des bâtiments, 
la répartition des pièces et l'ameublement des espaces, tout en permettant une interaction 
constante entre l'utilisateur et les modèles d’IA. Cette dernière est passible grâce à une interface 
utilisateur intuitive qui facilite ce processus itératif, permettant aux utilisateurs de spécifier des 
contraintes et des paramètres pour générer des plans d'étage personnalisés. 
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Afin de mener à bien son étude, Chaillou met en place une méthode qui repose sur l'utilisation de 
modèles GAN Pix2Pix pour chaque étape du processus de conception. Le premier modèle génère 
des empreintes de bâtiments typiques à partir de données SIG de la ville de Boston. Le deuxième 
modèle gère la répartition des pièces de vie et la fenestration en fonction de l'empreinte de 
chaque unité de logement. Le troisième modèle traite l'ameublement des espaces en fonction de 
la répartition des pièces définie par le modèle précédent. Chaque modèle est formé 
indépendamment, permettant aux architectes d'intervenir et de perfectionner les résultats entre 
chaque étape.  
 
Enfin, en mettant en œuvre cette pile de plans d'appartements à l'échelle d'un bâtiment entier, 
l'étude ouvre la voie à des applications potentielles à grande échelle dans la conception 
architecturale. Cependant, des limitations subsistent, telles que la gestion des murs porteurs dans 
les bâtiments à plusieurs étages et la transformation des sorties des modèles GAN en formats 
compatibles avec les outils et pratiques architecturaux courants. Malgré ces défis, l'étude montre 
le potentiel de l'IA pour transformer le processus de conception architecturale, offrant aux 
architectes de nouvelles possibilités pour repenser la manière dont les bâtiments sont conçus et 
construits dans le futur. 
 
 

 
 

Figure 11: Grandes étapes de la génération de plans d’appartements aménagés à partir de 
l’empreinte du batis 

Source : Stanislas Chaillou, ArchiGAN 
 
 
 
Par ailleurs, sa thèse est la mise en relation de trois études précédentes faites dans la même école 
qui permettent de créer une chaine de conception depuis l'implantation jusqu'au plan 
d'appartement aménagé.  
Les trois études de référence à celle de Chaillou sont les suivantes : 
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b. Zheng et Huang (2018) aborde la reconnaissance et la génération de plans 
 
En 2018, Zheng et Huang proposent l'utilisation de l'IA pour reconnaître et générer des plans 
d’appartements via un GAN Pix2PixHD. Leur modèle de GAN traduit les images de plan d'étage en 
patchs colorés, puis ces couleurs en pièces dessinées. L'étude se focalise sur la reconnaissance et 
la génération de dessins architecturaux via l'apprentissage automatique.  
 
L'objectif est d'appliquer les GAN, notamment le pix2pixHD, afin d’identifier les caractéristiques 
des plans et en générer de nouveaux, tout en comprenant leur fonctionnement et en visualisant 
leurs apprentissages. 
 
Pour atteindre ces objectifs, les chercheurs mettent en place une méthode de recherche 
consistant à entraîner les réseaux de neurones à partir d'un ensemble de données composé de 
plans d'appartements en couleur annotés, puis à évaluer les performances des réseaux de 
neurones en reconnaissant et en générant de nouveaux plans. La première étape consiste à 
établir des principes d'étiquetage, attribuant différentes couleurs à des zones fonctionnelles 
spécifiques dans les plans architecturaux. Ensuite, deux réseaux de neurones sont entraînés : l'un 
pour reconnaître les plans en générant des cartes colorées annotées, et l'autre pour générer des 
dessins architecturaux à partir de cartes colorées annotées en entrée.  
 
 

 
Figure 12:  Résultats de reconnaissance (recognition) et de génération (generation) de plans 

d’appartements aménagés 

Source : Auteurs de l’étude, Zheng et Huang (2018) 
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c. Nathan Peters (2017) aborde l’aménagement de pièce de vie 
 
En 2017, Nathan Peters transforme une empreinte vide en taches de couleurs programmatiques 
sans l'indication d'une contrainte telle que la position des fenêtres. L’enjeux de son étude réside 
dans la création d'un système de conception participatif, cherchant à permettre aux utilisateurs 
de définir leurs propres espaces de vie. Inspiré par le travail de l'architecte Yona Friedman, Nathan 
Peters explore la possibilité de développer un cadre permettant à quiconque d'adapter son 
propre logement via Internet. Afin d’atteindre son objectif qui est de rendre la conception 
architecturale plus accessible et démocratique en permettant aux utilisateurs de participer 
activement à la conception de leurs espaces de vie. Pour se faire, il développe un algorithme 
d'apprentissage automatique pour générer des plans d'étage. En utilisant un réseau génératif 
antagoniste conditionnel Pix2Pix (Cgan – Pix2Pix), nommé YONA, Peters cherche à produire des 
images de plans d'étage classées à partir du contour d'un plan d'étage donné.  
 
 
 

 
 

Figure 13: Exemples de résultats de l’étude 

Source : Auteur de l’étude, Nathan Peters 
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d. Nono Martinez (2016) aborde le travail cumulé entre l’humain et la machine 
 
 
Et enfin, en 2016, Nono Martinez faisait sa thèse sur l'idée d'une boucle de conception entre la 
machine et le concepteur lors du processus de conception, en particulier à travers le dessin 
suggestif. Alors que les logiciels de conception offrent des fonctionnalités avancées, 
l'introduction de l'intelligence artificielle dans le processus créatif ouvre de nouvelles 
perspectives, mais pose également des défis quant à la manière dont les machines peuvent 
interpréter et participer à la représentation du monde. L'idée est d'utiliser l'apprentissage 
automatique pour enseigner aux machines comment dessiner en observant des images réelles, 
afin qu'elles puissent participer activement au processus de création artistique, offrant des 
suggestions pour transformer, continuer, analyser ou rationaliser un dessin. 
 
Afin de réaliser cette collaboration suggestive, grâce à un GAN Pix2Pix, des bots sont entraînés à 
reconnaître et à suggérer les éléments de dessin en fonction des entrées des utilisateurs.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14:  Exemple de génération d’image (à droite) à partir d’un dessin (à gauche) 

Source : Auteur de l’étude, Nono Martinez 
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e. Jean Raphael Piquard (2020) au sujet de l'intelligence artificielle et la 
génération de forme architecturale 

 
En 2020, Jean-Raphaël Piquard réalise son mémoire de master sur l'étude de l'enrichissement d'un 
espace de solution paramétrique grâce aux GAN, à l'ENSAPLV. Et donc sur l'utilisation de 
l'apprentissage machine dans la conception architecturale. L'idée est de tirer parti de la capacité 
des GAN à produire des résultats inattendus et créatifs.  
 
Ainsi, pour mener à bien cette quête, l'étude propose une approche expérimentale basée sur la 
génération de données paramétriques, leur alimentation dans des réseaux neuronaux 
antagonistes pour l'apprentissage, et l'analyse des résultats obtenus pour évaluer 
l'enrichissement de l'espace de solution. Pour se faire, l’on y distingue trois parties distinctes : une 
expérience témoin pour valider le processus, une exploration des formes paramétriques et une 
étude des dispositions spatiales. Chaque partie est conçue pour tester des critères spécifiques et 
évaluer l'impact des réseaux antagonistes génératifs sur l'enrichissement de l'espace de solution 
paramétrique.  
A la fin de l’expérimentation, l'analyse critique des résultats permet de tirer des conclusions sur 
l'efficacité et le potentiel créatif de cette approche dans le domaine de la conception 
architecturale. 
 
 

 

Figure 15:  Itération du GAN de génération de génération de formes 

Source : Jean-Raphaël Piquard, Mémoire de Master 
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2. Recherches menées sur l’intelligence artificielle en général 
 

En dehors des études menées sur les intelligences artificielles appliquées en architecture, il 
convient de signifier que plusieurs autres études ont été réalisées au sujet de la mise en 
application des IA génératives telles que les GAN au service de différents domaines. Ces domaines 
sont très variés parmi lesquels nous avons la génération d’objets 3D, la médecine, les pandémies, 
le traitement d’images, le contrôle de trafic entre autres.  

En effet, une étude (1) réalisée en avril 2021 par les chercheurs Alankrita AGGARWAL, Mamta 
MITTAL et Gopi BATTINENI permet de faire un récapitulatif des différentes études récentes 
réalisées au sujet des intelligences artificielles de type GAN et leurs applications dans les différents 
domaines cités précédemment. Le choix de ces études respecte un protocole scientifique afin 
d’identifier lesquels sont les plus pertinentes.  

a. Méthode de sélection des études 
 

 Stratégie de recherche 
 

Afin de mener à bien cette étude, les auteurs mettent en œuvre une stratégie de recherche pour 
collecter les articles pertinents au sujet de l'application des GAN dans divers domaines. Ils ont suivi 
une approche de revue systématique de la littérature basée sur des études antérieures (2) datant 
de 2017 et 2020 aux sujets du « Rôle des attributs du comportement humain dans la détection des 
foules mobiles : une revue systématique de la littérature » et « Examen des cadres d’évaluation 
de la performance des projets d’administration en ligne ».  

Trois bases de données (PubMed, EMBASE et Web of Science) ont été utilisées pour extraire les 
travaux pertinents, et cela, sur une période allant de 2016 à 2020. Les auteurs ont développé des 
stratégies de recherche pour identifier la littérature clé parmi les applications et les 
fonctionnalités des GAN. Les critères de sélection ont été appliqués pour choisir les articles 
appropriés, en se concentrant sur les applications récentes des GAN dans des domaines tels que 
la génération d'objets 3D, la médecine, le traitement d'images, la détection de visages, etc. 

                                                           
 

1 Aggarwal, Alankrita, Mittal, Mamta et Battineni, Gopi. (2021). Generative adversarial network: An overview of theory 
and applications. International Journal of Information Management Data Insights, 1(1), 100004. 
https://doi.org/10.1016/j.jjimei.2020.100004 
 
2 Agarwal, Neetima, Chauhan, Sumedha, Kar, Arpan Kumar et Goyal, Sandeep. (2017). Role of human behaviour 
attributes in mobile crowd sensing: a systematic literature review. Digital Policy, Regulation and Governance, 19(2), 
168-185. https://doi.org/10.1108/DPRG-05-2016-0023 
Singh, Harjit, Grover, Purva, Kar, Arpan Kumar et Ilavarasan, P. Vigneswara. (2020). Review of performance 
assessment frameworks of e-government projects. Transforming Government: People, Process and Policy, 14(1), 31-64. 
https://doi.org/10.1108/TG-02-2019-0011 
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Par la suite, les chercheurs évaluent l’abécédaire en parcourant les résumés et en rédigeant un 
récapitulatif des articles qu’ils considéraient comme qualifiés. À ce moment-là, les mots-clés de 
recherche sont examinés pour détecter les disparités avant de faire la sélection finale des dits 
mots-clés. Lorsque les auteurs ont choisi les articles qui devaient être retenus pour l’enquête, ils 
ont lu tous les articles pour rassembler des informations utiles à l’objectif final de sélection. Enfin, 
une fois les articles sélectionnés, les auteurs ont analysé indépendamment les données et ont 
comparé leurs opinions pour parvenir à un accord. 

 

 Critères de sélection 
 

Les résultats de la recherche documentaire ont permis d’obtenir 2084 articles classés par 
publications associées à l’objectif de cette étude. Plus précisément, dans les différentes bases de 
données ont été sélectionnées, 1141 articles de Scopus (Embase), 537 de WoS et 406 de PubMed.  

Les trois types d’articles suivants ont été pris en compte : les articles originaux, les revues et les 
études analytiques.  

Les articles sélectionnés ont été choisis selon les critères d’inclusion suivants et dans l’ordre : 

 L’article sélectionné présente-t-il l’examen basé sur l’application des travaux du GAN ? 

 La publication traite-t-elle des progrès du GAN dans les industries en temps réel ? 

 L’article répond-il fidèlement à la question et aux objectifs de la recherche ? 

Quant aux critères d’exclusion, les articles exclus ont été ceux qui respectaient les conditions 
suivantes : 

 Les enregistrements de différentes caractéristiques gérés avec des critères d’inclusion,  
 La langue (pas en anglais),  
 Les études sans objectifs précis du GAN.  

 

 Résultats 
 

Suite à la première sélection des articles, 1783 articles qui n’étaient pas appropriés aux objectifs 
de cette enquête ont été éliminés pour les raisons connexes : 1757 articles ont été identifiés 
comme des doublons et 26 articles ne sont pas en anglais. Au cours de la deuxième phase de 
sélection, les 301 articles restants ont été distribués à parts égales aux auteurs pour une 
évaluation indépendante parmi lesquels, seulement 61 articles ont été sélectionnés. 

Parmi ceux-ci, neuf (09) ont été rejetés parce qu’ils ne respectaient pas toutes les conditions 
énoncées précédemment. En fin de compte, 52 articles sont pris en compte pour une analyse plus 
approfondie.  
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Figure 16:  Protocole de sélection des études 

Source : Auteurs de l’étude : Alankrita AGGARWAL, Mamta MITTAL et Gopi BATTINENI 
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b. Etudes sélectionnées par les chercheurs 
 

Comme précisé dans la méthode, cinquante-deux (52) études ont été sélectionnées à la suite de 
l’étude. Chacune d’entre elles est catégorisée selon le domaine et la technologie utilisée. 
L’ensemble de ces études est à retrouver dans le tableau suivant, dans lequel est précisé 
l’application de chacune des technologies d’IA génératives. 

Ainsi, afin d’approfondir cet état de l’art, au sujet des études menées sur l’IA générative durant 
les dernières années, je présenterai une étude (en gras dans le tableau) dans chacune des 
catégories mais l’ensemble des références de toutes les études sont à retrouver dans la 
bibliographie. 

 

DOMAINES AUTEURS ANNEE MODELE APPLICATION 

GENERATION 
D’OBJETS 3D 

Yu Y.et autres 2020 
Encodeur de 

point GAN 
Traite les données non structurées sans 

étiquetage 

Y. Chen et autres 2018 3D-CNN 
Créez des images nettes et de bonne 

qualité 

G. Ye et autres 2020 
GAN basé sur le 
deep learning 

Amélioration des images 
monochromatiques 2D 

Q. Ma et autres 2020 
Modèles 3D 
génératifs 

Capture de mouvement humain 

Y. Jin et autres 2020 

Modèle GAN 
avec principe 
antagoniste à 
trois niveaux 

Production d’objets 3D de haute qualité 

MEDECINE 

S. Baek et autres 2020 Modèle GAN et 
maillé 

Production d’images IRM dans des 
pixels scellés 

Jain D. K. et autres 2020 GAN poser Détection de mouvements humains 

A. Teramoto 
et autres 

2020 

Réseau de 
neurones 

convolutifs 
profonds (DCCN) 

avec GAN 

Classer les images cytologiques 

M. D. Cirillo et autres 2020 
Vox2Vox: 3D-

GAN 
Segmentation des tumeurs cérébrales 

H. C. Shin et autres 2018 
GAN 

conventionnel 
Identifier les images médicales 
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J. Islam et Y. Zhang 2020 
GAN 

conventionnel 
Génération d’images cérébrales 

H. Lan et autres 2020 SC-GAN Synthèse de neuroimages 

G. Zhaoa 2020 
GAN 

conditionnel 
bayésien 

Synthèse d’images cérébrales par IRM 

R. Oulbacha et autres 2020 
Pseudo-3D Cycle 

GAN 
Synthèse de la colonne lombaire par 

IRM et tomodensitométrie 

X. Zhang et autres 2020 Deform-GAN 
Réduction du bruit dans les images 

médicales 3D 

D. Yang et autres 2019 
Réseaux 

antagonistes 
d’image à image 

Synthèse d’images médicales et 
segmentation sémantique 

PANDEMIES 

Loey M. et autres 2020 

GAN et 
apprentissage 
par transfert 

profond 

Détection de la COVID-19 à l’aide 
d’images thoraciques 

S. Albahli 2020 

GAN avec le 
modèle de 
réseau de 
neurones 
profonds 

Diagnostiquer la pneumonie de la 
maladie à coronavirus 

TRAITEMENT 
D’IMAGES 

C. Li et autres 2016 Markovian GAN 
Générer une image 3D à partir d’une 

image 2D 

H. Zhou et autres 2020 Dual GAN Récupération d’images haute résolution 

T. Go et autres 2020 

GAN basé sur un 
réseau de 
neurones 
profonds 

Effectuer une transformation d’image 

S. Zhang et autres 2020 
GAN 

conventionnel 
Débruitage d’image 

H. Tang et autres 2020 
GAN 

conventionnel 
Génération de scènes guidées 

sémantiques 

DETECTION 
DE VISAGES 

F. Mokhayeri 
et autres 

2020 
Un nouveau GAN 

contrôlable (C-
GAN) 

Synthèse de faces inter-domaines 
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J. Zhao et autres 2019 

Réseau 
antagoniste 
génératif à 

double agent 
(DA-GAN) 

Reconnaissance faciale sans contrainte 

M. Kowalski 
et autres 

2020 
GAN basé sur le 
deep learning 

Génération d’images de visage 

D. P. Jaiswal et 
autres 

2020 
GAN 

conventionnel 
Animation de visages 

TRANSFERT 
DE TEXTURE 

L. Sixt et autres 2019 
GAN 

conventionnel 
Génération de données étiquetées 

réalistes 

R. Spick et autres 2020 3D-GAN 
Générez une texture de haute qualité en 

ajoutant de la couleur 

CONTROLE 
DE LA 

CIRCULATION 

D. Xu et autres 2020 GE-GAN Estimation du trafic routier 

Fathi-Kazerooni S.  
et autres 
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Figure 17: Vue d’ensemble des études au sujet des GAN appliqués à différents domaines 

Source : Auteurs de l’étude : Alankrita AGGARWAL, Mamta MITTAL et Gopi BATTINENI 

 

 

 Etude au sujet de la génération d’objets 3D 
 

Il s’agit d’une étude3 qui met en œuvre un modèle 3D génératif. Le but de l’étude a été d’entrainer 
un algorithme d’IA générative capable d’habiller des corps humains scannés en 3D. Cela permet 
donc à l’issue de la recherche d’habiller des corps de différentes formes et dans différentes 
postures. En effet, les modèles de corps humain en trois dimensions sont largement utilisés dans 
l'analyse de la posture et du mouvement humain. Cependant, les modèles existants s’entrainent 
à partir de scans 3D de personnes peu vêtues. De plus, les modèles actuels manquent de puissance 
expressive nécessaire pour représenter la géométrie non linéaire complexe des formes de 
vêtements dépendant de la posture.  

                                                           
 

3 Ma, Qianli, Yang, Jinlong, Ranjan, Anurag, Pujades, Sergi, Pons-Moll, Gerard, Tang, Siyu et Black, Michael J. (2020). 
Learning to Dress 3D People in Generative Clothing. Dans 2020 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR) (p. 6468-6477). IEEE. https://doi.org/10.1109/CVPR42600.2020.00650 
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Pour remédier à cela, lors de l’étude, ils entrainent un modèle de maillage 3D génératif de 
personnes habillées à partir de scans 3D avec différentes postures et vêtements. L’algorithme 
d’IA entrainé est un VAE-GAN de maillage conditionnel capable d’apprendre la déformation des 
vêtements à partir du modèle de corps SMPL. L’algorithme est conditionné à la fois par la posture 
et le type de vêtement, ce qui donne la capacité de dessiner des échantillons de vêtements pour 
habiller différentes formes de corps dans une variété de styles et de postures. Pour préserver les 
détails des plis, le VAE-GAN étend les discriminateurs par patchs aux maillages 3D. Ainsi, 
l’algorithme nommé CAPE, représente la forme globale et la fine structure locale, étendant 
efficacement le modèle de corps SMPL aux vêtements. Selon l’étude, il s'agit du premier modèle 
d’IA générative qui habille directement des maillages de corps humain en 3D et qui est aussi 
capable d’habiller différents corps dans différentes postures. 

 

 

Figure 18:  Modèle CAPE pour des humains habillés : (a) CAPE « habille » aléatoirement le maillage 
3D, (b,c,d) Peut générer différents types de vêtements,  les vêtements générés peuvent 

être généralisés à différentes formes de corps (e) et à différentes poses (f).  

Source : Auteurs de l’étude : Ma Q, Yang J, Ranjan A, Pujades S, Pons-Moll G, Tang S, Black MJ. 
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 IA générative appliquée à la médecine 
 

Dans cette catégorie, j’ai sélectionné l’étude 4de J. Islam, en Y. Zhang réalisée en 2020 au sujet de 
la génération d’images cérébrales afin de faciliter la détection de la maladie d’Alzheimer chez des 
patients. En effet, cette étude aborde les enjeux majeurs liés à l'analyse d'images médicales, en 
mettant en lumière la difficulté d'obtenir des ensembles de données annotées et de qualité pour 
entraîner des modèles d’IA de diagnostic automatique des maladies. Avec un accent particulier 
sur la maladie d'Alzheimer, la recherche souligne les défis associés à la disponibilité limitée et à la 
qualité des données médicales, ainsi qu'aux coûts élevés et aux préoccupations liées à la 
confidentialité des données des patients. Ces obstacles entravent le développement de systèmes 
de diagnostic assistés par l'IA, ce qui rend crucial l'exploration de nouvelles approches pour 
générer des données synthétiques et surmonter ces difficultés. 

De ce fait, le but de l'étude est de proposer une solution novatrice en utilisant les GANs afin de 
générer des images médicales synthétiques, en particulier des images tomographiques par 
émission de positons (PET), pour les différents stades de la maladie d'Alzheimer. Cette approche 
vise à pallier le manque de données annotées en produisant un ensemble de données 
synthétique, équilibré et représentatif pour l'entraînement des modèles d'IA. En utilisant les 
capacités de généralisation des GANs, l'étude cherche à créer des images réalistes et diversifiées, 
capturant les variations de la maladie à différents stades, ce qui pourrait améliorer la précision des 
diagnostics et permettre un traitement précoce et efficace. 

Enfin, la méthode de recherche utilisée se compose de trois (03) étapes principales. Tout d'abord, 
une sélection minutieuse des données est effectuée, avec l'utilisation de 411 scans PET provenant 
de 479 patients collectés à partir de la base de données de l'Initiative de Neuroimagerie de la 
Maladie d'Alzheimer (ADNI). Ensuite, les GANs sont introduits pour générer des images 
synthétiques, avec une attention particulière portée aux Deep Convolutional Generative 
Adversarial Networks (DCGANs) pour leur capacité à produire des images de haute qualité et leur 
stabilité d'entraînement. En dernière étape, le modèle proposé pour la production d'images PET 
synthétiques repose sur l'utilisation des DCGANs, avec une mise en œuvre et un entraînement 
conformes aux directives de l'étude antérieure 5 de Radford A., Metz L. et Chintala S. réalisée en 
2015. 

 

 

                                                           
 

4 Islam, Jyoti et Zhang, Yanqing. (2020). GAN-based synthetic brain PET image generation. Brain Informatics, 7(1), 3. 
https://doi.org/10.1186/s40708-020-00104-2 
 
5 Radford, Alec, Metz, Luke et Chintala, Soumith. (2016, 7 janvier). Unsupervised Representation Learning with Deep 
Convolutional Generative Adversarial Networks (arXiv:1511.06434). arXiv. https://doi.org/10.48550/arXiv.1511.06434 
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Les résultats suivants ont été obtenus à la suite de l’étude : 

 

Figure 19: Images TEP cérébrales réelles et synthétiques d’un patient normal : a réel b synthétique 

 

Figure 20: Images réelles et synthétiques de la TEP cérébrale d’un patient en déficience cognitive 
légère (DCL) :  a réel b synthétique  

Sources : Auteurs de l’étude : J. Islam, en Y. Zhang (2020) 
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Figure 21: Images TEP cérébrales réelles et synthétiques d’un patient atteint de la 
maladie d’Alzheimer (AD) : a réel b synthétique 

Source : Auteurs de l’étude : J. Islam, en Y. Zhang (2020) 
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 GAN au service de la détection de la maladie du COVID-19 
 

L'étude6 sélectionnée est celle de M. Loey, F. Smarandache, et N.E.M. Khalifa réalisée en 2020 au 
sujet de la détection du COVID-19, en l’absence d’un ensemble de données sur les radiographies 
pulmonaires de la COVID-19 grâce à un nouveau modèle de détection basé sur le GAN et 
l’apprentissage par transfert profond. 

Les chercheurs proposent un modèle novateur basé sur les GAN et l'apprentissage profond pour 
la détection du coronavirus (COVID-19) dans les images radiographiques du thorax. Le manque de 
données sur le COVID-19, en particulier dans les images radiographiques thoraciques, constitue la 
principale motivation de cette étude scientifique. L'idée principale est donc de collecter toutes 
les images possibles du COVID-19 existant jusqu'à la rédaction de cette recherche et d'utiliser un 
algorithme de type GAN pour générer davantage d'images afin de faciliter la détection de ce virus. 
Cette détection est faite à partir des images radiographiques disponibles avec la plus grande 
précision possible. Ainsi, afin de mener à bien la recherche, trois (03) modèles d’IA de transfert 
profond sont sélectionnés pour l'enquête, à savoir l'Alexnet, le Googlenet et le Restnet18, en 
raison de leur faible complexité et de leur temps d'exécution réduit.  

Pour se faire, l'étude vise à collecter toutes les images disponibles du COVID-19 et à utiliser le 
réseau GAN pour générer davantage d'images, afin d'enrichir le jeu de données et d'améliorer la 
précision de la détection. L'objectif est de développer un modèle robuste capable de distinguer 
le COVID-19 des autres affections pulmonaires et de poumons normaux avec la plus grande 
précision possible. Ces affections pulmonaires peuvent être des pneumonies bactériennes et des 
pneumonies virales. 

Enfin, la méthode de recherche repose sur une collecte minutieuse de données à partir de 
différentes sources, suivie de l'entraînement et de l'évaluation de modèles d’IA de transfert 
profond sur le jeu de données constitué. L'étude explore également plusieurs scénarios de 
classification en utilisant différentes combinaisons de classes de maladies, afin d'évaluer les 
performances des modèles dans des contextes variés.  

 

                                                           
 

6 Loey, Mohamed, Smarandache, Florentin et M. Khalifa, Nour Eldeen. (2020). Within the Lack of Chest COVID-19 X-
ray Dataset: A Novel Detection Model Based on GAN and Deep Transfer Learning. Symmetry, 12(4), 651. 
https://doi.org/10.3390/sym12040651 
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Figure 22: Exemples d’images utilisées dans cette recherche 

Figure 23: Exemples d’images générées à l’aide de la structure GAN proposée 

Sources : Auteurs de l’étude 
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 Etude au sujet de la création d’images de visages 
 

Cette étude 7 CONFIG, intitulée "Controllable Neural Face Image Generation" réalisée par 
Kowalski et autres en 2020 vise à résoudre le défi de contrôler finement le processus de 
génération d'images de visages par des réseaux neuronaux. Bien que la capacité à générer des 
images réalistes ait progressé, la capacité à contrôler précisément des aspects spécifiques du 
processus générateur est en retard par rapport aux techniques de rendu graphique 
traditionnelles.  

 

Son objectif à partir de cette technologie émergente est d'atteindre un niveau de contrôle 
similaire à celui des animations par ordinateur, sans sacrifier le réalisme inhérent aux images 
générées. L'étude présente ConfigNet, un modèle neuronal pour la génération d'images de 
visages, formé à la fois sur des images réelles et synthétiques. La méthode novatrice utilise des 
données synthétiques pour factoriser l'espace latent en éléments correspondant aux entrées 
d'un pipeline de rendu graphique traditionnel, permettant ainsi le contrôle indépendant de divers 
aspects du visage, tels que la pose de la tête, l'expression faciale, le style capillaire, l'éclairage, 
etc. Une évaluation combinant un réseau de détection d'attributs et une étude utilisateur 
démontre un contrôle individuel de pointe sur les attributs des images générées. 

 

Dans cette optique de génération de visages modifiables, Kowalski et les autres chercheurs 
détaillent une méthode en trois étapes pour l'entraînement de ConfigNet. La première étape 
entraîne les sous-réseaux, à l'exception de l'encodeur des données réelles, avec une perte 
spécifique. Dans la deuxième étape, l'encodeur des données réelles est ajouté, et l'entraînement 
se poursuit pour améliorer la contrôlabilité des images générées. Et enfin, ConfigNet est soumis 
à des évaluations afin d’évaluer le niveau de réalisme et de contrôle que l’on obtient des résultats. 
Les résultats de l’étude permettent d’effectuer des avancées technologiques qui pourraient 
trouver des applications dans divers domaines, notamment la production d'animations et de 
rendus réalistes pour les personnages virtuels. 

 

                                                           
 
7 Kowalski, Marek, Garbin, Stephan J., Estellers, Virginia, Baltrušaitis, Tadas, Johnson, Matthew et Shotton, Jamie. 
(2020). CONFIG: Controllable Neural Face Image Generation. Dans Andrea Vedaldi, Horst Bischof, Thomas Brox et 
Jan-Michael Frahm (dir.), Computer Vision – ECCV 2020 (p. 299-315). Springer International Publishing. 
https://doi.org/10.1007/978-3-030-58621-8_18 
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Figure 24:  Exemples de données d’entrainement synthétiques (à gauche) et données 
d’entrainement réels (à droite) 

 

 

Figure 25:  Exemples de visages générés 

Sources : Auteurs de l’étude 
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 IA pour la génération d’images 
 

L’étude8 que j’ai sélectionnée au sujet de la génération d’image est celle de Hao Tang, Dan Xu, Yan 
Yan, Philip H. S. Torr et Nicu Sebe réalisée en 2020 conjointement dans les universités de Trento, 
Oxford, Texas State et Huawei Research en Ireland. L’étude examine le domaine de la génération 
de scènes guidée par la sémantique et cible la difficulté courante des méthodes de génération 
d'images globales à capter les petits objets et les textures locales détaillées.   

Elle vise donc à élaborer un cadre de génération d'images qui combine à la fois la génération 
d'images globale et locale, en exploitant les avantages de chacune. Pour ce faire, les chercheurs 
conçoivent un réseau de génération conjointe avec un module de fusion d'attention et une 
structure de double discriminateur intégrée.  

 

L'objectif est de générer des scènes plus réalistes en capturant à la fois la structure globale de 
l'image et les détails locaux, en utilisant les cartes sémantiques pour guider la génération. Cette 
captation de données permettra par la suite de générer une image en perspective relatant ce que 
montre en 2D l’image de départ. 

 

Pour cela, la méthode de recherche de l’étude comprend une série d'expériences exhaustives 
menées sur deux tâches de génération d'images de scènes, à savoir la traduction d'images entre 
différentes perspectives et la synthèse d'images sémantiques. Ensuite, les performances du 
modèle proposé sont évaluées à l'aide de métriques quantitatives telles que l'indice d'inception, 
la précision et la divergence notée KL, ainsi que des évaluations qualitatives comparatives avec 
d'autres méthodes de recherche.  

 

 

 

 

                                                           
 
8 Tang, Hao, Xu, Dan, Yan, Yan, Torr, Philip H.S. et Sebe, Nicu. (2020). Local Class-Specific and Global Image-Level 
Generative Adversarial Networks for Semantic-Guided Scene Generation. Dans 2020 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR) (p. 7867-7876). IEEE. https://doi.org/10.1109/CVPR42600.2020.00789 
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Figure 26:  Exemples de résultats de traduction d'images transversales sur Dayton avec différents 
paramètres de notre LGGAN 

Source : Auteurs de l’étude 
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 Etude au sujet du transfert de texture 
 

L'étude9 intitulée "RenderGAN: Generating Realistic Labeled Data", au sujet de la génération de 
données étiquetées réalistes réalisée par Leon Sixt, Benjamin Wild et Tim Landgraf en  2019 se 
situe au croisement de plusieurs enjeux majeurs en « computer vision ». Tout d'abord, elle aborde 
le défi crucial de l'annotation manuelle des données, qui peut être coûteuse et fastidieuse, 
limitant ainsi le déploiement de réseaux de neurones convolutionnels profonds (DCNN) dans des 
applications réelles. Ensuite, elle se penche sur la génération de données annotées à grande 
échelle, nécessaire pour entraîner efficacement ces réseaux de neurones, en particulier dans des 
domaines où les données sont rares ou difficiles à obtenir. Enfin, l'étude explore la nécessité de 
créer des données d'entraînement réalistes pour que les modèles d’IA puissent correctement 
généraliser les résultats à de nouvelles situations, en tenant compte des variations telles que 
l'éclairage, le fond et le bruit de l'image. 

Le but principal de l'étude est de présenter un nouvel algorithme appelé RenderGAN, qui vise à 
surmonter les limitations liées à l'annotation manuelle des données en générant des images 
annotées de manière réaliste à partir d'un modèle 3D et de GANs. L'objectif est donc de fournir 
une solution efficace pour obtenir des données annotées à grande échelle, en minimisant les 
coûts et le temps nécessaires aux annotations manuelles. 

Afin de mener à bien l’étude, la méthode de recherche repose sur une combinaison de modèles 
3D et de GANs pour générer des images annotées de manière réaliste. Ensuite, est faite une 
description détaillée de l'architecture du générateur et du discriminateur utilisés pour le 
RenderGAN, ainsi que les étapes d'augmentation des images nécessaires pour le rendu réaliste 
des données générées. Enfin, l'étude évalue empiriquement l'efficacité du RenderGAN en 
comparant les performances des modèles DCNN entraînés sur des données générées par 
RenderGAN avec différentes balises, démontrant ainsi la supériorité de l'approche proposée. 

 

 

 

 

 

 

 

                                                           
 

9 Sixt, Leon, Wild, Benjamin et Landgraf, Tim. (2018). RenderGAN: Generating Realistic Labeled Data. Frontiers in 
Robotics and AI, 5. https://www.frontiersin.org/articles/10.3389/frobt.2018.00066 
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Figure 27: Augmentations du RenderGAN appliquées au projet BeesBook. Les flèches de G vers les 
augmentations φ représentent les entrées vers les augmentations. Le générateur fournit 

la position et les orientations du modèle 3D, tandis que les bits sont échantillonnés 
uniformément. En haut, la sortie de chaque étape est affichée. La sortie de φdétail est 

transmise au discriminateur.  

Source : Auteurs de l’étude 
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 Etude au sujet du contrôle du trafic routier 
 

Quant à la dernière étude10 sélectionnée, il s’agit de celle intitulée "GE-GAN: A novel deep learning 
framework for road traffic state estimation" concernant l’estimation de l’état de trafic routier à 
l’aide de l’algorithme de deep-learning GE-GAN. L’étude réalisée par 
Dongwei Xu, Chenchen Wei, Peng Peng , Qi Xuan et Haifeng Guo en 2020 aborde plusieurs enjeux 
clés dans le domaine des systèmes de transport intelligents (ITS). L'un de ces enjeux concerne 
l'estimation précise de l'état du trafic routier, essentielle pour la gestion efficace des réseaux de 
transport et la prévention des embouteillages. Cependant, les données d'état du trafic collectées 
dans le monde réel sont souvent incomplètes, ce qui rend difficile leur utilisation pour des 
estimations précises. C'est dans ce contexte que s'inscrit cette étude, qui propose un nouveau 
cadre d'apprentissage profond pour estimer l'état du trafic en utilisant des informations 
provenant de liens adjacents. Ainsi, le but principal de l'étude est de proposer une solution 
novatrice pour surmonter les limitations des méthodes traditionnelles d'estimation de l'état du 
trafic en utilisant à la fois l’intégration de graphe (GE) et les GANs. En combinant ces deux 
techniques, l'étude vise à générer des données d'état du trafic routier en temps réel. L’enjeu est 
donc d'améliorer la précision de l'estimation de l'état du trafic tout en minimisant les contraintes 
liées à la disponibilité des données et à la complexité des modèles. 

Tout comme les études précédentes, une méthode de recherche claire a été élaborée afin de 
réaliser l’étude dans de bonnes conditions. Cette dernière se divise en plusieurs étapes clés, 
notamment la représentation du réseau routier à l'aide de l’intégration de graphe, la sélection des 
données adjacentes pertinentes et l'application des GANs pour générer les données d'état du 
trafic. En outre, l'étude présente une évaluation approfondie de la méthode proposée en utilisant 
des jeux de données réels provenant de deux réseaux routiers différents, ce qui permet de valider 
empiriquement l'efficacité de l'approche proposée.  

 

 

 

                                                           
 

10 Xu, Dongwei, Wei, Chenchen, Peng, Peng, Xuan, Qi et Guo, Haifeng. (2020). GE-GAN: A novel deep learning 
framework for road traffic state estimation. Transportation Research Part C: Emerging Technologies, 117, 102635. 
https://doi.org/10.1016/j.trc.2020.102635 
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Partie 2 :  
PROBLEMATIQUE 
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I. Questionnements 
 

1. Ce que je tire de l’état de l’art Etude à mener dans ce mémoire 
 
Suite à la lecture des études de l'état de l'art, je constate que les chercheurs se sont, pour 
beaucoup, concentrés sur l'utilisation des GAN pour la conception des plans de logements et de 
leur aménagement avec des contraintes telles que la position des fenêtres, des portes, etc. Jean-
Raphaël Piquard, quant à lui, a suivis cette même idée mais, dans le cadre d’un mémoire de master, 
il s’est limité à la génération de formes à l’aide de GAN.  
 
Néanmoins, l’utilisation des cGAN n’a pas été envisagée afin de pouvoir générer des formes (qui 
pourraient être considérée comme des emprises de bâtiments), ni de pouvoir les ajuster en 
fonction de certaines contraintes de construction que sont par exemple le POS (Pourcentage 
d’Occupation de Sol), les reculs de servitudes etc. 
 

2. Etude à mener dans ce mémoire 
 
 
Dans le but de poursuivre l’étude menée par Jean-Raphaël Piquard mais d’explorer les questions 
qui n’ont pas été abordées, mon étude a donc pour objectif sur la mise en place de réseaux de 
neurones antagonistes et génératifs conditionnés (cGAN) au service de la réalisation de modèle 
d’implantation de bâtiment dans un site. C’est-à-dire qu’il s’agira de mettre en place cet 
algorithme afin de générer des formes qui seront modifiables selon les contraintes que l’on y 
appliquera. In finé, l’enjeu serait à long terme de pouvoir se rapprocher le plus possible d’un 
algorithme cGAN capable de générer des empreintes de bâtiments que l’on pourra modifier selon 
les contraintes d’urbanisme. 
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II. Méthode de recherche 
 

1. Démarche scientifique  
 

Avant de présenter en détail, la méthode de recherche qui pourrait être difficile à cerner pour des 
personnes qui ne s’y connaissent pas très bien sur les sujets liés à la création d’algorithme 
d’intelligence artificielle, faisons une analogie avec le système d’enseignement à l’école. 

Pour l’exemple, prenons deux élèves A et B qui suivent des cours à l’école auprès d’un enseignant 
et qui seront soumis à des partiels à la fin de l’année. Ces élèves suivent les cours, apprennent des 
enseignants, font des expériences, des recherches afin de mieux assimiler les différents cours 
suivis pour pouvoir par la suite les restituer. Sauf que les deux étudiants ont des particularités. 
L’étudiant A est assez bon pour restituer textuellement ce qu’il apprend alors que l’étudiant B est, 
quant à lui, capable de restituer ce qu’il apprend mais peut améliorer ses résultats quand on lui 
fait une correction. Ainsi, afin de pouvoir challenger l’étudiant B, l’enseignant veut tester ce 
dernier afin qu’il puisse avoir des résultats meilleurs que l’étudiant A, en lui faisant des corrections 
supplémentaires. 

La fin de l’année arrive, les partiels se déroulent durant lesquels les élèves proposent des projets 
que l’on appellera Pa(i) pour l’étudiant A et Pb(i) pour l’étudiant B. « i » étant le nombre de 
propositions. Soit, par exemple, Pa3, le troisième résultat de l’étudiant A. 

Enfin, à la fin du semestre, afin d’observer si l’étudiant B est meilleur que l’étudiant A, l’enseignant 
va comparer leurs propositions. Ainsi, si les deux étudiants ont les mêmes notes, il constatera que 
B est aussi bon que l’autre étudiant. Si B a une meilleure note que l’autre étudiant, l’enseignant 
sera rassuré sur le fait que l’étudiant B a bien pris en compte ses corrections. 

 

J’en convient que ce n’est pas un système d’enseignement équitable mais il s’agit simplement 
d’une analogie afin de simplifier les concepts. 

 

L’analogie étant faite, ma méthode de recherche suivra, dans l’ensemble, le même processus de 
notation. De ce fait, dans ma recherche, l’étudiant A correspond à un GAN et l’étudiant B 
correspond à un cGAN. Le cGAN étant l’algorithme qui est sujet de mon étude et donc qu’il 
convient de tester. Les partiels correspondent au processus de génération d’image du GAN et du 
cGAN tandis que les propositions Pa(i) et Pb(i) correspondent aux propositions générées 
respectivement par chacun des deux algorithmes. L’enseignant, c’est moi, c’est-à-dire que c’est 
moi qui réalise les catégorisations des résultats, leur analyse et les conclusions qu’il faut en tirer. 
Et enfin, les critères d’évaluation sont le respect d’un ratio de surface et le respect d’une fidélité 
de forme des propositions par rapport aux formes d’entrainement. 
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2. Comment caractérise-t-on chacun des critères d’évaluation ? 
 

a. Le ratio de surface :  
 

Sachant que les propositions de forme devront être générées dans un cadre rectangulaire de 
dimension 20mX30m soit un rapport de 1 x 1,5, il s’agira du pourcentage d’occupation que prend 
la forme générée dans le cadre. Par ailleurs, je veillerai à ce que les formes d’entrainement aient 
un ratio de surface de 0,6 ou 60% afin de le comparer à ceux des propositions. Par exemple, si la 
forme générée mesure 150m2 de surface, cela signifiera qu’elle a un ration de surface de 
(150/600)*100= 25%, soit 0,25. Ou comme le montre le schéma ci-dessous, les propositions 
peuvent respecter le même ratio de surface même si la forme proposée est différente. 

 

 

 

 

 

 

 

 

 

 

Figure 28: Illustration du ratio de surface 

Source : Auteur, POUHE Fahé 

 

 

 

 

 

 

 

 

Donnée d’entrainement Proposition 
Donnée d’entrainement Proposition 
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b. Le respect de fidélité de forme : 
 

Quant à lui consiste à vérifier que les propositions générées correspondent uniquement aux 
formes des prototypes d’entrainement. Cela permet donc que des propositions de taille réduite 
ou plus grande mais qui respectent les formes d’entrainement puissent être valide. Par exemple, 
le schéma ci-dessous permet de montrer que l’on peut respecter une forme précise mais pas sa 
taille. 

 

Figure 29: Illustration de la fidélité de forme 

Source : Auteur, POUHE Fahé 

 

 

c. Processus de recherche 
 

Pour ainsi dire, la méthode de recherche que j’utilise pour cette recherche est la suivante : 

Cette méthode s'articule autour de 3 grandes étapes que sont la mise en place d’un GAN qui 
servira de point de départ de l'étude mais aussi de balise de comparaison, ensuite nous avons la 
mise en place d'un cGAN qui servira à évaluer l'efficacité de notre algorithme d'IA et enfin une 
étape d'évaluation des propositions obtenues par les deux algorithmes. Cette dernière a pour but 
d'analyser et de comparer les résultats du GAN à ceux du cGAN et d'en tirer des conclusions.  

 

 

 

 

Donnée d’entrainement Proposition 
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L’élaboration du GAN se déroule en quatre (04) étapes principales : 

- Génération de modèle d’implantation d’apprentissage grâce à un outil paramétrique. Ces 
modèles seront créés afin de respecter au moins l’un des futurs critères d’évaluation  

- Créer un réseau de neurones (GAN) qui apprend de ces modèles tout comme l’étudiant A 
apprend ses cours 

- Générer de nouveaux modèles d’implantation à partir de ce GAN 
- Analyser (manuellement) des propositions obtenues : Cette étape permettra d’identifier 

les modèles exploitables ou non. Ces derniers seront identifiés selon des critères 
d’évaluation que sont : 

 

 

o Fidélité d’apprentissage : le but est de savoir si le résultat obtenu est fidèle aux 
modèles d’apprentissage. S’il l’est, on saura que l’algorithme est capable d’imiter. 
Par analogie, ça signifie que si l’étudiant A est capable de restituer à l’identique ce 
qu’il a appris, ça signifie qu’il connait au moins ses cours.  

o Respect d’un ratio de surface : il s’agit de savoir si les modèles générés respectent 
une surface précise. Cela voudrait dire que l’étudiant A a bien appris et est capable 
d’appliquer une compétence précise acquise en cours. Pour un étudiant en 
Architecture, cela pourrait être, par exemple, le fait d’être capable d’utiliser une 
fonction précise d’un logiciel appris en cours mais pour son projet de semestre.  

 

Cette analyse consistera donc à classifier, catégoriser les propositions obtenues par le GAN et 
ensuite faire des ratios de performances qui permettront d’identifier le ratio de fidélité respecté 
par rapport au nombre total de propositions obtenues, le ratio de surface d’occupation respecté 
par rapport au nombre total de propositions obtenues et enfin, comparer ces deux ratios afin 
d’identifier quel est le critère d’évaluation le plus respecté par le GAN. 
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 Tableau d’évaluation statistique 

Evaluation du GAN Critères d’évaluation 
Fidélité Surface d’occupation 

Proposition Pa1 √ √ 
Proposition Pa2 - √ 
Proposition Pa (i) - √ 
Nbre de résultats par 
critère 

NaF NaS 

Nbre total de résultats NaTotal 
 

Ratio fidélité = ே௔ி

ே௔்௢௧௔௟
 , il s’agit de la proportion de propositions respectant la fidélité de forme 

par rapport à l’ensemble des propositions 

Ratio surface d’occupation = ே௔ௌ

ே௔்௢௧௔௟
 , il s’agit de la proportion de propositions respectant le critère 

de surface par rapport à l’ensemble des résultats. 

 

Ensuite, nous passons à la mise en place du cGAN qui se déroule en trois (03) étapes : 

- Créer un réseau de neurones conditionné (cGAN) à partir du GAN mais le conditionner afin 
qu’il puisse respecter les critères d’évaluation tels que la surface d’occupation et la fidélité 
de la forme. 

- Insérer les propositions générées par le GAN dans le cGAN créé afin de les conditionner et 
générer d’autres propositions. Ici, contrairement à l’analogie, l’on utilisera les bons 
résultats de l’étudiant A afin de faire apprendre les cours à l’étudiant B pour savoir s’il est 
capable de faire de même ou mieux.  

- Analyser les résultats obtenus selon les mêmes critères d’évaluation et le même procédé 
que ceux du GAN : 
 
Tableau d’évaluation statistique 

Evaluation du cGAN Critères d’évaluation 
Fidélité Surface d’occupation 

Proposition Pb1 √ √ 
Proposition Pb2 - √ 
Proposition Pb (i) - √ 
Nbre de résultats par 
critère 

NbF NbS 

Nbre total de résultats NbTotal 
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Ratio fidélité = ே௕ி

ே௕்௢௧௔௟
 

Ratio surface d’occupation = ே௕ௌ

ே௕்௢௧௔௟
 

Chacune des étapes de l’analyse des résultats ou propositions obtenues équivaut donc à 
l’enseignant qui va noter les performances de l’étudiant A et ensuite noter celles de l’étudiant B. 

 

Enfin, suite à l’élaboration de nos récapitulatifs statistiques respectifs du GAN et du cGAN, nous 
avons l’étape d’analyse globale qui consiste à comparer les données statistiques obtenues des 
deux technologies afin d’identifier laquelle est plus performante selon quel critère et laquelle est 
plus performante dans l’ensemble. Tout comme l’enseignant fera une comparaison entre ses 
deux étudiants. 

Par conséquent, si le GAN a un ratio de fidélité moins élevé que celui du cGAN, l’on pourra affirmer 
que le cGAN est meilleur dans la restitution de données apprises que le GAN. Par ailleurs, si le GAN 
a un ratio de surface d’occupation plus grand que celui du cGAN, l’on pourra affirmer que le GAN 
est meilleur sur ce sujet précis. Et enfin, en moyenne, si le cGAN fournit le plus de résultats 
conformes aux critères d’évaluation, l’on pourra affirmer qu’il est meilleur dans l’ensemble.  
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Partie 3 :  
EXPERIMENTATION 
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I. Outils nécessaires à la réalisation de l’expérience 
 
 
Réaliser une expérience liée aux intelligences artificielles nécessite certains outils spécifiques de 
programmation, des outils de visualisation 2D ou 3D vu qu’en Architecture nous travaillant 
souvent avec des représentations graphiques. Mais avant tout, générer des IA nécessitant des 
connaissances spécifiques, avant de commencer l’expérience, j’ai tout d’abord dû réapprendre 
les bases de la programmation informatique. Même si j’en avais déjà certaines connaissances, 
j’étais habitué à travailler avec le langage de programmation Java. Dans le cadre de cette étude, 
Python est le langage de programmation le plus accessible et qui dispose le plus d’information 
et de documentations en ligne. 
 
 

1. Apprentissage de la programmation 
 

Dans un premier temps, j’ai donc commencé par apprendre à programmer en Python, notamment 
quelle en est la syntaxe, la définition de variables, de matrices, de conditions et de boucles, entre 
autres. La plateforme la plus accessible que j’ai trouvé pour cela est Mimo. 

 
Il s’agit d’un site internet et d’une application mobile permettant 
d’apprendre à coder en HTML, JavaScript, CSS et plus. C’est une 
application que j’ai principalement utilisée afin de réapprendre à coder 
plus rapidement et simplement à coder en python grâce à des 
challenges et des énigmes que l’outil met en place.  
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2. Logiciels de création de la base de données 
 
Dans un deuxième temps, j’ai dû utiliser différents outils pour la génération de données. Il s’agit 
principalement de deux outils dont Rhinoceros et Grasshopper. Les autres outils sont des pulgins 
téléchargeables ou intégrés dans Grasshopper.  
 
 

Rhinoceros 3D est un logiciel de modélisation 3D utilisé principalement 
dans les domaines de l'architecture, du design industriel et de 
l'ingénierie. Il offre des outils puissants pour la création et la 
manipulation de formes géométriques complexes. Notamment, 
l’ensemble des dessins nécessaires à générer la base de donnée est 
réalisé et affiché dans l’interface de Rhinoceros.  
 

 

 

Grasshopper : C’est un plug-in pour Rhinoceros 3D qui permet de créer 
des algorithmes visuels pour la conception paramétrique et 
générative. Il m’a permis de créer des modèles 2D en manipulant des 
composants visuels et en connectant des flux de données. C’est 
notamment grâce à ce outil que je crée la base de données du GAN et 
cGAN.   

 

 

 

TT Toolbox (plugin) : Il s’agit d’un plug-in pour Grasshopper qui fournit 
une collection d'outils et de fonctionnalités supplémentaires pour la 
conception paramétrique et la modélisation 3D. En l’occurrence, c’est 
grâce à ce plugin que les formes générées par Grasshopper sont 
enregistrées et exportées en images. Ce sont ces images qui 
constituent la base de données finale.  
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GhPython : Il s’agit d’un composant de Grasshopper qui permet d'écrire des scripts Python 
directement à l'intérieur de l'environnement Grasshopper. C’est dans cet outil que je crée des 
scripts de génération de formes. 

 

Rhinoscriptsyntax : C’est un module Python qui fournit une interface simple et efficace pour 
interagir avec Rhinoceros 3D depuis Python. Il permet d'automatiser des tâches de modélisation 
et de scripter des opérations dans Rhinoceros 3D. Ainsi, à travers ce module, le script python créé 
dans GhPython peut interagir avec Grasshopper et avec Rhinoceros 3D par ricochet.  

 

3. Outils de mise en place de l’algorithme 
 

Enfin, comme indiqué précédemment, les outils spécifiques de mise en place de l’algorithme sont 
Python et Google Colab. Les autres outils sont des bibliothèques à implémenter dans Python. 

 

 

Python est un langage de programmation permettant de créer et 
modifier le script de l’algorithme GAN mais aussi permettant de créer 
le code nécessaire à la réalisation des formes dans GhPython. Sinon il 
s’agit d’un langage de programmation polyvalent et populaire, 
largement utilisé dans divers domaines, y compris le développement 
web, l'analyse de données, l'apprentissage automatique et la 
modélisation 3D. Il est apprécié pour sa simplicité et sa lisibilité. 

 

 

Google Colab est une plateforme de notebook basée sur le cloud qui 
permet d'exécuter du code Python, notamment pour l'apprentissage 
machine, l'analyse de données et d'autres tâches de programmation, 
directement dans un navigateur web. J’en ai eu l’utilité afin de mettre 
en place l’algorithme du GAN. Avant d’utiliser cet outil, j’avais 
commencé par travailler sur un autre notebook du nom de Anaconda. 
J’ai arrêté d’utiliser cette dernière parce qu’il était assez fastidieux de 
mettre en place des environnements de travail avant même de 
commencer à programmer l’algorithme. 
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Matplotlib est une bibliothèque de visualisation de données en 
Python, largement utilisée pour créer des graphiques 2D et 3D de 
données de haute qualité. 

 

 

 

 

 

Keras est une bibliothèque open source de réseaux de neurones de 
haut niveau, écrite en Python et fonctionnant sur TensorFlow 
(Bibliothèque de Machine learning de Google). Elle permet de 
construire, de former et de déployer rapidement des modèles 
d'apprentissage en profondeur.  

 

 

 

 

NumPy est une bibliothèque Python qui permet de créer des tableaux 
multidimensionnels et les fonctions mathématiques pour travailler 
efficacement avec des données numériques. 

 

 

 

MLxtend est une bibliothèque Python d'extensions pour 
l'apprentissage machine, offrant une large gamme d'outils et 
d'utilitaires pour la préparation des données, la validation des modèles 
et l'interprétation des résultats.  
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II. Mise en place de l’algorithme 
 
Cette étape est délicate à réaliser car elle nécessite d’avoir de bonnes connaissances en 
programmation en Python, connaitre les différentes bibliothèques de commande nécessaire à la 
bonne réalisation de l’algorithme mais aussi être bien renseigné sur les algorithmes de réseaux de 
neurones et les matrices de données. 
 
Ayant des connaissances en programmation en Java, j’ai pu appréhender de manière général, le 
mode de fonctionnement des prototypes d’algorithmes de réseaux de neurones que j’ai pu 
observer sur internet mais il m’a fallu acquérir plusieurs connaissances en programmation en 
Python. N’étant néanmoins, pas un expert, j’ai rencontré plusieurs difficultés dans la correction 
d’erreur de code qui m’ont beaucoup ralenti lors de l’étude. 
 
Néanmoins, j’ai pu me procurer le script du GAN de génération utilisé par Jean-Raphaël PIQUARD 
pour son mémoire de Master à l’ENSAPLV, permettant de générer des écritures manuscrites mais 
qui peut être utilisé pour d’autres fonctions. Il s’agit d’un exemple de GAN couramment utilisé et 
facilement retrouvable sur internet pour les personnes qui souhaitent débuter dans la création de 
GAN. 
  
Ainsi, avant de pouvoir le modifier et l’utiliser à ma guise, il m’a fallu comprendre son 
fonctionnement. 
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1. Principe de fonctionnement d’un GAN : 
 

Importation de bibliothèques et modules : 

Importation de fonctions et modules de NumPy pour la manipulation des données et de divers 
modules de Keras, tels que Sequential, Dense, Conv2D, LeakyReLU, BatchNormalization, et 
d'autres, nécessaires pour définir et entraîner les modèles du GAN. 

 

 

 

Figure 30:  Importation de bibliothèques et modules 

Source : POUHE Fahé 
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Définition du Discriminateur : 

1. La fonction define_discriminator définit le modèle du discriminateur. 

2. Le modèle utilise des couches convolutionnelles pour réduire progressivement la 
résolution spatiale des images. 

3. Le modèle prend en entrée une image de forme (28, 28, 1), typique des images MNIST. 

4. La dernière couche est une couche dense avec une activation sigmoïde pour la 
classification binaire (réelle ou générée). 

 

Figure 31: Script de définition du Discriminateur 

Source : POUHE Fahé 

 

Définition du Générateur : 

1. La fonction define_generator définit le modèle du générateur. 

2. Le modèle utilise des couches denses pour générer une représentation latente de 
forme (128 * 7 * 7), qui est ensuite remodelée en une image 3D. 

3. Des couches de transposition de convolution sont utilisées pour augmenter 
progressivement la résolution spatiale de l'image générée jusqu'à (28, 28, 1). 

4. La dernière couche utilise une activation tanh pour assurer que les valeurs générées 
sont dans la plage [-1, 1]. 
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Figure 32: Script du Générateur 

Source : POUHE Fahé 

Définition du GAN : 

1. La fonction define_gan combine le générateur et le discriminateur en un modèle. 

2. Les poids du discriminateur ne sont pas entraînés lors de la mise à jour du GAN. 

 

 

Figure 33:  Script de définition du GAN 

Source : POUHE Fahé 
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Chargement des données : 

1. Les données MNIST sont chargées à l'aide de la fonction loadlocal_mnist de la 
bibliothèque mlxtend. 

2. Les images sont mises à l'échelle de la plage [-1, 1]. 

 

 

 

Figure 34: Script de données 

Source : POUHE Fahé 
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Définition des fonctions pour la génération de données réelles et fausses : 

1. La fonction generate_real_samples sélectionne un échantillon aléatoire d'images 
réelles à partir du jeu de données. 

2. La fonction generate_latent_points génère des points dans l'espace latent pour 
alimenter le générateur. 

3. La fonction generate_fake_samples utilise le générateur pour créer un échantillon 
d'images générées. 

 

 

 

 

Figure 35:  Script de données réelles et fausses 

Source : POUHE Fahé 
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Fonctions pour la sauvegarde de la performance du modèle : 

1. La fonction summarize_performance génère des échantillons générés par le 
générateur, les sauvegarde sous forme d'une grille, et sauvegarde le modèle du 
générateur. 

2. La fonction plot_history crée un graphique de l'historique des pertes et de l'exactitude 
du discriminateur. 

 

 

Figure 36:  Script de sauvegarde de performance du modèle 

Source : POUHE Fahé 

 

 

 

 

 

 

 



68 
 
 

Boucle d'entraînement : 

1. La fonction train effectue l'entraînement du GAN. 

2. Elle utilise des lots d'images réelles et générées pour mettre à jour les poids du 
discriminateur et du générateur. 

3. Les performances du modèle sont résumées périodiquement, et l'historique des pertes 
est tracé à la fin de l'entraînement. 

 

Figure 37:  Script d’entrainement du générateur et du discriminateur 

Source : POUHE Fahé 
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Création d'un dossier pour les résultats : 

1. Le script crée un dossier nommé 'results_baseline' pour sauvegarder les résultats 
générés et les modèles. 

 

 

Entraînement du GAN : 

1. La taille de l'espace latent est définie à 50. 

2. Le discriminateur, le générateur, et le GAN sont créés. 

3. Les données MNIST sont chargées. 

4. L'entraînement du GAN est effectué en utilisant les fonctions définies précédemment. 

 

 

Figure 38:  Script de sauvegarde des données générées et d’entrainement du GAN 

Source : POUHE Fahé 

 

 

Le script complet du GAN est à retrouver en annexe. 
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III. Mise en place de la base de données : 
 
Création de la base de données : Génération de prototypes d'implantation dans Grasshopper  
 
La base de données peut être réalisée de plusieurs manières mais dans le cadre de ce mémoire, 
j’en ai testé deux et gardé une manière afin de faciliter le déroulement de l’expérience.  

 

1. Base de données à l’aide de code Python 
 

Ce procédé consiste en la création de la base de données à l’aide de trois (03) scripts en GhPython 
("Formes", "Terrains" et "Insertion") qui permettent d’automatiser la génération des modèles 
d’entrainement du GAN.  Ces scripts sont mis en relation à travers l’outil de paramétrisme 
Grasshopper. Dans ce premier procédé, le modèle de génération de données d’entrainement 
repose sur une séquence logique afin de créer des compositions harmonieuses dans un modèle 
2D. Tout d'abord, dans le script "Terrains", des rectangles sont générés pour représenter le 
contour des terrains. Les dimensions des contours sont de 20 unités x 30 unités afin de singer un 
terrain réel de 20m sur 30m, soit 600m2. Mais l’on a la possibilité de modifier les dimensions des 
contours directement dans Grasshopper à l’aide du composant « Rectangle » et des paramètres 
qui lui sont attribués. Ces délimitations de terrains sont donc définies manuellement et servent 
de toile de fond.  

En parallèle, le script "Formes" est responsable de la génération de formes, également définies 
manuellement, mais avec une superficie correspondant à 60% des terrains de 600m2 
précédemment créés. Dans le script aux lignes 20 et 21, le critère d’évaluation « ratio de surface » 
est définis à 60% mais toujours modifiable si besoin. 

 

 

Figure 39: Entrée du critères d’évaluation dans le script « Formes » 

Source : Auteur, POUHE Fahé 

Le script "Insertion" s’en charge car il orchestre la fusion harmonieuse des formes générées dans 
les terrains correspondants. À travers une itération sur les paires de terrains et de formes, le script 
vérifie d'abord que ces éléments sont des courbes valides, puis positionne les formes à l'intérieur 
des terrains. 

Ce processus séquentiel assure que chaque forme trouve sa place dans le contexte du terrain 
associé, aboutissant à un modèle 2D cohérent. 
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Figure 40: Script Grasshopper de génération de formes 

Source : Auteur, POUHE Fahé 

 

 

 

Figure 41: Visualisation des contours de terrains de 20 x 30 

Source : Auteur, POUHE Fahé 
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Figure 42:  Visualisation des formes générées (en vert) 

Source : Auteur, POUHE Fahé 

 

 

Les formes étant générées sont des rectangles, elles doivent être par la suite être intégrées dans 
les terrains. Néanmoins, j’ai rencontré un problème de précision dans les dimensions des formes 
générées car elles sont trop grandes en proportion comparé aux terrains. Ayant rencontré des 
difficultés lors de la première manière que j’aurais pu résoudre mais qui me demanderait plus de 
temps et de connaissance, j’ai décidé de remédier à cela en générant les formes 
paramétriquement et directement avec les commandes de Grasshopper. 

 

2. Base de données à l’aide du paramétrisme 
 

C’est cette démarche que je vais finalement utiliser pour créer la base de données. Ainsi, afin de 
simplifier le plus possible et optimiser les possibilités de génération de différentes formes, je me 
suis finalement servis du modèle Grasshopper créé par Jean Raphaël PIQUARD lors de son 
mémoire sur les GAN et l’architecture. Dans son modèle Grasshopper, l’on retrouve différentes 
formes telles que des carrés, des rectangles, des blobs, etc mais ces formes ne respectent pas 
forcément un critère spécifique de taille ou superficie comme je veux le faire dans mon mémoire. 
J’ai donc modifié son modèle afin que les formes générées respectent le critère de ratio de surface 
qui est de 60% de 600m2, soit 360 m2 au maximum. Afin d’obtenir des formes viables et ainsi 
éviter d’obtenir des formes de 1m2 (par exemple et non viable), je renseigne un ensemble de 
variables permettant d’obtenir des formes de superficie comprise entre 150 m2 et 360 m2. 
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Figure 43: Modèle Grasshopper de génération de formes 

Source : Jean Raphael PIQUARD, Mémoire de master 2020 

 

 

Figure 44:  Modèle de génération de formes modifié respectant le critère ratio de surface 

Source : Auteur, POUHE Fahé, mémoire de Master 

 

Figure 45:  Modèle Grasshopper rajouté permettant de respecter le ratio de surface 

Source : Auteur, POUHE Fahé, mémoire de Master 
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Le rajout de code Grasshopper permet d’établir un changement d’échelle de la forme initiale 
générée afin qu’elle puisse respecter le critère « ratio de surface ».  

 

Suite à la modification complète du modèle Grasshopper et le dessin du « terrain » de dimension 
20 m x 30 m directement dans Rhino, l’on obtient les images constitutives de la base données des 
formes inscrites dans le terrain. Chacune des images de la base de données sont donc 
respectueuses des critères d’évaluation et peuvent de ce fait être utilisée comme données 
d’entrainement du GAN.  

Par ailleurs, la figure ci-dessous permet d’observer des exemples de formes de blobs inscris dans 
le terrain. La plupart des formes sont très différentes les unes des autres mais restent toutes des 
blobs. Néanmoins, l’on observe que certaines formes débordent de la limite du terrain même si 
elles respectent le ratio de surface. Il conviendrait donc dans certains cas, de rectifier cela en 
rajoutant des contraintes de limite dans le modèle Grasshopper. 

 

Figure 46:  Fragments des formes de blobs générées par le modèle paramétrique 

Source : Auteur, POUHE Fahé 
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IV. Entraînement de l'algorithme  
 

L’entrainement du GAN ainsi que de la base de données n’a pas pu aboutir car plusieurs blocages 
ont eu lieu aussi bien la création de la base de données d’entrainement mais aussi lors de la 
connexion entre la base de données et le script du GAN. 

1. Concernant la base de données : 
 

Dans les meilleures conditions, les étapes à suivre seraient d’écrire les scripts de génération de 
terrains, de forme et d’insertion des formes dans les terrains. Ensuite, je devrais exporter les 
exemples d’entrainement en format image. Ces images devraient par la suite être connectées à 
l’algorithme GAN afin de procéder à l’entrainement. 

Je me suis donc arrêté à l’étape de la génération des exemples d’entrainement. Plus précisément, 
il conviendrait de résoudre le problème de proportion des formes générées. Ce qui revient à 
modifier le script « Formes » et par la suite, rectifier le script « Insertion » afin qu’il puisse vérifier, 
avant tout, que les formes peuvent entrer dans les limites du terrain. Après avoir fait cette 
vérification, il faudrait le modifier afin qu’il puisse bien insérer la forme dans le terrain. 

 

2. Au sujet du script du GAN : 
 

Lors de la mise en place de ce script, j’ai rencontré plusieurs difficultés notamment pour 
l’implémentation de l’environnement virtuel de programmation qui consiste entre autres, à 
implémenter tous les modules, fonctions et bibliothèques nécessaires au bon fonctionnement de 
l’algorithme mais j’ai remédié en partie à ce problème en faisant basculer tout le code dans 
l’environnement de travail de Google Colab qui de manière standard intègre déjà une bonne partie 
des bibliothèques nécessaires au bon fonctionnement du programme.  

Par ailleurs, des problèmes se sont posés lors de la mise en relation entre le script du GAN et la 
base de données d’écriture manuscrite de J-R Piquard. J’avais besoin de faire cette connexion afin 
d’entrainer son modèle dans le but d’observer en temps réel le processus d’entrainement d’un 
GAN. Néanmoins, j’ai pu faire cette observation en regardant des exemples d’entrainement de 
modèle GAN dans des vidéos tutoriels sur internet. 
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Figure 47:  Message d’erreur lors de la connexion entre le script du GAN et un exemple Base de 
données d’entrainement 

Source : Auteur, POUHE Fahé 

 

Après plusieurs recherches faites sur internet et tentatives de correction de bug, par ailleurs, mes 
connaissances en programmation d’intelligence artificielle étant limitée, je n’ai pas pu le résoudre 
ce qui limite la poursuite de mon expérience. Ainsi, l’entrainement du GAN n’ayant pas eu lieu 
dans les meilleures conditions, l’étape de la mise en place du cGAN et de son entrainement n’a 
pas pu, non plus, avoir lieu. Sachant que le cGAN serait basé sur l’algorithme du GAN auquel 
j’aurais intégré les conditions ou critères d’évaluation définis dans la méthode de recherche. 

 

Néanmoins, la base de données que j’ai générée peut toujours être utilisée afin de poursuivre la 
recherche ultérieurement. 
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V. Résultats attendus : 
 
L’étude que je comptais mener lors de ce mémoire n’a pas pu aboutir aux résultats que j’espérais 
mais je m’attendais à obtenir certains résultats spécifiques tels que : 
 

- Une observation de fortes similarités dans les propositions générées par les GAN et cGAN 
car les deux modèles devraient être entrainés sur la même base de données. Ces similarités 
devraient être, entres autres, dues au fait que l’ensemble des données d’entrainement doit 
être assez élevé et varié afin d’obtenir des propositions différentes les unes des autres. 
Mais ne disposant pas de machine de calcul à la hauteur de celles d’entreprise comme 
NVIDIA, les ressources matérielles limitent la pluralité des propositions 
 

- Le respect du critère d’évaluation « ratio de surface » pour une majorité des propositions 
obtenues car dans la création de la base de données, je renseignais déjà ce critère. Ainsi, si 
les données d’entrainement respectent déjà ce critère-là, les propositions générées ont 
plus de chances de le respecter. 
 
 

- Le cGAN soit plus performant et génère des propositions singulières grâce aux contraintes 
qui lui seraient appliquées. 
 

- Un bon respect de la fidélité de formes mais pas toujours des proportions comme indiqué 
dans la méthode de recherche. 
 
 

- L’obtention de propositions inattendues qui ne respectent ni la fidélité de forme, ni le ratio 
de surface qui pourraient être enrichissantes pour l’étude. 
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CONCLUSION  
 
Ce que je tire de ce mémoire : 
 
Au cours de cette étude, j'ai eu l'opportunité captivante d'explorer le fonctionnement des 
intelligences artificielles génératives de type GAN, plongeant dans le monde complexe des 
réseaux de neurones. La compréhension approfondie de ces mécanismes a constitué une étape 
cruciale dans l'accroissement de mes compétences en programmation de réseaux de neurones. 
La création d'une base de données d'entraînement a également été un volet essentiel de cette 
démarche, me permettant de saisir pleinement le rôle crucial de données de qualité dans le 
développement et la formation des modèles. 
 
Cette étude a également mis en lumière les enjeux profonds liés à l'utilisation de l'intelligence 
artificielle en architecture. J'ai pris conscience des implications tant créatives que éthiques de 
l'intégration de l'IA dans le domaine architectural. Mon objectif personnel, résultant de cette 
exploration, est de me familiariser davantage avec les IA génératives appliquées à l'architecture. 
Ainsi cette connaissance approfondie deviendra une ressource inestimable pour mes 
expérimentations futures, avec l'ambition ultime de les intégrer de manière fluide et innovante 
dans mon processus de conception en architecture. De ce fait, cette étude marque non seulement 
une étape importante dans mon parcours académique, mais également le point de départ d'une 
exploration continue et créative des possibilités offertes par l'IA dans le domaine de 
l'architecture. 
 
 
Pistes d’amélioration : 
 
Plusieurs pistes d’amélioration sont envisageables notamment la plus importante serait de 
continuer ce sujet en veillant à faire les corrections des différents bugs d’algorithme, de base de 
données et de liaison des environnements que j’ai pu mentionner précédemment. Il s’agit de 
l’amélioration est la plus simple à réaliser sachant que la démarche scientifique de l’étude, l’état 
de l’art, les enjeux de cette étude et la base de données d’entrainement du GAN et cGAN ont été 
déjà réalisés dans ce mémoire. 
 
Enfin, lors de la réalisation de ce mémoire, j’ai pu me rendre compte qu’il était possible d’aboutir 
quasiment aux mêmes résultats de génération de propositions de modèle d’implantation soumis 
à des contraintes sans passer par les GAN ou cGAN. En effet, il est possible de réaliser uniquement 
cette étude grâce au paramétrisme à travers Grasshopper, GhPython et Rhino. Cela permettrait 
donc aux personnes qui sont familières à ces outils de paramétrisme de l’expérience. 
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GLOSSAIRE 
 
Intelligence Artificielle (IA) : La science et l'ingénierie de la fabrication de machines intelligentes 
capables de réaliser des tâches qui nécessitent des processus mentaux de haut niveau, 
généralement effectuées par des êtres humains. 

 
Algorithme : Un algorithme est une séquence finie et non ambiguë d'instructions permettant de 
résoudre un problème ou d'effectuer une tâche donnée. 
 
Deep Learning : Une branche de l'intelligence artificielle qui utilise des réseaux neuronaux 
artificiels pour résoudre des problèmes complexes en apprenant à partir de données. 
 
Modularité : La notion de créer un modèle d'architecture idéal qui est ensuite multiplié pour 
former un ensemble d'architecture, réduisant ainsi les temps et coûts de conception et de 
construction. 
 
DAO (Dessin Assisté par Ordinateur) : L'utilisation de logiciels informatiques pour simplifier et 
accélérer le processus de dessin et de représentation en architecture. 
 
Paramétrisme : Un principe de synthétisation et de décomposition des différentes étapes 
nécessaires à la réalisation d'un design, permettant l'application de paramètres ajustables à 
chaque étape du processus de conception. 
 
Grasshopper : Un environnement de modélisation algorithmique utilisé dans la conception 
architecturale, souvent associé au logiciel Rhino. 
 
Python : Un langage de programmation largement utilisé, particulièrement dans le domaine de 
l'apprentissage machine et de l'IA.  
 
Bibliothèque : Une bibliothèque, dans le contexte de la programmation informatique, est un 
ensemble de fonctions pré-écrites qui peuvent être utilisées pour effectuer des tâches 
spécifiques. Les bibliothèques peuvent inclure des fonctions pour divers domaines tels que la 
manipulation de fichiers, les opérations mathématiques, la manipulation de chaînes de caractères, 
la visualisation de données, l'interaction avec des bases de données, etc.   
 
Auto-encodeurs (AE) : Des modèles de machine learning qui apprennent à représenter les 
données en les compressant dans un format compact, puis en les décompressant pour les 
reconstruire. 
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Réseaux de Neurones Convolutifs (CNN) : Des réseaux de neurones artificiels utilisés pour la 
reconnaissance d'images et la vision par ordinateur, efficaces pour détecter des patterns dans les 
images. 
 
Réseaux de Neurones Récurrents (RNN) : Des réseaux de neurones adaptés au traitement de 
données séquentielles, tels que les séquences de mots ou de sons, capables de prendre en 
compte l'historique des données. 
 
Réseaux Adversaires Génératifs (GAN) : Une classe de cadres d'apprentissage automatique où 
deux réseaux neuronaux, un générateur et un discriminateur, sont en concurrence pour créer des 
artefacts réalistes indiscernables des artefacts réels. 
 
Conditionals GAN (cGAN) : Une catégorie de GAN qui permet d'avoir plus de contrôle sur les 
résultats générés en introduisant des conditions supplémentaires, tels que des étiquettes de 
classe, dans le processus d'apprentissage. 
 
GAN Pix2Pix : Une technique de GAN utilisée pour la conversion d'images d'un domaine à un 
autre, par exemple, transformer des dessins en images réalistes. 
 

VAE-GAN (Variational Autoencoder Generative Adversarial Network) est une architecture de 
réseau de neurones qui combine les techniques de l'autoencodeur variationnel (VAE) et des 
réseaux génératifs adversaires (GAN) pour générer des données réalistes à partir d'un espace 
latent. Cette méthode permet d'apprendre une représentation dense des données d'entrée et de 
générer de nouvelles données tout en conservant leurs caractéristiques essentielles.  

 

SMPL (Simplified Human Body Model) est un modèle de corps humain simplifié largement utilisé 
dans les domaines de la vision par ordinateur, de la réalité virtuelle et de la synthèse d'images 
pour représenter la forme et la pose du corps humain de manière paramétrique. Il offre une 
représentation compacte et expressive de la forme du corps, permettant une variété 
d'applications dans la modélisation et l'animation 3D. 

 

Nvidia : Nvidia est une société spécialisée dans la conception de cartes graphiques, de processeurs 
graphiques et de systèmes intégrés utilisés dans les domaines du jeu vidéo, de la visualisation 
professionnelle, de l'intelligence artificielle et du calcul haute performance. 
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ANNEXES 
 
Code informatique 
 
Script du GAN : 
# example of training a stable gan for generating a handwritten digit 
from os import makedirs 
 
# Vérifier la présence de Keras 
import keras 
print(keras.__version__) 
 
# Vérifier la présence de NumPy 
import numpy as np 
print(np.__version__) 
 
# Vérifier la présence de Matplotlib 
import matplotlib 
print(matplotlib.__version__) 
 
# Vérifier la présence de mlxtend 
import mlxtend 
print(mlxtend.__version__) 
 
from numpy import expand_dims 
from numpy import zeros 
from numpy import ones 
from numpy.random import randn 
from numpy.random import randint 
from keras.datasets.mnist import load_data 
from keras.optimizers import Adam 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import Reshape 
from keras.layers import Flatten 
from keras.layers import Conv2D 
from keras.layers import Conv2DTranspose 
from keras.layers import LeakyReLU 
from keras.layers import BatchNormalization 
from keras.initializers import RandomNormal 
from matplotlib import pyplot 
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# define the standalone discriminator model 
def define_discriminator(in_shape=(28,28,1)): 
  # weight initialization 
  init = RandomNormal(stddev=0.02) 
  # define model 
  model = Sequential() 
  # downsample to 14x14 
  model.add(Conv2D(64, (4,4), strides=(2,2), padding='same', 
kernel_initializer=init, input_shape=in_shape)) 
  model.add(BatchNormalization()) 
  model.add(LeakyReLU(alpha=0.2)) 
  # downsample to 7x7 
  model.add(Conv2D(64, (4,4), strides=(2,2), padding='same', 
kernel_initializer=init)) 
  model.add(BatchNormalization()) 
  model.add(LeakyReLU(alpha=0.2)) 
  # classifier 
  model.add(Flatten()) 
  model.add(Dense(1, activation='sigmoid')) 
  # compile model 
  opt = Adam(lr=0.0002, beta_1=0.5) 
  model.compile(loss='binary_crossentropy', optimizer=opt, 
metrics=['accuracy']) 
  return model 
 
# define the standalone generator model 
def define_generator(latent_dim): 
  # weight initialization 
  init = RandomNormal(stddev=0.02) 
  # define model 
  model = Sequential() 
  # foundation for 7x7 image 
  n_nodes = 128 * 7 * 7 
  model.add(Dense(n_nodes, kernel_initializer=init, input_dim=latent_dim)) 
  model.add(LeakyReLU(alpha=0.2)) 
  model.add(Reshape((7, 7, 128))) 
  # upsample to 14x14 
  model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same', 
kernel_initializer=init)) 
  model.add(BatchNormalization()) 
  model.add(LeakyReLU(alpha=0.2)) 
  # upsample to 28x28 
  model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same', 
kernel_initializer=init)) 
  model.add(BatchNormalization()) 
  model.add(LeakyReLU(alpha=0.2)) 
  # output 28x28x1 
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  model.add(Conv2D(1, (7,7), activation='tanh', padding='same', 
kernel_initializer=init)) 
  return model 
 
# define the combined generator and discriminator model, for updating the 
generator 
def define_gan(generator, discriminator): 
  # make weights in the discriminator not trainable 
  discriminator.trainable = False 
  # connect them 
  model = Sequential() 
  # add generator 
  model.add(generator) 
  # add the discriminator 
  model.add(discriminator) 
  # compile model 
  opt = Adam(lr=0.0002, beta_1=0.5) 
  model.compile(loss='binary_crossentropy', optimizer=opt) 
  return model 
 

import mlxtend 
import numpy as np 
 
from mlxtend.data import loadlocal_mnist 
 
trainX, trainy = loadlocal_mnist( 
        images_path=r'Z:\Fahé POUHE\Mémoire - Fahé\test-images-idx3-ubyte', 
        labels_path=r'Z:\Fahé POUHE\Mémoire - Fahé\test-labels-idx1-ubyte') 
 
print(trainX.shape[0], trainX.shape[1]) 
trainX=np.reshape(trainX,(trainX.shape[0],28,-1)) 
print(trainX.shape[0], trainX.shape[1], trainX.shape[2]) 
 
# load mnist images 
def load_real_samples(): 
  # load dataset 
  # expand to 3d, e.g. add channels 
 
  X = expand_dims(trainX, axis=-1) 
  # select all of the examples for a given class 
  selected_ix = trainy == 8 
  X = X[selected_ix] 
  # convert from ints to floats 
  X = X.astype('float32') 
  # scale from [0,255] to [-1,1] 
  X = (X - 127.5) / 127.5 
  return X 
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# select real samples 
def generate_real_samples(dataset, n_samples): 
  # choose random instances 
  ix = randint(0, dataset.shape[0], n_samples) 
  # select images 
  X = dataset[ix] 
  # generate class labels 
  y = ones((n_samples, 1)) 
  return X, y 
 
# generate points in latent space as input for the generator 
def generate_latent_points(latent_dim, n_samples): 
  # generate points in the latent space 
  x_input = randn(latent_dim * n_samples) 
  # reshape into a batch of inputs for the network 
  x_input = x_input.reshape(n_samples, latent_dim) 
  return x_input 
 
# use the generator to generate n fake examples, with class labels 
def generate_fake_samples(generator, latent_dim, n_samples): 
  # generate points in latent space 
  x_input = generate_latent_points(latent_dim, n_samples) 
  # predict outputs 
  X = generator.predict(x_input) 
  # create class labels 
  y = zeros((n_samples, 1)) 
  return X, y 
 
# generate samples and save as a plot and save the model 
def summarize_performance(step, g_model, latent_dim, n_samples=100): 
  # prepare fake examples 
  X, _ = generate_fake_samples(g_model, latent_dim, n_samples) 
  # scale from [-1,1] to [0,1] 
  X = (X + 1) / 2.0 
  # plot images 
  for i in range(10 * 10): 
    # define subplot 
    pyplot.subplot(10, 10, 1 + i) 
    # turn off axis 
    pyplot.axis('off') 
    # plot raw pixel data 
    pyplot.imshow(X[i, :, :, 0], cmap='gray_r') 
  # save plot to file 
  pyplot.savefig('results_baseline/generated_plot_%03d.png' % (step+1)) 
  pyplot.close() 
  # save the generator model 
  g_model.save('results_baseline/model_%03d.h5' % (step+1)) 
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# create a line plot of loss for the gan and save to file 
def plot_history(d1_hist, d2_hist, g_hist, a1_hist, a2_hist): 
  # plot loss 
  pyplot.subplot(2, 1, 1) 
  pyplot.plot(d1_hist, label='d-real') 
  pyplot.plot(d2_hist, label='d-fake') 
  pyplot.plot(g_hist, label='gen') 
  pyplot.legend() 
  # plot discriminator accuracy 
  pyplot.subplot(2, 1, 2) 
  pyplot.plot(a1_hist, label='acc-real') 
  pyplot.plot(a2_hist, label='acc-fake') 
  pyplot.legend() 
  # save plot to file 
  pyplot.savefig('results_baseline/plot_line_plot_loss.png') 
  pyplot.close() 
 
# train the generator and discriminator 
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=10, 
n_batch=50): 
  # calculate the number of batches per epoch 
  bat_per_epo = 10 
  # calculate the total iterations based on batch and epoch 
  n_steps = bat_per_epo * n_epochs 
  # calculate the number of samples in half a batch 
  half_batch = int(n_batch / 2) 
  # prepare lists for storing stats each iteration 
  d1_hist, d2_hist, g_hist, a1_hist, a2_hist = list(), list(), list(), 
list(), list() 
  # manually enumerate epochs 
  for i in range(n_steps): 
    # get randomly selected 'real' samples 
    X_real, y_real = generate_real_samples(dataset, half_batch) 
    # update discriminator model weights 
    d_loss1, d_acc1 = d_model.train_on_batch(X_real, y_real) 
    # generate 'fake' examples 
    X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch) 
    # update discriminator model weights 
    d_loss2, d_acc2 = d_model.train_on_batch(X_fake, y_fake) 
    # prepare points in latent space as input for the generator 
    X_gan = generate_latent_points(latent_dim, n_batch) 
    # create inverted labels for the fake samples 
    y_gan = ones((n_batch, 1)) 
    # update the generator via the discriminator's error 
    g_loss = gan_model.train_on_batch(X_gan, y_gan) 
    # summarize loss on this batch 
    print('>%d, d1=%.3f, d2=%.3f g=%.3f, a1=%d, a2=%d' % 
      (i+1, d_loss1, d_loss2, g_loss, int(100*d_acc1), int(100*d_acc2))) 
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    # record history 
    d1_hist.append(d_loss1) 
    d2_hist.append(d_loss2) 
    g_hist.append(g_loss) 
    a1_hist.append(d_acc1) 
    a2_hist.append(d_acc2) 
    # evaluate the model performance every 'epoch' 
    if (i+1) % bat_per_epo == 0: 
      summarize_performance(i, g_model, latent_dim) 
  plot_history(d1_hist, d2_hist, g_hist, a1_hist, a2_hist) 
 
# make folder for results 
makedirs('results_baseline', exist_ok=True) 
# size of the latent space 
latent_dim = 50 
# create the discriminator 
discriminator = define_discriminator() 
# create the generator 
generator = define_generator(latent_dim) 
# create the gan 
gan_model = define_gan(generator, discriminator) 
# load image data 
dataset = load_real_samples() 
print(dataset.shape) 
# train model 
train(generator, discriminator, gan_model, dataset, latent_dim) 
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Programme de Grasshopper 
 
Script GhPython : 
 
Script "Formes" 

# SCRIPT FORMES 
 
import rhinoscriptsyntax as rs 
 
# Entrée manuelle depuis Grasshopper pour le rectangle x 
x = x  # Utilise la variable x stockée dans le contexte sc 
 
# Entrée manuelle depuis Grasshopper pour le nombre de rectangles y 
y = int(y)  # Convertit y en un nombre entier 
 
# Initialise la liste des formes générées 
generated_shapes = [] 
 
# Vérifie si x est un rectangle 
if rs.IsCurve(x) and rs.IsCurvePlanar(x): 
    if rs.IsCurveClosed(x): 
        # Calcule la superficie du rectangle x 
        x_area = rs.Area(x) 
         
        # Calcule la superficie cible des formes (60% de la superficie de x) 
        target_shape_area = 0.6 * x_area 
         
        # Boucle pour générer les formes 
        for i in range(y): 
            # Calcule la longueur et la largeur du rectangle pour atteindre la 
superficie cible 
            current_rectangle_area = 0 
            current_length = rs.CurveLength(x)  # Longueur initiale 
             
            while current_rectangle_area < target_shape_area: 
                current_length += 1 
                current_width = target_shape_area / current_length 
                current_rectangle_area = current_length * current_width 
             
            # Crée le rectangle 
            shape = rs.AddRectangle([0,0,0], current_length, current_width) 
             
            if shape: 
                # Ajoute le rectangle à la liste des rectangles générés 
                generated_shapes.append(shape) 
            else: 
                print("Impossible de créer un rectangle.") 
    else: 
        print("L'objet sélectionné n'est pas un rectangle fermé.") 
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else: 
    print("Veuillez sélectionner un objet de type courbe (rectangle) en 
entrée.") 
 
# Sortie "a" contenant les rectangles générés 
a = generated_shapes 

 

Script "Terrains" 

 

import rhinoscriptsyntax as rs 
 
# Entrée manuelle depuis Grasshopper pour le rectangle x 
x = x  # Utilise la variable x stockée dans le contexte sc 
 
# Entrée manuelle depuis Grasshopper pour le nombre de rectangles y 
y = int(y)  # Convertit y en un nombre entier 
 
# Initialise la liste des objets dupliqués 
duplicated_rectangles = [] 
 
# Vérifie si x est un rectangle 
if rs.IsCurve(x) and rs.IsCurvePlanar(x): 
    if rs.IsCurveClosed(x): 
        # Boucle pour dupliquer le rectangle x 
        for i in range(y): 
            # Duplique le rectangle x 
            duplicated_rectangle = rs.CopyObject(x, [i * 25, 0, 0])  # Ajuste 
la translation selon les besoins 
            duplicated_rectangles.append(duplicated_rectangle) 
    else: 
        print("L'objet sélectionné n'est pas un rectangle fermé.") 
else: 
    print("Veuillez sélectionner un objet de type courbe (rectangle) en 
entrée.") 
 
# Sortie "a" contenant les objets dupliqués 
a = duplicated_rectangles 
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Script "Insertion" 

 

# SCRIPT INSERTIONS 
 
import rhinoscriptsyntax as rs 
 
# Entrée manuelle depuis Grasshopper pour les terrains (rectangles) 
terrains = x  # Utilise la variable terrains stockée dans le contexte sc 
 
# Entrée manuelle depuis Grasshopper pour les formes générées 
formes_generees = y  # Utilise la variable formes_generees stockée dans le 
contexte sc 
 
# Ajoutez ces sorties pour imprimer les types et le contenu des variables 
print(type(terrains)) 
print(type(formes_generees)) 
 
# Vérifie si les terrains et les formes générées sont des listes 
if isinstance(terrains, list) and isinstance(formes_generees, list): 
    # Vérifie si les terrains et les formes générées sont valides 
    if terrains and formes_generees: 
        # Boucle pour positionner les formes à l'intérieur des terrains 
        for terrain, forme_generee in zip(terrains, formes_generees): 
            # Vérifie si les terrains et les formes sont des courbes 
            if rs.IsCurve(terrain) and rs.IsCurve(forme_generee): 
                # Copie la forme générée à l'intérieur du terrain 
                rs.CopyObject(forme_generee, translation=[0,0,0], copy=True) 
            else: 
                print("Les objets sélectionnés ne sont pas des courbes.") 
    else: 
        print("Veuillez fournir les terrains et les formes générées en 
entrée.") 
else: 
    print("Les entrées ne sont pas valides. Assurez-vous que terrains et 
formes_generees sont des listes.") 
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# ddddeefffinnne ttheee sttandaloone discriminator model
deeeff ddddefiinnee__diisccrimiinaattor(in_shape=(28,28,1)): 

#### wwweiighhtt iiinnittializaation
  iiniit = RanndommNormall(stddev=0.02) 

#### dddefffinnee mmmodeel
  mmoddell == Seequeential() 
  #### dddowwwnssaamppple to 14xx14
  mmoddell.aadd(Connv2D(64, (4,4), strides=(2,2), padding='same', 
keerrneel__innitiialiizer=innit, input_shape=in_shape)) 
  mmoddell.aadd(BattchNormmalization()) 
  mmoddell.aadd(LeaakyReLUU(alpha=0.22)) 
  #### dddowwwnssaamppple to 7x77
  mmoddell.aadd(Connv2D(64, (4,4), strides=(2,2), padding='same', 
keerrneel__innitiialiizer=innit)) 
  mmoddell.aadd(BattchNormmalization()) 
  mmoddell.aadd(LeaakyReLUU(alpha=0.22)) 

#### ccclaaasssiifiiier
  mmoddell.aadd(Flaatten())) 
  mmoddell.aadd(Dennse(11, activation='sigmoid')) 
  #### cccommmpiille mmoddel
  ooptt == AAdamm(lrr=0..00002, beta_1=0.5) 
  mmoddell.ccoommpiilee(loss=='binary_crossentropy', optimizer=opt, 
meettriicss=[['aacccurracy'])) 
  rrretturrrn moddel 

# ddddeefffinnne ttheee sttandaloone generator model
deeeff ddddefiinnee__geenneeratoor(latent_dim): 
  #### wwweiighhtt iiinnittializaation
  iiniit = RanndommNormall(stddev=0.02) 
  #### dddefffinnee mmmodeel
  mmoddell == Seequeential() 
  #### fffouuunddaatiiion for 7xx7 image
  nn_nnoddess = 1128 * 77 ** 7
  mmoddell.aadd(Dennse(n_nnodes, kernel_initializer=init, input_dim=latent_dim)) 
  mmoddell.aadd(LeaakyReLUU(alpha=0.22)) 
  mmoddell.aadd(Resshape((7, 7, 128))) 
  #### uuupssammppleee too 14xx144
  mmoddell.aadd(Connv2DTraanspose(128, (4,4), strides=(2,2), padding='same', 
keerrneel__innitiialiizer=innit)) 
  mmoddell.aadd(BattchNormmalization()) 
  mmoddell.aadd(LeaakyReLUU(alpha=0.22)) 
  #### uuupssammppleee too 28xx288
  mmoddell.aadd(Connv2DTraanspose(128, (4,4), strides=(2,2), padding='same', 
keerrneel__innitiialiizer=innit)) 
  mmoddell.aadd(BattchNormmalization()) 
  mmoddell.aadd(LeaakyReLUU(alpha=0.22)) 
  #### ooouttpuutt 2228x228x1
  mmoddell.aadd(Connv2D(1,, (7,7), activation='tanh', padding='same', 
keerrneel__innitiialiizer=innit)) 
  rrretturrrn moddel 


