
ddddeefffinnne ttheee sttandaloone discriminator model
deeeff ddddefiinnee__diisccrimiinaattor(in_shape=(28,28,1)):

wwweiighhtt iiinnittializaation
 iiniit = RanndommNormall(stddev=0.02)

dddefffinnee mmmodeel
 mmoddell == Seequeential()
 #### dddowwwnssaamppple to 14xx14
 mmoddell.aadd(Connv2D(64, (4,4), strides=(2,2), padding='same',
keerrneel__innitiialiizer=innit, input_shape=in_shape))
 mmoddell.aadd(BattchNormmalization())
 mmoddell.aadd(LeaakyReLUU(alpha=0.22))
 #### dddowwwnssaamppple to 7x77
 mmoddell.aadd(Connv2D(64, (4,4), strides=(2,2), padding='same',
keerrneel__innitiialiizer=innit))
 mmoddell.aadd(BattchNormmalization())
 mmoddell.aadd(LeaakyReLUU(alpha=0.22))

ccclaaasssiifiiier
 mmoddell.aadd(Flaatten()))
 mmoddell.aadd(Dennse(11, activation='sigmoid'))
 #### cccommmpiille mmoddel
 ooptt == AAdamm(lrr=0..00002, beta_1=0.5)
 mmoddell.ccoommpiilee(loss=='binary_crossentropy', optimizer=opt,
meettriicss=[['aacccurracy']))
 rrretturrrn moddel

ddddeefffinnne ttheee sttandaloone generator model
deeeff ddddefiinnee__geenneeratoor(latent_dim):
 #### wwweiighhtt iiinnittializaation
 iiniit = RanndommNormall(stddev=0.02)
 #### dddefffinnee mmmodeel
 mmoddell == Seequeential()
 #### fffouuunddaatiiion for 7xx7 image
 nn_nnoddess = 1128 * 77 ** 7
 mmoddell.aadd(Dennse(n_nnodes, kernel_initializer=init, input_dim=latent_dim))
 mmoddell.aadd(LeaakyReLUU(alpha=0.22))
 mmoddell.aadd(Resshape((7, 7, 128)))
 #### uuupssammppleee too 14xx144
 mmoddell.aadd(Connv2DTraanspose(128, (4,4), strides=(2,2), padding='same',
keerrneel__innitiialiizer=innit))
 mmoddell.aadd(BattchNormmalization())
 mmoddell.aadd(LeaakyReLUU(alpha=0.22))
 #### uuupssammppleee too 28xx288
 mmoddell.aadd(Connv2DTraanspose(128, (4,4), strides=(2,2), padding='same',
keerrneel__innitiialiizer=innit))
 mmoddell.aadd(BattchNormmalization())
 mmoddell.aadd(LeaakyReLUU(alpha=0.22))
 #### ooouttpuutt 2228x228x1
 mmoddell.aadd(Connv2D(1,, (7,7), activation='tanh', padding='same',
keerrneel__innitiialiizer=innit))
 rrretturrrn moddel

LʼINTELLIGENCE ARTIFICIELLE
ET LA CONCEPTION ARCHITECTURALE

Les réseaux de neuronnes antagonistes et génératifs conditionnés (cGAN)
au service de la réalisation de

modèles dʼimplantation de bâtiment dans un site

Domaine dʼétudue:
Concevoir et Construire lʼArchitecture (CCA)

Séminaire:
Savoirs des Activités de Projet Instrumentés (SAPI)

Etudiant:
POUHE Fahé Yacoub Abdallah

Encadré par:

GUENA François
SILVESTRE Joaquim

TÜSCHER Anne

Réalisé en Janvier 2023

MÉMOIRE DE MASTER

2

3

REMERCIEMENTS

Je tiens à exprimer ma profonde gratitude envers mes parents, dont le soutien indéfectible est
une source de motivation durant ces études d’architecture et plus précisément durant la
réalisation de ce mémoire.

Je souhaite également adresser mes remerciements sincères à M. François GUENA pour son
expertise et ses conseils précieux tout au long de l'élaboration de ce mémoire. Ses conseils et
analyses avisés dans mon apprentissage ont grandement contribué à l'enrichissement de ce
travail.

Mes remerciements vont également à M. Joaquim SILVESTRE, dont les discussions stimulantes
ont éclairé ma réflexion et apporté des perspectives nouvelles sur le sujet. Son intérêt pour
l'intelligence artificielle a été une source d'inspiration constante.

Enfin, je tiens à exprimer ma reconnaissance envers Mme Anne TÜSCHER pour sa guidance
éclairée et son soutien constant. Ses conseils avisés ont été d'une grande importance dans la
structuration et la rédaction de ce mémoire.

4

TABLES DES MATIERES

REMERCIEMENTS .. 3

TABLES DES MATIERES .. 4

AVANT-PROPOS ... 7

INTRODUCTION ... 8

Partie 1 : ETAT DE L’ART .. 10

I. Connaissances en intelligences artificielles ... 11

1. Evolution des techniques d’automatisation/systématisation .. 11

2. Algorithmes d’intelligence artificielle .. 13

a. Qu’est-ce qu’une intelligence artificielle ? .. 13

b. Algorithmes de deep learning : ... 16

c. GAN, réseau de neurones antagonistes génératifs ... 19

II. Etat de l’art des recherches menées sur l’intelligence artificielle appliquées ou non à
l’architecture .. 23

1. Recherches sur l’intelligence artificielle et l’architecture ... 23

a. Stanislas Chaillou (2020) aborde l'IA et la conception en Architecture 23

b. Zheng et Huang (2018) aborde la reconnaissance et la génération de plans 25

c. Nathan Peters (2017) aborde l’aménagement de pièce de vie .. 26

d. Nono Martinez (2016) aborde le travail cumulé entre l’humain et la machine 27

e. Jean Raphael Piquard (2020) au sujet de l'intelligence artificielle et la génération de
forme architecturale ... 28

2. Recherches menées sur l’intelligence artificielle en général .. 29

a. Méthode de sélection des études ... 29

b. Etudes sélectionnées par les chercheurs .. 32

Partie 2 : PROBLEMATIQUE .. 48

I. Questionnements ... 49

1. Ce que je tire de l’état de l’art Etude à mener dans ce mémoire .. 49

2. Etude à mener dans ce mémoire .. 49

II. Méthode de recherche ... 50

1. Démarche scientifique .. 50

2. Comment caractérise-t-on chacun des critères d’évaluation ? .. 51

5

a. Le ratio de surface : .. 51

b. Le respect de fidélité de forme : .. 52

c. Processus de recherche ... 52

Partie 3 : EXPERIMENTATION ... 56

I. Outils nécessaires à la réalisation de l’expérience .. 57

1. Apprentissage de la programmation .. 57

2. Logiciels de création de la base de données ... 58

3. Outils de mise en place de l’algorithme .. 59

II. Mise en place de l’algorithme ... 61

1. Principe de fonctionnement d’un GAN : ... 62

III. Mise en place de la base de données : .. 70

1. Base de données à l’aide de code Python ... 70

2. Base de données à l’aide du paramétrisme .. 72

IV. Entraînement de l'algorithme ... 75

1. Concernant la base de données : .. 75

2. Au sujet du script du GAN : .. 75

V. Résultats attendus : .. 77

CONCLUSION ... 78

BIBLIOGRAPHIE ... 79

GLOSSAIRE ... 83

ANNEXES .. 85

6

7

AVANT-PROPOS

A travers les pages de ce mémoire, je partage le cheminement de ma quête au croisement de
l'architecture et de l'intelligence artificielle. Ce mémoire de master représente un témoignage
honnête des explorations, des obstacles rencontrés, et des découvertes qui ont émaillé cette
entreprise intellectuelle.
L'étude plonge dans l'univers complexe des réseaux de neurones et des algorithmes génératifs,
se focalisant particulièrement sur les GAN.
Au fil de ces pages, j’invite le lecteur à suivre mon parcours, à travers des lignes qui dévoilent les
différentes étapes que j’ai dû suivre dans cette recherche académique. Il s’agit également d’une
aventure personnelle dans un domaine qui est totalement inconnu par la majorité des architectes
mais qui est tout autant passionnant que l’exercice « classique » de l’architecture. L'intention ici
n'est pas d'émerveiller, mais de partager les réflexions et les apprentissages issus de cette
exploration, dans l'espoir que ces modestes contributions puissent éclairer d'autres esprits
curieux.

8

INTRODUCTION

« Si on arrive à automatiser la réalisation des plans d’architecture, ça permettrait de gagner
beaucoup de temps. Aurons-nous toujours besoin des architectes ? ». C’est la question que je me
suis posé lors d’un stage dans un bureau d’étude technique (BET) lorsqu’un ingénieur en
informatique qui m’observait dessiner le plan d’une maison, m’a posé la question suivante « Est-
ce qu’on peut programmer le dessin du plan que tu es en train de faire pour qu’il se fasse tout seul
? ». Suite à cette question très pertinente, il s’en est suivis une discussion très enrichissante autour
de la programmation informatique, le métier d’architecte, le temps de travail mais aussi les
répercussions économiques que cela pourrait générer pour les architectes.
Ce moment d’échange très enrichissant qui nous a mené sur des sujets très larges tels que la
politique, l’économie, l’efficacité au travail, la satisfaction émotionnelle après un travail acharné
et bien fait m’a fait remettre beaucoup de choses en question et m’a donné envie d’explorer en
profondeur cette thématique qu’est l’automatisation ou la programmation informatique
appliquée à la conception en architecture.

Mon sujet de mémoire consiste donc à explorer cette thématique en mettant en concurrence
deux algorithmes d’intelligence artificielle afin d’identifier laquelle est la mieux adaptée à la
génération de propositions pertinentes qui feront office d’aide à la conception pour les
architectes. Les deux types d’algorithme que nous mettrons en application sont un réseau de
neurones antagonistes génératifs (GAN) et un cGAN (réseau de neurones antagonistes génératifs
conditionnés) qui ont chacun des avantages et des inconvénients qu’il s’agira de tester pour en
tirer le meilleur. Le but sera donc, entre autres, pour les architectes de pouvoir identifier à la suite
de l’étude, vers quelle technologie se tourner s’ils en ont besoin.
Par ailleurs, je choisis d’utiliser ces deux types d’intelligence artificielle car ils sont de type
génératif c’est-à-dire qu’ils sont capables de générer des propositions d’images à partir de
d’autres images d’entrainement (Le mode de fonctionnement de ces algorithmes sera expliqué
plus en détail dans la partie « état de l’art »). En effet, les images sont plus parlantes et
intéressantes car elles se rapprochent de l’architecture à travers son moyen d’expression qu’est
la représentation imagée à travers le dessin. Néanmoins, il convient de préciser que les
expériences seront menées, dans la mesure du possible, dans le temps d’un mémoire de master.
Je veillerai donc à restreindre le nombre de tests et de système d’évaluation des résultats de la
recherche.

9

La présentation de cette étude débutera dans un premier temps, par l’état de l’art que je vais
développer sous deux axes. D’une part, je présenterai le contexte historique de l’automatisation
en architecture et les différents types d'intelligences artificielles notamment des CNN, des GAN,
des cGAN, entre autres, leur mode de fonctionnement et leur utilité en Architecture. Et d’autre
part, nous verrons l'état de la recherche c’est-à-dire l’ensemble des recherches menées sur mon
thème de recherche afin d’en tirer le meilleur pour la mise en place de mon étude. Cela permettra
de mettre en évidence les méthodes, les enjeux et les résultats des études menées préalablement
sur cette thématique de recherche. Ainsi, il s’agira de présenter chacune des études menées en
Architecture sur l'utilisation des intelligences artificielles notamment les GAN et les cGAN dans la
génération de plans.

Dans un deuxième temps, nous verrons la problématique que je présenterai en deux sous-thèmes
que sont les « questionnements » et la « méthode de recherche ». Les questionnements me
permettront d’expliciter comment depuis mon intention de thème de départ et l’état de l’art,
j’arrive à ma question de recherche. J’en profiterai donc pour expliciter pourquoi je compte
réaliser l’étude avec précisément un GAN et un cGAN et comment elles s’influencent dans la
réalisation de l’étude.
Enfin, la méthode de recherche sera l’occasion d’expliquer plus en détail la démarche scientifique
que j’utiliserai afin de traiter le sujet de recherche, les différents critères d’évaluation des
algorithmes et comment je les comparerai.

Dans une troisième phase, j’aborderai l’expérimentation de recherche de manière concrète. Cette
phase débutera par la présentation des outils nécessaires à la bonne réalisation de cette étude et
leur fonction, le processus de réalisation des expériences, la mise en place de la base de données
d’entrainement, l’élaboration du GAN, du cGAN et enfin l’analyse des résultats de l’expérience.

En conclusion, il s’agira de montrer les conclusions générales que l’on peut tirer de l’étude, les
limites de l’expérience, les pistes d’amélioration et des ouvertures vers d’autres sujets qui
pourraient intéresser les futurs lecteurs de ce mémoire.

10

Partie 1 :
ETAT DE L’ART

11

I. Connaissances en intelligences artificielles

Avant de faire la présentation des différentes études menées sur l’intelligence artificielle
appliquée à l’architecture, il me parait important de présenter l’évolution de l’automatisation ou
la systématisation de l’architecture en passant par les différents algorithmes d’intelligence
artificielles.

1. Evolution des techniques d’automatisation/systématisation

L’Architecture, domaine faisant intervenir différentes disciplines connexes, tend à s’automatiser
au cours des cent (100) dernières années notamment depuis les années 1940 à nos jours. Dans
l’ensemble, ce phénomène a débuté par la notion de la modularité consistant à créer un modèle
d’architecture idéal et à le multiplier afin de reduire les temps de conception, de construction mais
aussi afin de reduire les couts de construction. La modularité prend de l’ampleur avec le Bauhaus
notamment grace à l’architecte Walter Gropius avec le concept de « Baukasten » et les projets de
Le Corbusier à travers le principe du Modulor en 1945.

Suite à cette phase de modularité, nous avons eu le DAO (Dessin Assisté par Ordinateur) en 1977
avec l’avènement du logiciel autoCAD. La révolution des logiciels CAD a permis aux architectes
d’accélérer et simplifier le processus de dessin et de représentation. Grâce à ces outils
numériques, notamment grâce à Catia, les possibilités de conception et créativité sont décuplées.
L’architecte star Franck Gehry, a pu développer et mettre en évidence ses capacités
architecturales grâce à ces outils de conception numérique.

Dans un troisième temps, nous avons le paramétrisme depuis les années 1990 qui permet
l’automatisation et la systématisation de la conception. Comme le dit Stanislas Chaillou lors d’une
conférence chez Autodesk au sujet de l’architecture et les intelligences artificielles : « Le
paramétrisme est un principe de synthétisation et de décomposition des différentes étapes
nécessaires à la réalisation d’un design, d’une forme, d’un principe de conception. » Par ailleurs,
des paramètres, des variables d’ajustement pourront être appliquées à chacune des étapes de ce
processus afin d’influencer la forme, les caractéristiques compositionnelles du design final.

Et enfin, l’essor de l’intelligence artificielle (IA) depuis les années 2010 avec la recherche sur les
GAN en 2014 de I. Goodfellow ainsi que l’étude de S. Chaillou en 2020 sur la conception en
architecture avec les GAN Pix2Pix.
Depuis, l’IA notamment les GAN intègrent de plus en plus l’architecture aussi bien lors de la
conception que dans ses aspects techniques et réglementaires. Il me parait donc important de
s’initier à cette nouvelle technologie afin d’en tirer le meilleur pour l’architecture.
Il convient notamment de préciser que ces grands mouvements de l’évolution de qui s’inter-
influencent et qui ne sont donc pas en opposition.

12

Figure 1: Grandes étapes des phénomènes d’automatisation ou de systématisation

Source : POUHE Fahé, Auteur

13

2. Algorithmes d’intelligence artificielle

a. Qu’est-ce qu’une intelligence artificielle ?

Le terme « intelligence artificielle », créé par John McCarthy, est souvent abrégé par le sigle « IA »
(ou « AI » en anglais, pour artificial intelligence). McCarthy définit l'IA ainsi : « C'est la science et
l'ingénierie de la fabrication de machines intelligentes, en particulier de programmes
informatiques intelligents. Elle est liée à la tâche similaire qui consiste à utiliser des ordinateurs
pour comprendre l'intelligence humaine, mais l'IA ne doit pas se limiter aux méthodes qui sont
biologiquement observables. »

Elle est également définie par l’un de ses créateurs, Marvin Lee Minsky, comme « la construction
de programmes informatiques qui s’adonnent à des tâches qui sont, pour l’instant, accomplies de
façon plus satisfaisante par des êtres humains car elles demandent des processus mentaux de
haut niveau tels que : l’apprentissage perceptuel, l’organisation de la mémoire et le raisonnement
critique ». On y trouve donc le côté « artificiel » atteint par l'usage des ordinateurs ou de processus
électroniques élaborés et le côté « intelligence » associé à son but d'imiter le comportement.
Cette imitation peut se faire dans le raisonnement, par exemple dans les jeux ou la pratique des
mathématiques, dans la compréhension des langues naturelles, dans la perception : visuelle
(interprétation des images et des scènes), auditive (compréhension du langage parlé) ou par
d'autres capteurs, dans la commande d'un robot dans un milieu inconnu ou hostile.

Même si elles respectent globalement la définition de Minsky, certaines définitions de l'IA varient
sur deux points fondamentaux :

- les définitions qui lient l'IA à un aspect humain de l'intelligence, et celles qui la lient à un
modèle idéal d'intelligence, non forcément humaine, nommée rationalité ;

- les définitions qui insistent sur le fait que l'IA a pour but d'avoir toutes les apparences de
l'intelligence (humaine ou rationnelle), et celles qui insistent sur le fait que le
fonctionnement interne du système d'IA doit ressembler également à celui de l'être
humain et être au moins aussi rationnel.

Par ailleurs, les IA se divisent en famille notamment le machine learning et le deep-learning. Cette
dernière faisant partie intégrante du machine learning. Nous nous concentrerons dans le cadre
de ce mémoire sur le deep-learning. Le schéma ci-dessous permet de mieux cerner les familles.

14

Figure 2: Familles et sous-familles des intelligences artificielles

Source : Auteur, POUHE Fahé

Le deep learning, ou apprentissage profond, est une branche de l'intelligence artificielle (IA) qui
utilise des réseaux neuronaux artificiels pour résoudre des problèmes complexes. Les réseaux
neuronaux artificiels sont des modèles mathématiques qui sont inspirés du fonctionnement du
cerveau humain. Ils sont constitués d'une série de neurones artificiels, qui sont reliés entre eux
par des synapses.
Cette branche de l’IA est une technique d'apprentissage automatique qui permet aux machines
d'apprendre à partir de données. Les données sont utilisées pour entraîner les réseaux neuronaux
artificiels, qui apprennent à reconnaître les modèles dans les données. Au fur et à mesure que les
réseaux neuronaux artificiels s'entraînent, ils deviennent de plus en plus capables de résoudre les
problèmes pour lesquels ils ont été entraînés.
Le deep learning est une technologie en plein développement qui a de nombreuses applications
potentielles. Il est déjà utilisé dans des domaines tels que la reconnaissance d'images, la
reconnaissance vocale, la traduction automatique, la détection des fraudes et la médecine.

15

 Principe de fonctionnement

Un réseau neuronal artificiel est un modèle mathématique qui est inspiré du fonctionnement du
cerveau humain. Il est constitué d'une série de neurones artificiels, qui sont reliés entre eux par
des synapses. Chaque neurone artificiel reçoit des entrées de ses neurones voisins, et calcule une
sortie en fonction de ces entrées. La sortie du neurone est ensuite transmise à ses neurones
voisins. Le réseau neuronal artificiel apprend à reconnaître des modèles dans les données en
ajustant les poids des connexions entre ses neurones.

Figure 3: Structure d’un réseau de neurones

Sachant désormais quel est le mode de fonctionnement des intelligences artificielles du deep
learning. Nous allons maintenant nous attarder sur les différents algorithmes que l’on retrouve
dans cette famille de deep-learning.

16

b. Algorithmes de deep learning :

Il existe de nombreuses architectures de réseaux de neurones parmi lesquels les plus utilisés sont
les CNN, les RNN, Les AE, les GAN et les cGAN.

 CNN soit Réseaux de neurones convolutifs :

Les réseaux de neurones convolutifs (CNN) sont un type de réseau de neurones artificiels qui est
couramment utilisé pour la reconnaissance d'images et la vision par ordinateur. Ils sont efficaces pour
reconnaître des patterns dans les images, tels que les bords et les formes.
Les CNN fonctionnent en appliquant une série de filtres aux images. Ces filtres sont conçus pour détecter
des patterns spécifiques, tels que les bords horizontaux ou verticaux. Les sorties des filtres sont ensuite
combinées pour générer une représentation de l'image.
Les CNN sont composés de plusieurs couches, chacune avec un ensemble de filtres. Les filtres de
la première couche détectent les patterns les plus simples, tandis que les filtres des couches
suivantes détectent des patterns plus complexes.

Exemples d'utilisation des CNN :

Les CNN sont utilisés dans de nombreuses applications de reconnaissance d'images, notamment
:

 La reconnaissance faciale : les CNN sont utilisés pour identifier les personnes à partir de
leurs visages.

 La détection d'objets : les CNN sont utilisés pour détecter des objets dans les images, tels
que des voitures ou des personnes.

 La classification d'images : les CNN sont utilisés pour classer les images en catégories,
telles que "chien" ou "chat".

Figure 4: Principe de fonctionnement d’un CNN, ici pour la reconnaissance d’un animal

Source : Nada Belaidi, BLENT.AI

17

 Les RNN : Réseaux de neurones récurrents

Les réseaux de neurones récurrents (RNN) sont un type de réseau de neurones artificiels qui est
couramment utilisé pour traiter des données séquentielles, telles que les séquences de mots ou
de sons. Ils sont efficaces pour prendre en compte l'historique des données lorsqu'ils traitent une
nouvelle donnée.

Les RNN ont des connexions entre les neurones qui s'étendent sur plusieurs couches. Cela leur
permet de prendre en compte l'historique des données lorsqu'ils traitent une nouvelle donnée.

Par exemple, un RNN peut être utilisé pour traduire une phrase d'une langue à l'autre. Le RNN
peut prendre en compte les mots précédents dans la phrase lorsqu'il essaie de traduire le mot
actuel.

Les RNN sont utilisés dans de nombreuses applications qui nécessitent le traitement de données
séquentielles, notamment :

 La reconnaissance vocale : les RNN sont utilisés pour convertir la parole en texte.

 La traduction automatique : les RNN sont utilisés pour traduire des langues.

 La génération de texte : les RNN sont utilisés pour générer du texte, comme des poèmes
ou des histoires.

Figure 5: Principe de fonctionnement d’un RNN, ici appliqué à la reconnaissance de l’auteur de la
phrase « The man took … belvedere ».

Source : Gaël Bonnardot, DATAKEEN.co

18

 AE, soit les Auto-Encodeurs

Les auto-encodeurs sont des modèles de machine learning qui apprennent à représenter les
données en les compressant dans un format compact, puis en les décompressant pour les
reconstruire. Le processus d'apprentissage consiste à entraîner le modèle à reproduire l'entrée
aussi fidèlement que possible. L'auto-encodeur se compose de deux parties principales :
l'encodeur, qui convertit les données d'entrée en une représentation comprimée, et le décodeur,
qui reconstruit les données à partir de cette représentation.

Les auto-encodeurs sont utilisés dans de nombreuses applications, notamment :

 La réduction de dimension : les auto-encodeurs peuvent être utilisés pour réduire la taille
des données sans perdre trop d'informations.

 La dénoising : les auto-encodeurs peuvent être utilisés pour supprimer le bruit des
données.

 La génération de données : les auto-encodeurs peuvent être utilisés pour générer de
nouvelles données similaires aux données d'origine.

Figure 6: Principe de fonctionnement d’un AE, ici pour la reconstruction plus nette d’une image de
la Joconde

Source : Hmrishav Bandyopadhyay, v7labs.com

19

Par ailleurs, Les différents types d’algorithmes étant décrit, nous allons maintenant nous
interesser aux algorithmes qui sont l’objet de ce mémoire. Il s’agit des GAN mais aussi des cGANs,
catégorie de GAN, soit des Conditionals GAN (GAN conditionnés).

c. GAN, réseau de neurones antagonistes génératifs

Les réseaux adversaires génératifs (GAN) sont une classe de cadres d'apprentissage automatique
proposés à l'origine par Ian J. Goodfellow en 2014. Un GAN se compose de deux réseaux
neuronaux en concurrence l'un avec l'autre, dans le but de créer de faux artefacts impossibles à
distinguer des artefacts réels.

À partir d'un ensemble d'apprentissage, un GAN apprend à générer de nouvelles données
présentant les mêmes caractéristiques sous-jacentes que l'ensemble d'apprentissage.

L'idée centrale d'un GAN est l'utilisation d'un "générateur" et d'un "discriminateur" pour faciliter
la formation indirecte. Le générateur apprend à créer des échantillons de données plus réalistes,
tandis que le discriminateur apprend à distinguer les vrais échantillons des faux créés par le
générateur. Après des milliers de cycles de formation, le système devient très efficace pour
générer de nouveaux échantillons très réalistes ressemblant à l'ensemble de données d'origine.

Figure 7: Mode de fonctionnement d’un GAN

Source : Auteur, POUHE Fahé

20

 À quoi peuvent servir les GAN ?

Les GAN peuvent être utilisés pour créer ou étendre des artefacts visuels dans une variété de cas
d'utilisation. Les principales applications des GAN sont les suivantes :

 Augmentation des données - Le GAN peut être entraîné à générer de nouveaux
échantillons d'images à partir de données existantes afin d'élargir un ensemble de
données. Lorsque le GAN est arrivé à maturité, ses images de sortie peuvent être utilisées
pour entraîner d'autres modèles de vision par ordinateur.

 Du texte à l'image - Le GAN est utilisé pour créer des bandes dessinées et des séquences
vidéo en générant automatiquement des séquences d'images à partir d'un texte.

 Génération de visages – A l'aide d'une base de données à grande échelle de visages, les
GAN permettent de créer des visages réalistes de personnes qui n'existent pas vraiment.

 Traduction d'image à image-Les GAN peuvent apprendre à mapper des motifs d'une image
d'entrée à une image de sortie. Par exemple, ils peuvent être utilisés pour transformer une
image dans un style artistique spécifique (transfert de style), pour vieillir l'image d'une
personne ou pour de nombreuses autres transformations d'images.

 Conception industrielle et architecture - Les GAN peuvent être utilisés pour créer de
nouvelles conceptions de produits en 3D à partir de produits existants. Par exemple, un
GAN peut être entraîné à créer de nouveaux meubles ou à proposer de nouveaux styles
architecturaux.

21

Figure 8: Visages générés par des GAN

Source : Jason Browlee, Machine Learning Mastery

Figure 9: Exemples de Text-to-Image d’images d’oiseaux générées à partir de textes

Source : Jason Browlee, Machine Learning Mastery

22

 cGAN
Nous allons enfin nous interesser aux cGAN qui sont des GAN mais plus spécifiques car ils
permettent d’avoir un peu plus de contrôle sur les résultats générés par le GAN. Par exemple,
supposons que nous avons utilisé un large éventail d'images de fleurs pour entraîner un GAN
capable de produire de fausses images de fleurs. Avec un GAN classique, si nous voulons générer
l'image d'une fleur au hasard, nous ne pouvons pas demander à l’algorithme de créer l'image
d'une tulipe ou d'un tournesol, par exemple.

Le GAN conditionnel (cGAN) nous permet de conditionner le réseau avec des informations
supplémentaires telles que les étiquettes de classe. Cela signifie qu'au cours de l'apprentissage,
nous transmettons au réseau des images avec leurs étiquettes réelles (rose, tulipe, tournesol,
etc.) pour qu'il apprenne à faire la différence entre elles. De cette manière, nous pouvons
demander à notre modèle de générer des images de fleurs spécifiques.

Par ailleurs, tout comme le GAN, un cGAN est composé d’un générateur et d’un discriminateur qui
jouent le même rôle que dans un GAN. A la différence qu’ils sont entraînés sur un ensemble de
données d'images et de conditions. Le générateur essaie de créer des images qui correspondent
à la condition, tandis que le discriminateur essaie de distinguer les images réelles des images
générées.

Figure 10: Mode de fonctionnement d’un cGAN

Source : Auteur, POUHE Fahé

En terme d’exemples, les cGAN ont des applications similaires aux GAN à la différence que les
propositions générées sont modifiables selon les conditions insérées dans le programme.

23

II. Etat de l’art des recherches menées sur l’intelligence artificielle
appliquées ou non à l’architecture

Il existe aujourd'hui plusieurs études qui traitent de la relation entre les IA et l'architecture. Bon
nombre d'entre elles sont axées sur l'optimisation de techniques de construction, la recherche de
forme, d'optimisation énergétique de façade mais aussi en faible proportion, l'optimisation de la
conception de l'architecte grâce aux GAN. En effet, cette dernière branche est celle que je compte
le plus explorer pour mon mémoire de master.

Même si certaines études existent au sujet de l’application de l’IA à l’architecture, de nombreuses
autres existent au sujet des IA génératives appliquées à d’autres domaines tels que la médecine,
le trafic routier, la génération de visages etc.

1. Recherches sur l’intelligence artificielle et l’architecture

A ce sujet, cinq études ont été réalisée successivement depuis les années 2016 jusqu'en 2020. En
l'occurrence :

a. Stanislas Chaillou (2020) aborde l'IA et la conception en Architecture

En 2019, Stanislas Chaillou fait sa thèse sur la génération de plans d'appartements aménagés grâce
aux GAN, à Harvard GSD, dans laquelle grâce aux GAN Pix2Pix, il entraine un réseau de neurones
qui génère un plan d'étage d'immeuble d'habitation avec ses appartements aménagés et orientés
selon la position des entrées et des ouvertures qu’il renseigne manuellement.
Ainsi, son objectif est de démontrer comment les réseaux neuronaux antagonistes génératifs
(GAN) peuvent être utilisés pour concevoir des plans d'étage et des bâtiments entiers. L'étude
propose une approche statistique de la conception architecturale, moins déterministe et plus
holistique, où les machines extraient des qualités significatives et les miment tout au long du
processus de conception. Cette approche statistique permettra donc de créer une pile de plans
d'appartements en utilisant les modèles GAN Pix2Pix pour concevoir la disposition des bâtiments,
la répartition des pièces et l'ameublement des espaces, tout en permettant une interaction
constante entre l'utilisateur et les modèles d’IA. Cette dernière est passible grâce à une interface
utilisateur intuitive qui facilite ce processus itératif, permettant aux utilisateurs de spécifier des
contraintes et des paramètres pour générer des plans d'étage personnalisés.

24

Afin de mener à bien son étude, Chaillou met en place une méthode qui repose sur l'utilisation de
modèles GAN Pix2Pix pour chaque étape du processus de conception. Le premier modèle génère
des empreintes de bâtiments typiques à partir de données SIG de la ville de Boston. Le deuxième
modèle gère la répartition des pièces de vie et la fenestration en fonction de l'empreinte de
chaque unité de logement. Le troisième modèle traite l'ameublement des espaces en fonction de
la répartition des pièces définie par le modèle précédent. Chaque modèle est formé
indépendamment, permettant aux architectes d'intervenir et de perfectionner les résultats entre
chaque étape.

Enfin, en mettant en œuvre cette pile de plans d'appartements à l'échelle d'un bâtiment entier,
l'étude ouvre la voie à des applications potentielles à grande échelle dans la conception
architecturale. Cependant, des limitations subsistent, telles que la gestion des murs porteurs dans
les bâtiments à plusieurs étages et la transformation des sorties des modèles GAN en formats
compatibles avec les outils et pratiques architecturaux courants. Malgré ces défis, l'étude montre
le potentiel de l'IA pour transformer le processus de conception architecturale, offrant aux
architectes de nouvelles possibilités pour repenser la manière dont les bâtiments sont conçus et
construits dans le futur.

Figure 11: Grandes étapes de la génération de plans d’appartements aménagés à partir de
l’empreinte du batis

Source : Stanislas Chaillou, ArchiGAN

Par ailleurs, sa thèse est la mise en relation de trois études précédentes faites dans la même école
qui permettent de créer une chaine de conception depuis l'implantation jusqu'au plan
d'appartement aménagé.
Les trois études de référence à celle de Chaillou sont les suivantes :

25

b. Zheng et Huang (2018) aborde la reconnaissance et la génération de plans

En 2018, Zheng et Huang proposent l'utilisation de l'IA pour reconnaître et générer des plans
d’appartements via un GAN Pix2PixHD. Leur modèle de GAN traduit les images de plan d'étage en
patchs colorés, puis ces couleurs en pièces dessinées. L'étude se focalise sur la reconnaissance et
la génération de dessins architecturaux via l'apprentissage automatique.

L'objectif est d'appliquer les GAN, notamment le pix2pixHD, afin d’identifier les caractéristiques
des plans et en générer de nouveaux, tout en comprenant leur fonctionnement et en visualisant
leurs apprentissages.

Pour atteindre ces objectifs, les chercheurs mettent en place une méthode de recherche
consistant à entraîner les réseaux de neurones à partir d'un ensemble de données composé de
plans d'appartements en couleur annotés, puis à évaluer les performances des réseaux de
neurones en reconnaissant et en générant de nouveaux plans. La première étape consiste à
établir des principes d'étiquetage, attribuant différentes couleurs à des zones fonctionnelles
spécifiques dans les plans architecturaux. Ensuite, deux réseaux de neurones sont entraînés : l'un
pour reconnaître les plans en générant des cartes colorées annotées, et l'autre pour générer des
dessins architecturaux à partir de cartes colorées annotées en entrée.

Figure 12: Résultats de reconnaissance (recognition) et de génération (generation) de plans

d’appartements aménagés

Source : Auteurs de l’étude, Zheng et Huang (2018)

26

c. Nathan Peters (2017) aborde l’aménagement de pièce de vie

En 2017, Nathan Peters transforme une empreinte vide en taches de couleurs programmatiques
sans l'indication d'une contrainte telle que la position des fenêtres. L’enjeux de son étude réside
dans la création d'un système de conception participatif, cherchant à permettre aux utilisateurs
de définir leurs propres espaces de vie. Inspiré par le travail de l'architecte Yona Friedman, Nathan
Peters explore la possibilité de développer un cadre permettant à quiconque d'adapter son
propre logement via Internet. Afin d’atteindre son objectif qui est de rendre la conception
architecturale plus accessible et démocratique en permettant aux utilisateurs de participer
activement à la conception de leurs espaces de vie. Pour se faire, il développe un algorithme
d'apprentissage automatique pour générer des plans d'étage. En utilisant un réseau génératif
antagoniste conditionnel Pix2Pix (Cgan – Pix2Pix), nommé YONA, Peters cherche à produire des
images de plans d'étage classées à partir du contour d'un plan d'étage donné.

Figure 13: Exemples de résultats de l’étude

Source : Auteur de l’étude, Nathan Peters

27

d. Nono Martinez (2016) aborde le travail cumulé entre l’humain et la machine

Et enfin, en 2016, Nono Martinez faisait sa thèse sur l'idée d'une boucle de conception entre la
machine et le concepteur lors du processus de conception, en particulier à travers le dessin
suggestif. Alors que les logiciels de conception offrent des fonctionnalités avancées,
l'introduction de l'intelligence artificielle dans le processus créatif ouvre de nouvelles
perspectives, mais pose également des défis quant à la manière dont les machines peuvent
interpréter et participer à la représentation du monde. L'idée est d'utiliser l'apprentissage
automatique pour enseigner aux machines comment dessiner en observant des images réelles,
afin qu'elles puissent participer activement au processus de création artistique, offrant des
suggestions pour transformer, continuer, analyser ou rationaliser un dessin.

Afin de réaliser cette collaboration suggestive, grâce à un GAN Pix2Pix, des bots sont entraînés à
reconnaître et à suggérer les éléments de dessin en fonction des entrées des utilisateurs.

Figure 14: Exemple de génération d’image (à droite) à partir d’un dessin (à gauche)

Source : Auteur de l’étude, Nono Martinez

28

e. Jean Raphael Piquard (2020) au sujet de l'intelligence artificielle et la
génération de forme architecturale

En 2020, Jean-Raphaël Piquard réalise son mémoire de master sur l'étude de l'enrichissement d'un
espace de solution paramétrique grâce aux GAN, à l'ENSAPLV. Et donc sur l'utilisation de
l'apprentissage machine dans la conception architecturale. L'idée est de tirer parti de la capacité
des GAN à produire des résultats inattendus et créatifs.

Ainsi, pour mener à bien cette quête, l'étude propose une approche expérimentale basée sur la
génération de données paramétriques, leur alimentation dans des réseaux neuronaux
antagonistes pour l'apprentissage, et l'analyse des résultats obtenus pour évaluer
l'enrichissement de l'espace de solution. Pour se faire, l’on y distingue trois parties distinctes : une
expérience témoin pour valider le processus, une exploration des formes paramétriques et une
étude des dispositions spatiales. Chaque partie est conçue pour tester des critères spécifiques et
évaluer l'impact des réseaux antagonistes génératifs sur l'enrichissement de l'espace de solution
paramétrique.
A la fin de l’expérimentation, l'analyse critique des résultats permet de tirer des conclusions sur
l'efficacité et le potentiel créatif de cette approche dans le domaine de la conception
architecturale.

Figure 15: Itération du GAN de génération de génération de formes

Source : Jean-Raphaël Piquard, Mémoire de Master

29

2. Recherches menées sur l’intelligence artificielle en général

En dehors des études menées sur les intelligences artificielles appliquées en architecture, il
convient de signifier que plusieurs autres études ont été réalisées au sujet de la mise en
application des IA génératives telles que les GAN au service de différents domaines. Ces domaines
sont très variés parmi lesquels nous avons la génération d’objets 3D, la médecine, les pandémies,
le traitement d’images, le contrôle de trafic entre autres.

En effet, une étude (1) réalisée en avril 2021 par les chercheurs Alankrita AGGARWAL, Mamta
MITTAL et Gopi BATTINENI permet de faire un récapitulatif des différentes études récentes
réalisées au sujet des intelligences artificielles de type GAN et leurs applications dans les différents
domaines cités précédemment. Le choix de ces études respecte un protocole scientifique afin
d’identifier lesquels sont les plus pertinentes.

a. Méthode de sélection des études

 Stratégie de recherche

Afin de mener à bien cette étude, les auteurs mettent en œuvre une stratégie de recherche pour
collecter les articles pertinents au sujet de l'application des GAN dans divers domaines. Ils ont suivi
une approche de revue systématique de la littérature basée sur des études antérieures (2) datant
de 2017 et 2020 aux sujets du « Rôle des attributs du comportement humain dans la détection des
foules mobiles : une revue systématique de la littérature » et « Examen des cadres d’évaluation
de la performance des projets d’administration en ligne ».

Trois bases de données (PubMed, EMBASE et Web of Science) ont été utilisées pour extraire les
travaux pertinents, et cela, sur une période allant de 2016 à 2020. Les auteurs ont développé des
stratégies de recherche pour identifier la littérature clé parmi les applications et les
fonctionnalités des GAN. Les critères de sélection ont été appliqués pour choisir les articles
appropriés, en se concentrant sur les applications récentes des GAN dans des domaines tels que
la génération d'objets 3D, la médecine, le traitement d'images, la détection de visages, etc.

1 Aggarwal, Alankrita, Mittal, Mamta et Battineni, Gopi. (2021). Generative adversarial network: An overview of theory
and applications. International Journal of Information Management Data Insights, 1(1), 100004.
https://doi.org/10.1016/j.jjimei.2020.100004

2 Agarwal, Neetima, Chauhan, Sumedha, Kar, Arpan Kumar et Goyal, Sandeep. (2017). Role of human behaviour
attributes in mobile crowd sensing: a systematic literature review. Digital Policy, Regulation and Governance, 19(2),
168-185. https://doi.org/10.1108/DPRG-05-2016-0023
Singh, Harjit, Grover, Purva, Kar, Arpan Kumar et Ilavarasan, P. Vigneswara. (2020). Review of performance
assessment frameworks of e-government projects. Transforming Government: People, Process and Policy, 14(1), 31-64.
https://doi.org/10.1108/TG-02-2019-0011

30

Par la suite, les chercheurs évaluent l’abécédaire en parcourant les résumés et en rédigeant un
récapitulatif des articles qu’ils considéraient comme qualifiés. À ce moment-là, les mots-clés de
recherche sont examinés pour détecter les disparités avant de faire la sélection finale des dits
mots-clés. Lorsque les auteurs ont choisi les articles qui devaient être retenus pour l’enquête, ils
ont lu tous les articles pour rassembler des informations utiles à l’objectif final de sélection. Enfin,
une fois les articles sélectionnés, les auteurs ont analysé indépendamment les données et ont
comparé leurs opinions pour parvenir à un accord.

 Critères de sélection

Les résultats de la recherche documentaire ont permis d’obtenir 2084 articles classés par
publications associées à l’objectif de cette étude. Plus précisément, dans les différentes bases de
données ont été sélectionnées, 1141 articles de Scopus (Embase), 537 de WoS et 406 de PubMed.

Les trois types d’articles suivants ont été pris en compte : les articles originaux, les revues et les
études analytiques.

Les articles sélectionnés ont été choisis selon les critères d’inclusion suivants et dans l’ordre :

 L’article sélectionné présente-t-il l’examen basé sur l’application des travaux du GAN ?

 La publication traite-t-elle des progrès du GAN dans les industries en temps réel ?

 L’article répond-il fidèlement à la question et aux objectifs de la recherche ?

Quant aux critères d’exclusion, les articles exclus ont été ceux qui respectaient les conditions
suivantes :

 Les enregistrements de différentes caractéristiques gérés avec des critères d’inclusion,
 La langue (pas en anglais),
 Les études sans objectifs précis du GAN.

 Résultats

Suite à la première sélection des articles, 1783 articles qui n’étaient pas appropriés aux objectifs
de cette enquête ont été éliminés pour les raisons connexes : 1757 articles ont été identifiés
comme des doublons et 26 articles ne sont pas en anglais. Au cours de la deuxième phase de
sélection, les 301 articles restants ont été distribués à parts égales aux auteurs pour une
évaluation indépendante parmi lesquels, seulement 61 articles ont été sélectionnés.

Parmi ceux-ci, neuf (09) ont été rejetés parce qu’ils ne respectaient pas toutes les conditions
énoncées précédemment. En fin de compte, 52 articles sont pris en compte pour une analyse plus
approfondie.

31

Figure 16: Protocole de sélection des études

Source : Auteurs de l’étude : Alankrita AGGARWAL, Mamta MITTAL et Gopi BATTINENI

32

b. Etudes sélectionnées par les chercheurs

Comme précisé dans la méthode, cinquante-deux (52) études ont été sélectionnées à la suite de
l’étude. Chacune d’entre elles est catégorisée selon le domaine et la technologie utilisée.
L’ensemble de ces études est à retrouver dans le tableau suivant, dans lequel est précisé
l’application de chacune des technologies d’IA génératives.

Ainsi, afin d’approfondir cet état de l’art, au sujet des études menées sur l’IA générative durant
les dernières années, je présenterai une étude (en gras dans le tableau) dans chacune des
catégories mais l’ensemble des références de toutes les études sont à retrouver dans la
bibliographie.

DOMAINES AUTEURS ANNEE MODELE APPLICATION

GENERATION
D’OBJETS 3D

Yu Y.et autres 2020
Encodeur de

point GAN
Traite les données non structurées sans

étiquetage

Y. Chen et autres 2018 3D-CNN
Créez des images nettes et de bonne

qualité

G. Ye et autres 2020
GAN basé sur le
deep learning

Amélioration des images
monochromatiques 2D

Q. Ma et autres 2020
Modèles 3D
génératifs

Capture de mouvement humain

Y. Jin et autres 2020

Modèle GAN
avec principe
antagoniste à
trois niveaux

Production d’objets 3D de haute qualité

MEDECINE

S. Baek et autres 2020 Modèle GAN et
maillé

Production d’images IRM dans des
pixels scellés

Jain D. K. et autres 2020 GAN poser Détection de mouvements humains

A. Teramoto
et autres

2020

Réseau de
neurones

convolutifs
profonds (DCCN)

avec GAN

Classer les images cytologiques

M. D. Cirillo et autres 2020
Vox2Vox: 3D-

GAN
Segmentation des tumeurs cérébrales

H. C. Shin et autres 2018
GAN

conventionnel
Identifier les images médicales

33

J. Islam et Y. Zhang 2020
GAN

conventionnel
Génération d’images cérébrales

H. Lan et autres 2020 SC-GAN Synthèse de neuroimages

G. Zhaoa 2020
GAN

conditionnel
bayésien

Synthèse d’images cérébrales par IRM

R. Oulbacha et autres 2020
Pseudo-3D Cycle

GAN
Synthèse de la colonne lombaire par

IRM et tomodensitométrie

X. Zhang et autres 2020 Deform-GAN
Réduction du bruit dans les images

médicales 3D

D. Yang et autres 2019
Réseaux

antagonistes
d’image à image

Synthèse d’images médicales et
segmentation sémantique

PANDEMIES

Loey M. et autres 2020

GAN et
apprentissage
par transfert

profond

Détection de la COVID-19 à l’aide
d’images thoraciques

S. Albahli 2020

GAN avec le
modèle de
réseau de
neurones
profonds

Diagnostiquer la pneumonie de la
maladie à coronavirus

TRAITEMENT
D’IMAGES

C. Li et autres 2016 Markovian GAN
Générer une image 3D à partir d’une

image 2D

H. Zhou et autres 2020 Dual GAN Récupération d’images haute résolution

T. Go et autres 2020

GAN basé sur un
réseau de
neurones
profonds

Effectuer une transformation d’image

S. Zhang et autres 2020
GAN

conventionnel
Débruitage d’image

H. Tang et autres 2020
GAN

conventionnel
Génération de scènes guidées

sémantiques

DETECTION
DE VISAGES

F. Mokhayeri
et autres

2020
Un nouveau GAN

contrôlable (C-
GAN)

Synthèse de faces inter-domaines

34

J. Zhao et autres 2019

Réseau
antagoniste
génératif à

double agent
(DA-GAN)

Reconnaissance faciale sans contrainte

M. Kowalski
et autres

2020
GAN basé sur le
deep learning

Génération d’images de visage

D. P. Jaiswal et
autres

2020
GAN

conventionnel
Animation de visages

TRANSFERT
DE TEXTURE

L. Sixt et autres 2019
GAN

conventionnel
Génération de données étiquetées

réalistes

R. Spick et autres 2020 3D-GAN
Générez une texture de haute qualité en

ajoutant de la couleur

CONTROLE
DE LA

CIRCULATION

D. Xu et autres 2020 GE-GAN Estimation du trafic routier

Fathi-Kazerooni S.
et autres

2020 GAN Tunnel Détection d’images de trafic

Figure 17: Vue d’ensemble des études au sujet des GAN appliqués à différents domaines

Source : Auteurs de l’étude : Alankrita AGGARWAL, Mamta MITTAL et Gopi BATTINENI

 Etude au sujet de la génération d’objets 3D

Il s’agit d’une étude3 qui met en œuvre un modèle 3D génératif. Le but de l’étude a été d’entrainer
un algorithme d’IA générative capable d’habiller des corps humains scannés en 3D. Cela permet
donc à l’issue de la recherche d’habiller des corps de différentes formes et dans différentes
postures. En effet, les modèles de corps humain en trois dimensions sont largement utilisés dans
l'analyse de la posture et du mouvement humain. Cependant, les modèles existants s’entrainent
à partir de scans 3D de personnes peu vêtues. De plus, les modèles actuels manquent de puissance
expressive nécessaire pour représenter la géométrie non linéaire complexe des formes de
vêtements dépendant de la posture.

3 Ma, Qianli, Yang, Jinlong, Ranjan, Anurag, Pujades, Sergi, Pons-Moll, Gerard, Tang, Siyu et Black, Michael J. (2020).
Learning to Dress 3D People in Generative Clothing. Dans 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (p. 6468-6477). IEEE. https://doi.org/10.1109/CVPR42600.2020.00650

35

Pour remédier à cela, lors de l’étude, ils entrainent un modèle de maillage 3D génératif de
personnes habillées à partir de scans 3D avec différentes postures et vêtements. L’algorithme
d’IA entrainé est un VAE-GAN de maillage conditionnel capable d’apprendre la déformation des
vêtements à partir du modèle de corps SMPL. L’algorithme est conditionné à la fois par la posture
et le type de vêtement, ce qui donne la capacité de dessiner des échantillons de vêtements pour
habiller différentes formes de corps dans une variété de styles et de postures. Pour préserver les
détails des plis, le VAE-GAN étend les discriminateurs par patchs aux maillages 3D. Ainsi,
l’algorithme nommé CAPE, représente la forme globale et la fine structure locale, étendant
efficacement le modèle de corps SMPL aux vêtements. Selon l’étude, il s'agit du premier modèle
d’IA générative qui habille directement des maillages de corps humain en 3D et qui est aussi
capable d’habiller différents corps dans différentes postures.

Figure 18: Modèle CAPE pour des humains habillés : (a) CAPE « habille » aléatoirement le maillage
3D, (b,c,d) Peut générer différents types de vêtements, les vêtements générés peuvent

être généralisés à différentes formes de corps (e) et à différentes poses (f).

Source : Auteurs de l’étude : Ma Q, Yang J, Ranjan A, Pujades S, Pons-Moll G, Tang S, Black MJ.

36

 IA générative appliquée à la médecine

Dans cette catégorie, j’ai sélectionné l’étude 4de J. Islam, en Y. Zhang réalisée en 2020 au sujet de
la génération d’images cérébrales afin de faciliter la détection de la maladie d’Alzheimer chez des
patients. En effet, cette étude aborde les enjeux majeurs liés à l'analyse d'images médicales, en
mettant en lumière la difficulté d'obtenir des ensembles de données annotées et de qualité pour
entraîner des modèles d’IA de diagnostic automatique des maladies. Avec un accent particulier
sur la maladie d'Alzheimer, la recherche souligne les défis associés à la disponibilité limitée et à la
qualité des données médicales, ainsi qu'aux coûts élevés et aux préoccupations liées à la
confidentialité des données des patients. Ces obstacles entravent le développement de systèmes
de diagnostic assistés par l'IA, ce qui rend crucial l'exploration de nouvelles approches pour
générer des données synthétiques et surmonter ces difficultés.

De ce fait, le but de l'étude est de proposer une solution novatrice en utilisant les GANs afin de
générer des images médicales synthétiques, en particulier des images tomographiques par
émission de positons (PET), pour les différents stades de la maladie d'Alzheimer. Cette approche
vise à pallier le manque de données annotées en produisant un ensemble de données
synthétique, équilibré et représentatif pour l'entraînement des modèles d'IA. En utilisant les
capacités de généralisation des GANs, l'étude cherche à créer des images réalistes et diversifiées,
capturant les variations de la maladie à différents stades, ce qui pourrait améliorer la précision des
diagnostics et permettre un traitement précoce et efficace.

Enfin, la méthode de recherche utilisée se compose de trois (03) étapes principales. Tout d'abord,
une sélection minutieuse des données est effectuée, avec l'utilisation de 411 scans PET provenant
de 479 patients collectés à partir de la base de données de l'Initiative de Neuroimagerie de la
Maladie d'Alzheimer (ADNI). Ensuite, les GANs sont introduits pour générer des images
synthétiques, avec une attention particulière portée aux Deep Convolutional Generative
Adversarial Networks (DCGANs) pour leur capacité à produire des images de haute qualité et leur
stabilité d'entraînement. En dernière étape, le modèle proposé pour la production d'images PET
synthétiques repose sur l'utilisation des DCGANs, avec une mise en œuvre et un entraînement
conformes aux directives de l'étude antérieure 5 de Radford A., Metz L. et Chintala S. réalisée en
2015.

4 Islam, Jyoti et Zhang, Yanqing. (2020). GAN-based synthetic brain PET image generation. Brain Informatics, 7(1), 3.
https://doi.org/10.1186/s40708-020-00104-2

5 Radford, Alec, Metz, Luke et Chintala, Soumith. (2016, 7 janvier). Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks (arXiv:1511.06434). arXiv. https://doi.org/10.48550/arXiv.1511.06434

37

Les résultats suivants ont été obtenus à la suite de l’étude :

Figure 19: Images TEP cérébrales réelles et synthétiques d’un patient normal : a réel b synthétique

Figure 20: Images réelles et synthétiques de la TEP cérébrale d’un patient en déficience cognitive
légère (DCL) : a réel b synthétique

Sources : Auteurs de l’étude : J. Islam, en Y. Zhang (2020)

38

Figure 21: Images TEP cérébrales réelles et synthétiques d’un patient atteint de la
maladie d’Alzheimer (AD) : a réel b synthétique

Source : Auteurs de l’étude : J. Islam, en Y. Zhang (2020)

39

 GAN au service de la détection de la maladie du COVID-19

L'étude6 sélectionnée est celle de M. Loey, F. Smarandache, et N.E.M. Khalifa réalisée en 2020 au
sujet de la détection du COVID-19, en l’absence d’un ensemble de données sur les radiographies
pulmonaires de la COVID-19 grâce à un nouveau modèle de détection basé sur le GAN et
l’apprentissage par transfert profond.

Les chercheurs proposent un modèle novateur basé sur les GAN et l'apprentissage profond pour
la détection du coronavirus (COVID-19) dans les images radiographiques du thorax. Le manque de
données sur le COVID-19, en particulier dans les images radiographiques thoraciques, constitue la
principale motivation de cette étude scientifique. L'idée principale est donc de collecter toutes
les images possibles du COVID-19 existant jusqu'à la rédaction de cette recherche et d'utiliser un
algorithme de type GAN pour générer davantage d'images afin de faciliter la détection de ce virus.
Cette détection est faite à partir des images radiographiques disponibles avec la plus grande
précision possible. Ainsi, afin de mener à bien la recherche, trois (03) modèles d’IA de transfert
profond sont sélectionnés pour l'enquête, à savoir l'Alexnet, le Googlenet et le Restnet18, en
raison de leur faible complexité et de leur temps d'exécution réduit.

Pour se faire, l'étude vise à collecter toutes les images disponibles du COVID-19 et à utiliser le
réseau GAN pour générer davantage d'images, afin d'enrichir le jeu de données et d'améliorer la
précision de la détection. L'objectif est de développer un modèle robuste capable de distinguer
le COVID-19 des autres affections pulmonaires et de poumons normaux avec la plus grande
précision possible. Ces affections pulmonaires peuvent être des pneumonies bactériennes et des
pneumonies virales.

Enfin, la méthode de recherche repose sur une collecte minutieuse de données à partir de
différentes sources, suivie de l'entraînement et de l'évaluation de modèles d’IA de transfert
profond sur le jeu de données constitué. L'étude explore également plusieurs scénarios de
classification en utilisant différentes combinaisons de classes de maladies, afin d'évaluer les
performances des modèles dans des contextes variés.

6 Loey, Mohamed, Smarandache, Florentin et M. Khalifa, Nour Eldeen. (2020). Within the Lack of Chest COVID-19 X-
ray Dataset: A Novel Detection Model Based on GAN and Deep Transfer Learning. Symmetry, 12(4), 651.
https://doi.org/10.3390/sym12040651

40

Figure 22: Exemples d’images utilisées dans cette recherche

Figure 23: Exemples d’images générées à l’aide de la structure GAN proposée

Sources : Auteurs de l’étude

41

 Etude au sujet de la création d’images de visages

Cette étude 7 CONFIG, intitulée "Controllable Neural Face Image Generation" réalisée par
Kowalski et autres en 2020 vise à résoudre le défi de contrôler finement le processus de
génération d'images de visages par des réseaux neuronaux. Bien que la capacité à générer des
images réalistes ait progressé, la capacité à contrôler précisément des aspects spécifiques du
processus générateur est en retard par rapport aux techniques de rendu graphique
traditionnelles.

Son objectif à partir de cette technologie émergente est d'atteindre un niveau de contrôle
similaire à celui des animations par ordinateur, sans sacrifier le réalisme inhérent aux images
générées. L'étude présente ConfigNet, un modèle neuronal pour la génération d'images de
visages, formé à la fois sur des images réelles et synthétiques. La méthode novatrice utilise des
données synthétiques pour factoriser l'espace latent en éléments correspondant aux entrées
d'un pipeline de rendu graphique traditionnel, permettant ainsi le contrôle indépendant de divers
aspects du visage, tels que la pose de la tête, l'expression faciale, le style capillaire, l'éclairage,
etc. Une évaluation combinant un réseau de détection d'attributs et une étude utilisateur
démontre un contrôle individuel de pointe sur les attributs des images générées.

Dans cette optique de génération de visages modifiables, Kowalski et les autres chercheurs
détaillent une méthode en trois étapes pour l'entraînement de ConfigNet. La première étape
entraîne les sous-réseaux, à l'exception de l'encodeur des données réelles, avec une perte
spécifique. Dans la deuxième étape, l'encodeur des données réelles est ajouté, et l'entraînement
se poursuit pour améliorer la contrôlabilité des images générées. Et enfin, ConfigNet est soumis
à des évaluations afin d’évaluer le niveau de réalisme et de contrôle que l’on obtient des résultats.
Les résultats de l’étude permettent d’effectuer des avancées technologiques qui pourraient
trouver des applications dans divers domaines, notamment la production d'animations et de
rendus réalistes pour les personnages virtuels.

7 Kowalski, Marek, Garbin, Stephan J., Estellers, Virginia, Baltrušaitis, Tadas, Johnson, Matthew et Shotton, Jamie.
(2020). CONFIG: Controllable Neural Face Image Generation. Dans Andrea Vedaldi, Horst Bischof, Thomas Brox et
Jan-Michael Frahm (dir.), Computer Vision – ECCV 2020 (p. 299-315). Springer International Publishing.
https://doi.org/10.1007/978-3-030-58621-8_18

42

Figure 24: Exemples de données d’entrainement synthétiques (à gauche) et données
d’entrainement réels (à droite)

Figure 25: Exemples de visages générés

Sources : Auteurs de l’étude

43

 IA pour la génération d’images

L’étude8 que j’ai sélectionnée au sujet de la génération d’image est celle de Hao Tang, Dan Xu, Yan
Yan, Philip H. S. Torr et Nicu Sebe réalisée en 2020 conjointement dans les universités de Trento,
Oxford, Texas State et Huawei Research en Ireland. L’étude examine le domaine de la génération
de scènes guidée par la sémantique et cible la difficulté courante des méthodes de génération
d'images globales à capter les petits objets et les textures locales détaillées.

Elle vise donc à élaborer un cadre de génération d'images qui combine à la fois la génération
d'images globale et locale, en exploitant les avantages de chacune. Pour ce faire, les chercheurs
conçoivent un réseau de génération conjointe avec un module de fusion d'attention et une
structure de double discriminateur intégrée.

L'objectif est de générer des scènes plus réalistes en capturant à la fois la structure globale de
l'image et les détails locaux, en utilisant les cartes sémantiques pour guider la génération. Cette
captation de données permettra par la suite de générer une image en perspective relatant ce que
montre en 2D l’image de départ.

Pour cela, la méthode de recherche de l’étude comprend une série d'expériences exhaustives
menées sur deux tâches de génération d'images de scènes, à savoir la traduction d'images entre
différentes perspectives et la synthèse d'images sémantiques. Ensuite, les performances du
modèle proposé sont évaluées à l'aide de métriques quantitatives telles que l'indice d'inception,
la précision et la divergence notée KL, ainsi que des évaluations qualitatives comparatives avec
d'autres méthodes de recherche.

8 Tang, Hao, Xu, Dan, Yan, Yan, Torr, Philip H.S. et Sebe, Nicu. (2020). Local Class-Specific and Global Image-Level
Generative Adversarial Networks for Semantic-Guided Scene Generation. Dans 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (p. 7867-7876). IEEE. https://doi.org/10.1109/CVPR42600.2020.00789

44

Figure 26: Exemples de résultats de traduction d'images transversales sur Dayton avec différents
paramètres de notre LGGAN

Source : Auteurs de l’étude

45

 Etude au sujet du transfert de texture

L'étude9 intitulée "RenderGAN: Generating Realistic Labeled Data", au sujet de la génération de
données étiquetées réalistes réalisée par Leon Sixt, Benjamin Wild et Tim Landgraf en 2019 se
situe au croisement de plusieurs enjeux majeurs en « computer vision ». Tout d'abord, elle aborde
le défi crucial de l'annotation manuelle des données, qui peut être coûteuse et fastidieuse,
limitant ainsi le déploiement de réseaux de neurones convolutionnels profonds (DCNN) dans des
applications réelles. Ensuite, elle se penche sur la génération de données annotées à grande
échelle, nécessaire pour entraîner efficacement ces réseaux de neurones, en particulier dans des
domaines où les données sont rares ou difficiles à obtenir. Enfin, l'étude explore la nécessité de
créer des données d'entraînement réalistes pour que les modèles d’IA puissent correctement
généraliser les résultats à de nouvelles situations, en tenant compte des variations telles que
l'éclairage, le fond et le bruit de l'image.

Le but principal de l'étude est de présenter un nouvel algorithme appelé RenderGAN, qui vise à
surmonter les limitations liées à l'annotation manuelle des données en générant des images
annotées de manière réaliste à partir d'un modèle 3D et de GANs. L'objectif est donc de fournir
une solution efficace pour obtenir des données annotées à grande échelle, en minimisant les
coûts et le temps nécessaires aux annotations manuelles.

Afin de mener à bien l’étude, la méthode de recherche repose sur une combinaison de modèles
3D et de GANs pour générer des images annotées de manière réaliste. Ensuite, est faite une
description détaillée de l'architecture du générateur et du discriminateur utilisés pour le
RenderGAN, ainsi que les étapes d'augmentation des images nécessaires pour le rendu réaliste
des données générées. Enfin, l'étude évalue empiriquement l'efficacité du RenderGAN en
comparant les performances des modèles DCNN entraînés sur des données générées par
RenderGAN avec différentes balises, démontrant ainsi la supériorité de l'approche proposée.

9 Sixt, Leon, Wild, Benjamin et Landgraf, Tim. (2018). RenderGAN: Generating Realistic Labeled Data. Frontiers in
Robotics and AI, 5. https://www.frontiersin.org/articles/10.3389/frobt.2018.00066

46

Figure 27: Augmentations du RenderGAN appliquées au projet BeesBook. Les flèches de G vers les
augmentations φ représentent les entrées vers les augmentations. Le générateur fournit

la position et les orientations du modèle 3D, tandis que les bits sont échantillonnés
uniformément. En haut, la sortie de chaque étape est affichée. La sortie de φdétail est

transmise au discriminateur.

Source : Auteurs de l’étude

47

 Etude au sujet du contrôle du trafic routier

Quant à la dernière étude10 sélectionnée, il s’agit de celle intitulée "GE-GAN: A novel deep learning
framework for road traffic state estimation" concernant l’estimation de l’état de trafic routier à
l’aide de l’algorithme de deep-learning GE-GAN. L’étude réalisée par
Dongwei Xu, Chenchen Wei, Peng Peng , Qi Xuan et Haifeng Guo en 2020 aborde plusieurs enjeux
clés dans le domaine des systèmes de transport intelligents (ITS). L'un de ces enjeux concerne
l'estimation précise de l'état du trafic routier, essentielle pour la gestion efficace des réseaux de
transport et la prévention des embouteillages. Cependant, les données d'état du trafic collectées
dans le monde réel sont souvent incomplètes, ce qui rend difficile leur utilisation pour des
estimations précises. C'est dans ce contexte que s'inscrit cette étude, qui propose un nouveau
cadre d'apprentissage profond pour estimer l'état du trafic en utilisant des informations
provenant de liens adjacents. Ainsi, le but principal de l'étude est de proposer une solution
novatrice pour surmonter les limitations des méthodes traditionnelles d'estimation de l'état du
trafic en utilisant à la fois l’intégration de graphe (GE) et les GANs. En combinant ces deux
techniques, l'étude vise à générer des données d'état du trafic routier en temps réel. L’enjeu est
donc d'améliorer la précision de l'estimation de l'état du trafic tout en minimisant les contraintes
liées à la disponibilité des données et à la complexité des modèles.

Tout comme les études précédentes, une méthode de recherche claire a été élaborée afin de
réaliser l’étude dans de bonnes conditions. Cette dernière se divise en plusieurs étapes clés,
notamment la représentation du réseau routier à l'aide de l’intégration de graphe, la sélection des
données adjacentes pertinentes et l'application des GANs pour générer les données d'état du
trafic. En outre, l'étude présente une évaluation approfondie de la méthode proposée en utilisant
des jeux de données réels provenant de deux réseaux routiers différents, ce qui permet de valider
empiriquement l'efficacité de l'approche proposée.

10 Xu, Dongwei, Wei, Chenchen, Peng, Peng, Xuan, Qi et Guo, Haifeng. (2020). GE-GAN: A novel deep learning
framework for road traffic state estimation. Transportation Research Part C: Emerging Technologies, 117, 102635.
https://doi.org/10.1016/j.trc.2020.102635

48

Partie 2 :
PROBLEMATIQUE

49

I. Questionnements

1. Ce que je tire de l’état de l’art Etude à mener dans ce mémoire

Suite à la lecture des études de l'état de l'art, je constate que les chercheurs se sont, pour
beaucoup, concentrés sur l'utilisation des GAN pour la conception des plans de logements et de
leur aménagement avec des contraintes telles que la position des fenêtres, des portes, etc. Jean-
Raphaël Piquard, quant à lui, a suivis cette même idée mais, dans le cadre d’un mémoire de master,
il s’est limité à la génération de formes à l’aide de GAN.

Néanmoins, l’utilisation des cGAN n’a pas été envisagée afin de pouvoir générer des formes (qui
pourraient être considérée comme des emprises de bâtiments), ni de pouvoir les ajuster en
fonction de certaines contraintes de construction que sont par exemple le POS (Pourcentage
d’Occupation de Sol), les reculs de servitudes etc.

2. Etude à mener dans ce mémoire

Dans le but de poursuivre l’étude menée par Jean-Raphaël Piquard mais d’explorer les questions
qui n’ont pas été abordées, mon étude a donc pour objectif sur la mise en place de réseaux de
neurones antagonistes et génératifs conditionnés (cGAN) au service de la réalisation de modèle
d’implantation de bâtiment dans un site. C’est-à-dire qu’il s’agira de mettre en place cet
algorithme afin de générer des formes qui seront modifiables selon les contraintes que l’on y
appliquera. In finé, l’enjeu serait à long terme de pouvoir se rapprocher le plus possible d’un
algorithme cGAN capable de générer des empreintes de bâtiments que l’on pourra modifier selon
les contraintes d’urbanisme.

50

II. Méthode de recherche

1. Démarche scientifique

Avant de présenter en détail, la méthode de recherche qui pourrait être difficile à cerner pour des
personnes qui ne s’y connaissent pas très bien sur les sujets liés à la création d’algorithme
d’intelligence artificielle, faisons une analogie avec le système d’enseignement à l’école.

Pour l’exemple, prenons deux élèves A et B qui suivent des cours à l’école auprès d’un enseignant
et qui seront soumis à des partiels à la fin de l’année. Ces élèves suivent les cours, apprennent des
enseignants, font des expériences, des recherches afin de mieux assimiler les différents cours
suivis pour pouvoir par la suite les restituer. Sauf que les deux étudiants ont des particularités.
L’étudiant A est assez bon pour restituer textuellement ce qu’il apprend alors que l’étudiant B est,
quant à lui, capable de restituer ce qu’il apprend mais peut améliorer ses résultats quand on lui
fait une correction. Ainsi, afin de pouvoir challenger l’étudiant B, l’enseignant veut tester ce
dernier afin qu’il puisse avoir des résultats meilleurs que l’étudiant A, en lui faisant des corrections
supplémentaires.

La fin de l’année arrive, les partiels se déroulent durant lesquels les élèves proposent des projets
que l’on appellera Pa(i) pour l’étudiant A et Pb(i) pour l’étudiant B. « i » étant le nombre de
propositions. Soit, par exemple, Pa3, le troisième résultat de l’étudiant A.

Enfin, à la fin du semestre, afin d’observer si l’étudiant B est meilleur que l’étudiant A, l’enseignant
va comparer leurs propositions. Ainsi, si les deux étudiants ont les mêmes notes, il constatera que
B est aussi bon que l’autre étudiant. Si B a une meilleure note que l’autre étudiant, l’enseignant
sera rassuré sur le fait que l’étudiant B a bien pris en compte ses corrections.

J’en convient que ce n’est pas un système d’enseignement équitable mais il s’agit simplement
d’une analogie afin de simplifier les concepts.

L’analogie étant faite, ma méthode de recherche suivra, dans l’ensemble, le même processus de
notation. De ce fait, dans ma recherche, l’étudiant A correspond à un GAN et l’étudiant B
correspond à un cGAN. Le cGAN étant l’algorithme qui est sujet de mon étude et donc qu’il
convient de tester. Les partiels correspondent au processus de génération d’image du GAN et du
cGAN tandis que les propositions Pa(i) et Pb(i) correspondent aux propositions générées
respectivement par chacun des deux algorithmes. L’enseignant, c’est moi, c’est-à-dire que c’est
moi qui réalise les catégorisations des résultats, leur analyse et les conclusions qu’il faut en tirer.
Et enfin, les critères d’évaluation sont le respect d’un ratio de surface et le respect d’une fidélité
de forme des propositions par rapport aux formes d’entrainement.

51

2. Comment caractérise-t-on chacun des critères d’évaluation ?

a. Le ratio de surface :

Sachant que les propositions de forme devront être générées dans un cadre rectangulaire de
dimension 20mX30m soit un rapport de 1 x 1,5, il s’agira du pourcentage d’occupation que prend
la forme générée dans le cadre. Par ailleurs, je veillerai à ce que les formes d’entrainement aient
un ratio de surface de 0,6 ou 60% afin de le comparer à ceux des propositions. Par exemple, si la
forme générée mesure 150m2 de surface, cela signifiera qu’elle a un ration de surface de
(150/600)*100= 25%, soit 0,25. Ou comme le montre le schéma ci-dessous, les propositions
peuvent respecter le même ratio de surface même si la forme proposée est différente.

Figure 28: Illustration du ratio de surface

Source : Auteur, POUHE Fahé

Donnée d’entrainement Proposition
Donnée d’entrainement Proposition

52

b. Le respect de fidélité de forme :

Quant à lui consiste à vérifier que les propositions générées correspondent uniquement aux
formes des prototypes d’entrainement. Cela permet donc que des propositions de taille réduite
ou plus grande mais qui respectent les formes d’entrainement puissent être valide. Par exemple,
le schéma ci-dessous permet de montrer que l’on peut respecter une forme précise mais pas sa
taille.

Figure 29: Illustration de la fidélité de forme

Source : Auteur, POUHE Fahé

c. Processus de recherche

Pour ainsi dire, la méthode de recherche que j’utilise pour cette recherche est la suivante :

Cette méthode s'articule autour de 3 grandes étapes que sont la mise en place d’un GAN qui
servira de point de départ de l'étude mais aussi de balise de comparaison, ensuite nous avons la
mise en place d'un cGAN qui servira à évaluer l'efficacité de notre algorithme d'IA et enfin une
étape d'évaluation des propositions obtenues par les deux algorithmes. Cette dernière a pour but
d'analyser et de comparer les résultats du GAN à ceux du cGAN et d'en tirer des conclusions.

Donnée d’entrainement Proposition

53

L’élaboration du GAN se déroule en quatre (04) étapes principales :

- Génération de modèle d’implantation d’apprentissage grâce à un outil paramétrique. Ces
modèles seront créés afin de respecter au moins l’un des futurs critères d’évaluation

- Créer un réseau de neurones (GAN) qui apprend de ces modèles tout comme l’étudiant A
apprend ses cours

- Générer de nouveaux modèles d’implantation à partir de ce GAN
- Analyser (manuellement) des propositions obtenues : Cette étape permettra d’identifier

les modèles exploitables ou non. Ces derniers seront identifiés selon des critères
d’évaluation que sont :

o Fidélité d’apprentissage : le but est de savoir si le résultat obtenu est fidèle aux
modèles d’apprentissage. S’il l’est, on saura que l’algorithme est capable d’imiter.
Par analogie, ça signifie que si l’étudiant A est capable de restituer à l’identique ce
qu’il a appris, ça signifie qu’il connait au moins ses cours.

o Respect d’un ratio de surface : il s’agit de savoir si les modèles générés respectent
une surface précise. Cela voudrait dire que l’étudiant A a bien appris et est capable
d’appliquer une compétence précise acquise en cours. Pour un étudiant en
Architecture, cela pourrait être, par exemple, le fait d’être capable d’utiliser une
fonction précise d’un logiciel appris en cours mais pour son projet de semestre.

Cette analyse consistera donc à classifier, catégoriser les propositions obtenues par le GAN et
ensuite faire des ratios de performances qui permettront d’identifier le ratio de fidélité respecté
par rapport au nombre total de propositions obtenues, le ratio de surface d’occupation respecté
par rapport au nombre total de propositions obtenues et enfin, comparer ces deux ratios afin
d’identifier quel est le critère d’évaluation le plus respecté par le GAN.

54

 Tableau d’évaluation statistique

Evaluation du GAN Critères d’évaluation
Fidélité Surface d’occupation

Proposition Pa1 √ √
Proposition Pa2 - √
Proposition Pa (i) - √
Nbre de résultats par
critère

NaF NaS

Nbre total de résultats NaTotal

Ratio fidélité = ே௔ி

ே௔்௢௧௔௟
 , il s’agit de la proportion de propositions respectant la fidélité de forme

par rapport à l’ensemble des propositions

Ratio surface d’occupation = ே௔ௌ

ே௔்௢௧௔௟
 , il s’agit de la proportion de propositions respectant le critère

de surface par rapport à l’ensemble des résultats.

Ensuite, nous passons à la mise en place du cGAN qui se déroule en trois (03) étapes :

- Créer un réseau de neurones conditionné (cGAN) à partir du GAN mais le conditionner afin
qu’il puisse respecter les critères d’évaluation tels que la surface d’occupation et la fidélité
de la forme.

- Insérer les propositions générées par le GAN dans le cGAN créé afin de les conditionner et
générer d’autres propositions. Ici, contrairement à l’analogie, l’on utilisera les bons
résultats de l’étudiant A afin de faire apprendre les cours à l’étudiant B pour savoir s’il est
capable de faire de même ou mieux.

- Analyser les résultats obtenus selon les mêmes critères d’évaluation et le même procédé
que ceux du GAN :

Tableau d’évaluation statistique

Evaluation du cGAN Critères d’évaluation
Fidélité Surface d’occupation

Proposition Pb1 √ √
Proposition Pb2 - √
Proposition Pb (i) - √
Nbre de résultats par
critère

NbF NbS

Nbre total de résultats NbTotal

55

Ratio fidélité = ே௕ி

ே௕்௢௧௔௟

Ratio surface d’occupation = ே௕ௌ

ே௕்௢௧௔௟

Chacune des étapes de l’analyse des résultats ou propositions obtenues équivaut donc à
l’enseignant qui va noter les performances de l’étudiant A et ensuite noter celles de l’étudiant B.

Enfin, suite à l’élaboration de nos récapitulatifs statistiques respectifs du GAN et du cGAN, nous
avons l’étape d’analyse globale qui consiste à comparer les données statistiques obtenues des
deux technologies afin d’identifier laquelle est plus performante selon quel critère et laquelle est
plus performante dans l’ensemble. Tout comme l’enseignant fera une comparaison entre ses
deux étudiants.

Par conséquent, si le GAN a un ratio de fidélité moins élevé que celui du cGAN, l’on pourra affirmer
que le cGAN est meilleur dans la restitution de données apprises que le GAN. Par ailleurs, si le GAN
a un ratio de surface d’occupation plus grand que celui du cGAN, l’on pourra affirmer que le GAN
est meilleur sur ce sujet précis. Et enfin, en moyenne, si le cGAN fournit le plus de résultats
conformes aux critères d’évaluation, l’on pourra affirmer qu’il est meilleur dans l’ensemble.

56

Partie 3 :
EXPERIMENTATION

57

I. Outils nécessaires à la réalisation de l’expérience

Réaliser une expérience liée aux intelligences artificielles nécessite certains outils spécifiques de
programmation, des outils de visualisation 2D ou 3D vu qu’en Architecture nous travaillant
souvent avec des représentations graphiques. Mais avant tout, générer des IA nécessitant des
connaissances spécifiques, avant de commencer l’expérience, j’ai tout d’abord dû réapprendre
les bases de la programmation informatique. Même si j’en avais déjà certaines connaissances,
j’étais habitué à travailler avec le langage de programmation Java. Dans le cadre de cette étude,
Python est le langage de programmation le plus accessible et qui dispose le plus d’information
et de documentations en ligne.

1. Apprentissage de la programmation

Dans un premier temps, j’ai donc commencé par apprendre à programmer en Python, notamment
quelle en est la syntaxe, la définition de variables, de matrices, de conditions et de boucles, entre
autres. La plateforme la plus accessible que j’ai trouvé pour cela est Mimo.

Il s’agit d’un site internet et d’une application mobile permettant
d’apprendre à coder en HTML, JavaScript, CSS et plus. C’est une
application que j’ai principalement utilisée afin de réapprendre à coder
plus rapidement et simplement à coder en python grâce à des
challenges et des énigmes que l’outil met en place.

58

2. Logiciels de création de la base de données

Dans un deuxième temps, j’ai dû utiliser différents outils pour la génération de données. Il s’agit
principalement de deux outils dont Rhinoceros et Grasshopper. Les autres outils sont des pulgins
téléchargeables ou intégrés dans Grasshopper.

Rhinoceros 3D est un logiciel de modélisation 3D utilisé principalement
dans les domaines de l'architecture, du design industriel et de
l'ingénierie. Il offre des outils puissants pour la création et la
manipulation de formes géométriques complexes. Notamment,
l’ensemble des dessins nécessaires à générer la base de donnée est
réalisé et affiché dans l’interface de Rhinoceros.

Grasshopper : C’est un plug-in pour Rhinoceros 3D qui permet de créer
des algorithmes visuels pour la conception paramétrique et
générative. Il m’a permis de créer des modèles 2D en manipulant des
composants visuels et en connectant des flux de données. C’est
notamment grâce à ce outil que je crée la base de données du GAN et
cGAN.

TT Toolbox (plugin) : Il s’agit d’un plug-in pour Grasshopper qui fournit
une collection d'outils et de fonctionnalités supplémentaires pour la
conception paramétrique et la modélisation 3D. En l’occurrence, c’est
grâce à ce plugin que les formes générées par Grasshopper sont
enregistrées et exportées en images. Ce sont ces images qui
constituent la base de données finale.

59

GhPython : Il s’agit d’un composant de Grasshopper qui permet d'écrire des scripts Python
directement à l'intérieur de l'environnement Grasshopper. C’est dans cet outil que je crée des
scripts de génération de formes.

Rhinoscriptsyntax : C’est un module Python qui fournit une interface simple et efficace pour
interagir avec Rhinoceros 3D depuis Python. Il permet d'automatiser des tâches de modélisation
et de scripter des opérations dans Rhinoceros 3D. Ainsi, à travers ce module, le script python créé
dans GhPython peut interagir avec Grasshopper et avec Rhinoceros 3D par ricochet.

3. Outils de mise en place de l’algorithme

Enfin, comme indiqué précédemment, les outils spécifiques de mise en place de l’algorithme sont
Python et Google Colab. Les autres outils sont des bibliothèques à implémenter dans Python.

Python est un langage de programmation permettant de créer et
modifier le script de l’algorithme GAN mais aussi permettant de créer
le code nécessaire à la réalisation des formes dans GhPython. Sinon il
s’agit d’un langage de programmation polyvalent et populaire,
largement utilisé dans divers domaines, y compris le développement
web, l'analyse de données, l'apprentissage automatique et la
modélisation 3D. Il est apprécié pour sa simplicité et sa lisibilité.

Google Colab est une plateforme de notebook basée sur le cloud qui
permet d'exécuter du code Python, notamment pour l'apprentissage
machine, l'analyse de données et d'autres tâches de programmation,
directement dans un navigateur web. J’en ai eu l’utilité afin de mettre
en place l’algorithme du GAN. Avant d’utiliser cet outil, j’avais
commencé par travailler sur un autre notebook du nom de Anaconda.
J’ai arrêté d’utiliser cette dernière parce qu’il était assez fastidieux de
mettre en place des environnements de travail avant même de
commencer à programmer l’algorithme.

60

Matplotlib est une bibliothèque de visualisation de données en
Python, largement utilisée pour créer des graphiques 2D et 3D de
données de haute qualité.

Keras est une bibliothèque open source de réseaux de neurones de
haut niveau, écrite en Python et fonctionnant sur TensorFlow
(Bibliothèque de Machine learning de Google). Elle permet de
construire, de former et de déployer rapidement des modèles
d'apprentissage en profondeur.

NumPy est une bibliothèque Python qui permet de créer des tableaux
multidimensionnels et les fonctions mathématiques pour travailler
efficacement avec des données numériques.

MLxtend est une bibliothèque Python d'extensions pour
l'apprentissage machine, offrant une large gamme d'outils et
d'utilitaires pour la préparation des données, la validation des modèles
et l'interprétation des résultats.

61

II. Mise en place de l’algorithme

Cette étape est délicate à réaliser car elle nécessite d’avoir de bonnes connaissances en
programmation en Python, connaitre les différentes bibliothèques de commande nécessaire à la
bonne réalisation de l’algorithme mais aussi être bien renseigné sur les algorithmes de réseaux de
neurones et les matrices de données.

Ayant des connaissances en programmation en Java, j’ai pu appréhender de manière général, le
mode de fonctionnement des prototypes d’algorithmes de réseaux de neurones que j’ai pu
observer sur internet mais il m’a fallu acquérir plusieurs connaissances en programmation en
Python. N’étant néanmoins, pas un expert, j’ai rencontré plusieurs difficultés dans la correction
d’erreur de code qui m’ont beaucoup ralenti lors de l’étude.

Néanmoins, j’ai pu me procurer le script du GAN de génération utilisé par Jean-Raphaël PIQUARD
pour son mémoire de Master à l’ENSAPLV, permettant de générer des écritures manuscrites mais
qui peut être utilisé pour d’autres fonctions. Il s’agit d’un exemple de GAN couramment utilisé et
facilement retrouvable sur internet pour les personnes qui souhaitent débuter dans la création de
GAN.

Ainsi, avant de pouvoir le modifier et l’utiliser à ma guise, il m’a fallu comprendre son
fonctionnement.

62

1. Principe de fonctionnement d’un GAN :

Importation de bibliothèques et modules :

Importation de fonctions et modules de NumPy pour la manipulation des données et de divers
modules de Keras, tels que Sequential, Dense, Conv2D, LeakyReLU, BatchNormalization, et
d'autres, nécessaires pour définir et entraîner les modèles du GAN.

Figure 30: Importation de bibliothèques et modules

Source : POUHE Fahé

63

Définition du Discriminateur :

1. La fonction define_discriminator définit le modèle du discriminateur.

2. Le modèle utilise des couches convolutionnelles pour réduire progressivement la
résolution spatiale des images.

3. Le modèle prend en entrée une image de forme (28, 28, 1), typique des images MNIST.

4. La dernière couche est une couche dense avec une activation sigmoïde pour la
classification binaire (réelle ou générée).

Figure 31: Script de définition du Discriminateur

Source : POUHE Fahé

Définition du Générateur :

1. La fonction define_generator définit le modèle du générateur.

2. Le modèle utilise des couches denses pour générer une représentation latente de
forme (128 * 7 * 7), qui est ensuite remodelée en une image 3D.

3. Des couches de transposition de convolution sont utilisées pour augmenter
progressivement la résolution spatiale de l'image générée jusqu'à (28, 28, 1).

4. La dernière couche utilise une activation tanh pour assurer que les valeurs générées
sont dans la plage [-1, 1].

64

Figure 32: Script du Générateur

Source : POUHE Fahé

Définition du GAN :

1. La fonction define_gan combine le générateur et le discriminateur en un modèle.

2. Les poids du discriminateur ne sont pas entraînés lors de la mise à jour du GAN.

Figure 33: Script de définition du GAN

Source : POUHE Fahé

65

Chargement des données :

1. Les données MNIST sont chargées à l'aide de la fonction loadlocal_mnist de la
bibliothèque mlxtend.

2. Les images sont mises à l'échelle de la plage [-1, 1].

Figure 34: Script de données

Source : POUHE Fahé

66

Définition des fonctions pour la génération de données réelles et fausses :

1. La fonction generate_real_samples sélectionne un échantillon aléatoire d'images
réelles à partir du jeu de données.

2. La fonction generate_latent_points génère des points dans l'espace latent pour
alimenter le générateur.

3. La fonction generate_fake_samples utilise le générateur pour créer un échantillon
d'images générées.

Figure 35: Script de données réelles et fausses

Source : POUHE Fahé

67

Fonctions pour la sauvegarde de la performance du modèle :

1. La fonction summarize_performance génère des échantillons générés par le
générateur, les sauvegarde sous forme d'une grille, et sauvegarde le modèle du
générateur.

2. La fonction plot_history crée un graphique de l'historique des pertes et de l'exactitude
du discriminateur.

Figure 36: Script de sauvegarde de performance du modèle

Source : POUHE Fahé

68

Boucle d'entraînement :

1. La fonction train effectue l'entraînement du GAN.

2. Elle utilise des lots d'images réelles et générées pour mettre à jour les poids du
discriminateur et du générateur.

3. Les performances du modèle sont résumées périodiquement, et l'historique des pertes
est tracé à la fin de l'entraînement.

Figure 37: Script d’entrainement du générateur et du discriminateur

Source : POUHE Fahé

69

Création d'un dossier pour les résultats :

1. Le script crée un dossier nommé 'results_baseline' pour sauvegarder les résultats
générés et les modèles.

Entraînement du GAN :

1. La taille de l'espace latent est définie à 50.

2. Le discriminateur, le générateur, et le GAN sont créés.

3. Les données MNIST sont chargées.

4. L'entraînement du GAN est effectué en utilisant les fonctions définies précédemment.

Figure 38: Script de sauvegarde des données générées et d’entrainement du GAN

Source : POUHE Fahé

Le script complet du GAN est à retrouver en annexe.

70

III. Mise en place de la base de données :

Création de la base de données : Génération de prototypes d'implantation dans Grasshopper

La base de données peut être réalisée de plusieurs manières mais dans le cadre de ce mémoire,
j’en ai testé deux et gardé une manière afin de faciliter le déroulement de l’expérience.

1. Base de données à l’aide de code Python

Ce procédé consiste en la création de la base de données à l’aide de trois (03) scripts en GhPython
("Formes", "Terrains" et "Insertion") qui permettent d’automatiser la génération des modèles
d’entrainement du GAN. Ces scripts sont mis en relation à travers l’outil de paramétrisme
Grasshopper. Dans ce premier procédé, le modèle de génération de données d’entrainement
repose sur une séquence logique afin de créer des compositions harmonieuses dans un modèle
2D. Tout d'abord, dans le script "Terrains", des rectangles sont générés pour représenter le
contour des terrains. Les dimensions des contours sont de 20 unités x 30 unités afin de singer un
terrain réel de 20m sur 30m, soit 600m2. Mais l’on a la possibilité de modifier les dimensions des
contours directement dans Grasshopper à l’aide du composant « Rectangle » et des paramètres
qui lui sont attribués. Ces délimitations de terrains sont donc définies manuellement et servent
de toile de fond.

En parallèle, le script "Formes" est responsable de la génération de formes, également définies
manuellement, mais avec une superficie correspondant à 60% des terrains de 600m2
précédemment créés. Dans le script aux lignes 20 et 21, le critère d’évaluation « ratio de surface »
est définis à 60% mais toujours modifiable si besoin.

Figure 39: Entrée du critères d’évaluation dans le script « Formes »

Source : Auteur, POUHE Fahé

Le script "Insertion" s’en charge car il orchestre la fusion harmonieuse des formes générées dans
les terrains correspondants. À travers une itération sur les paires de terrains et de formes, le script
vérifie d'abord que ces éléments sont des courbes valides, puis positionne les formes à l'intérieur
des terrains.

Ce processus séquentiel assure que chaque forme trouve sa place dans le contexte du terrain
associé, aboutissant à un modèle 2D cohérent.

71

Figure 40: Script Grasshopper de génération de formes

Source : Auteur, POUHE Fahé

Figure 41: Visualisation des contours de terrains de 20 x 30

Source : Auteur, POUHE Fahé

72

Figure 42: Visualisation des formes générées (en vert)

Source : Auteur, POUHE Fahé

Les formes étant générées sont des rectangles, elles doivent être par la suite être intégrées dans
les terrains. Néanmoins, j’ai rencontré un problème de précision dans les dimensions des formes
générées car elles sont trop grandes en proportion comparé aux terrains. Ayant rencontré des
difficultés lors de la première manière que j’aurais pu résoudre mais qui me demanderait plus de
temps et de connaissance, j’ai décidé de remédier à cela en générant les formes
paramétriquement et directement avec les commandes de Grasshopper.

2. Base de données à l’aide du paramétrisme

C’est cette démarche que je vais finalement utiliser pour créer la base de données. Ainsi, afin de
simplifier le plus possible et optimiser les possibilités de génération de différentes formes, je me
suis finalement servis du modèle Grasshopper créé par Jean Raphaël PIQUARD lors de son
mémoire sur les GAN et l’architecture. Dans son modèle Grasshopper, l’on retrouve différentes
formes telles que des carrés, des rectangles, des blobs, etc mais ces formes ne respectent pas
forcément un critère spécifique de taille ou superficie comme je veux le faire dans mon mémoire.
J’ai donc modifié son modèle afin que les formes générées respectent le critère de ratio de surface
qui est de 60% de 600m2, soit 360 m2 au maximum. Afin d’obtenir des formes viables et ainsi
éviter d’obtenir des formes de 1m2 (par exemple et non viable), je renseigne un ensemble de
variables permettant d’obtenir des formes de superficie comprise entre 150 m2 et 360 m2.

73

Figure 43: Modèle Grasshopper de génération de formes

Source : Jean Raphael PIQUARD, Mémoire de master 2020

Figure 44: Modèle de génération de formes modifié respectant le critère ratio de surface

Source : Auteur, POUHE Fahé, mémoire de Master

Figure 45: Modèle Grasshopper rajouté permettant de respecter le ratio de surface

Source : Auteur, POUHE Fahé, mémoire de Master

74

Le rajout de code Grasshopper permet d’établir un changement d’échelle de la forme initiale
générée afin qu’elle puisse respecter le critère « ratio de surface ».

Suite à la modification complète du modèle Grasshopper et le dessin du « terrain » de dimension
20 m x 30 m directement dans Rhino, l’on obtient les images constitutives de la base données des
formes inscrites dans le terrain. Chacune des images de la base de données sont donc
respectueuses des critères d’évaluation et peuvent de ce fait être utilisée comme données
d’entrainement du GAN.

Par ailleurs, la figure ci-dessous permet d’observer des exemples de formes de blobs inscris dans
le terrain. La plupart des formes sont très différentes les unes des autres mais restent toutes des
blobs. Néanmoins, l’on observe que certaines formes débordent de la limite du terrain même si
elles respectent le ratio de surface. Il conviendrait donc dans certains cas, de rectifier cela en
rajoutant des contraintes de limite dans le modèle Grasshopper.

Figure 46: Fragments des formes de blobs générées par le modèle paramétrique

Source : Auteur, POUHE Fahé

75

IV. Entraînement de l'algorithme

L’entrainement du GAN ainsi que de la base de données n’a pas pu aboutir car plusieurs blocages
ont eu lieu aussi bien la création de la base de données d’entrainement mais aussi lors de la
connexion entre la base de données et le script du GAN.

1. Concernant la base de données :

Dans les meilleures conditions, les étapes à suivre seraient d’écrire les scripts de génération de
terrains, de forme et d’insertion des formes dans les terrains. Ensuite, je devrais exporter les
exemples d’entrainement en format image. Ces images devraient par la suite être connectées à
l’algorithme GAN afin de procéder à l’entrainement.

Je me suis donc arrêté à l’étape de la génération des exemples d’entrainement. Plus précisément,
il conviendrait de résoudre le problème de proportion des formes générées. Ce qui revient à
modifier le script « Formes » et par la suite, rectifier le script « Insertion » afin qu’il puisse vérifier,
avant tout, que les formes peuvent entrer dans les limites du terrain. Après avoir fait cette
vérification, il faudrait le modifier afin qu’il puisse bien insérer la forme dans le terrain.

2. Au sujet du script du GAN :

Lors de la mise en place de ce script, j’ai rencontré plusieurs difficultés notamment pour
l’implémentation de l’environnement virtuel de programmation qui consiste entre autres, à
implémenter tous les modules, fonctions et bibliothèques nécessaires au bon fonctionnement de
l’algorithme mais j’ai remédié en partie à ce problème en faisant basculer tout le code dans
l’environnement de travail de Google Colab qui de manière standard intègre déjà une bonne partie
des bibliothèques nécessaires au bon fonctionnement du programme.

Par ailleurs, des problèmes se sont posés lors de la mise en relation entre le script du GAN et la
base de données d’écriture manuscrite de J-R Piquard. J’avais besoin de faire cette connexion afin
d’entrainer son modèle dans le but d’observer en temps réel le processus d’entrainement d’un
GAN. Néanmoins, j’ai pu faire cette observation en regardant des exemples d’entrainement de
modèle GAN dans des vidéos tutoriels sur internet.

76

Figure 47: Message d’erreur lors de la connexion entre le script du GAN et un exemple Base de
données d’entrainement

Source : Auteur, POUHE Fahé

Après plusieurs recherches faites sur internet et tentatives de correction de bug, par ailleurs, mes
connaissances en programmation d’intelligence artificielle étant limitée, je n’ai pas pu le résoudre
ce qui limite la poursuite de mon expérience. Ainsi, l’entrainement du GAN n’ayant pas eu lieu
dans les meilleures conditions, l’étape de la mise en place du cGAN et de son entrainement n’a
pas pu, non plus, avoir lieu. Sachant que le cGAN serait basé sur l’algorithme du GAN auquel
j’aurais intégré les conditions ou critères d’évaluation définis dans la méthode de recherche.

Néanmoins, la base de données que j’ai générée peut toujours être utilisée afin de poursuivre la
recherche ultérieurement.

77

V. Résultats attendus :

L’étude que je comptais mener lors de ce mémoire n’a pas pu aboutir aux résultats que j’espérais
mais je m’attendais à obtenir certains résultats spécifiques tels que :

- Une observation de fortes similarités dans les propositions générées par les GAN et cGAN
car les deux modèles devraient être entrainés sur la même base de données. Ces similarités
devraient être, entres autres, dues au fait que l’ensemble des données d’entrainement doit
être assez élevé et varié afin d’obtenir des propositions différentes les unes des autres.
Mais ne disposant pas de machine de calcul à la hauteur de celles d’entreprise comme
NVIDIA, les ressources matérielles limitent la pluralité des propositions

- Le respect du critère d’évaluation « ratio de surface » pour une majorité des propositions
obtenues car dans la création de la base de données, je renseignais déjà ce critère. Ainsi, si
les données d’entrainement respectent déjà ce critère-là, les propositions générées ont
plus de chances de le respecter.

- Le cGAN soit plus performant et génère des propositions singulières grâce aux contraintes
qui lui seraient appliquées.

- Un bon respect de la fidélité de formes mais pas toujours des proportions comme indiqué
dans la méthode de recherche.

- L’obtention de propositions inattendues qui ne respectent ni la fidélité de forme, ni le ratio
de surface qui pourraient être enrichissantes pour l’étude.

78

CONCLUSION

Ce que je tire de ce mémoire :

Au cours de cette étude, j'ai eu l'opportunité captivante d'explorer le fonctionnement des
intelligences artificielles génératives de type GAN, plongeant dans le monde complexe des
réseaux de neurones. La compréhension approfondie de ces mécanismes a constitué une étape
cruciale dans l'accroissement de mes compétences en programmation de réseaux de neurones.
La création d'une base de données d'entraînement a également été un volet essentiel de cette
démarche, me permettant de saisir pleinement le rôle crucial de données de qualité dans le
développement et la formation des modèles.

Cette étude a également mis en lumière les enjeux profonds liés à l'utilisation de l'intelligence
artificielle en architecture. J'ai pris conscience des implications tant créatives que éthiques de
l'intégration de l'IA dans le domaine architectural. Mon objectif personnel, résultant de cette
exploration, est de me familiariser davantage avec les IA génératives appliquées à l'architecture.
Ainsi cette connaissance approfondie deviendra une ressource inestimable pour mes
expérimentations futures, avec l'ambition ultime de les intégrer de manière fluide et innovante
dans mon processus de conception en architecture. De ce fait, cette étude marque non seulement
une étape importante dans mon parcours académique, mais également le point de départ d'une
exploration continue et créative des possibilités offertes par l'IA dans le domaine de
l'architecture.

Pistes d’amélioration :

Plusieurs pistes d’amélioration sont envisageables notamment la plus importante serait de
continuer ce sujet en veillant à faire les corrections des différents bugs d’algorithme, de base de
données et de liaison des environnements que j’ai pu mentionner précédemment. Il s’agit de
l’amélioration est la plus simple à réaliser sachant que la démarche scientifique de l’étude, l’état
de l’art, les enjeux de cette étude et la base de données d’entrainement du GAN et cGAN ont été
déjà réalisés dans ce mémoire.

Enfin, lors de la réalisation de ce mémoire, j’ai pu me rendre compte qu’il était possible d’aboutir
quasiment aux mêmes résultats de génération de propositions de modèle d’implantation soumis
à des contraintes sans passer par les GAN ou cGAN. En effet, il est possible de réaliser uniquement
cette étude grâce au paramétrisme à travers Grasshopper, GhPython et Rhino. Cela permettrait
donc aux personnes qui sont familières à ces outils de paramétrisme de l’expérience.

79

BIBLIOGRAPHIE

 Travaux de recherche

PIQUARD, Jean-Raphael. (2020). L'apprentissage machine au service de la conception
architecturale: Comment enrichir un espace de solution paramétrique grâce aux réseaux
antagonistes génératifs ?

Chaillou, Stanislas. (2020). ArchiGAN: Artificial Intelligence x Architecture. Dans Philip F. Yuan,
Mike Xie, Neil Leach, Jiawei Yao et Xiang Wang (dir.), Architectural Intelligence: Selected Papers
from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF
2019) @. 117-127). Springer Nature. https://doi.org/10.1007/978-981- 15-6568-7 8

Huang, W., & Zheng, H. (2018). Architectural drawings recognition and generation through
machine learning (p 156-165) 2018 ACADIA PAPER Proceedings Final.indd (cumincad.org)

Peters, N. (2017). Master thesis: “Enabling alternative architectures: Collaborative frameworks for
participatory design.”

Martinez, N. (2016). Suggestive drawing among human and artificial intelligences.

Islam, Jyoti et Zhang, Yanqing. (2020). GAN-based synthetic brain PET image generation. Brain
Informatics, 7(1), 3. https://doi.org/10.1186/s40708-020-00104-2

Kowalski, Marek, Garbin, Stephan J., Estellers, Virginia, Baltrušaitis, Tadas, Johnson, Matthew et
Shotton, Jamie. (2020). CONFIG: Controllable Neural Face Image Generation. Dans Andrea
Vedaldi, Horst Bischof, Thomas Brox et Jan-Michael Frahm (dir.), Computer Vision – ECCV 2020 (p.
299-315). Springer International Publishing. https://doi.org/10.1007/978-3-030-58621-8_18

80

Loey, Mohamed, Smarandache, Florentin et M. Khalifa, Nour Eldeen. (2020). Within the Lack of
Chest COVID-19 X-ray Dataset: A Novel Detection Model Based on GAN and Deep Transfer
Learning. Symmetry, 12(4), 651. https://doi.org/10.3390/sym12040651

Tang, Hao, Xu, Dan, Yan, Yan, Torr, Philip H.S. et Sebe, Nicu. (2020). Local Class-Specific and
Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation.
Dans 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (p. 7867-7876).
IEEE. https://doi.org/10.1109/CVPR42600.2020.00789

Xu, Dongwei, Wei, Chenchen, Peng, Peng, Xuan, Qi et Guo, Haifeng. (2020). GE-GAN: A novel
deep learning framework for road traffic state estimation. Transportation Research Part C:
Emerging Technologies, 117, 102635. https://doi.org/10.1016/j.trc.2020.102635

Agarwal, Neetima, Chauhan, Sumedha, Kar, Arpan Kumar et Goyal, Sandeep. (2017). Role of
human behaviour attributes in mobile crowd sensing: a systematic literature review. Digital Policy,
Regulation and Governance, 19(2), 168-185. https://doi.org/10.1108/DPRG-05-2016-0023

Aggarwal, Alankrita, Mittal, Mamta et Battineni, Gopi. (2021). Generative adversarial network:
An overview of theory and applications. International Journal of Information Management Data
Insights, 1(1), 100004. https://doi.org/10.1016/j.jjimei.2020.100004

Gaël. (2018, 25 février). 3 Algorithmes de DeepLearning expliqués en Langage Humain. Datakeen.
https://www.datakeen.co/3-deep-learning-architectures-explained-in-human-language-2/

Karras, Tero, Laine, Samuli et Aila, Timo. (2019, 29 mars). A Style-Based Generator Architecture
for Generative Adversarial Networks (arXiv:1812.04948). arXiv. Récupéré le 8 janvier 2024 de
http://arxiv.org/abs/1812.04948

Ma, Qianli, Yang, Jinlong, Ranjan, Anurag, Pujades, Sergi, Pons-Moll, Gerard, Tang, Siyu et Black,
Michael J. (2020). Learning to Dress 3D People in Generative Clothing. Dans 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (p. 6468-6477). IEEE.
https://doi.org/10.1109/CVPR42600.2020.00650

81

Mirza, Mehdi et Osindero, Simon. (2014, 6 novembre). Conditional Generative Adversarial Nets
(arXiv:1411.1784). arXiv. Récupéré le 21 mai 2023 de http://arxiv.org/abs/1411.1784

Radford, Alec, Metz, Luke et Chintala, Soumith. (2016, 7 janvier). Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks (arXiv:1511.06434). arXiv.
https://doi.org/10.48550/arXiv.1511.06434

Singh, Harjit, Grover, Purva, Kar, Arpan Kumar et Ilavarasan, P. Vigneswara. (2020). Review of
performance assessment frameworks of e-government projects. Transforming Government:
People, Process and Policy, 14(1), 31-64. https://doi.org/10.1108/TG-02-2019-0011

Sixt, Leon, Wild, Benjamin et Landgraf, Tim. (2018). RenderGAN: Generating Realistic Labeled
Data. Frontiers in Robotics and AI, 5.
https://www.frontiersin.org/articles/10.3389/frobt.2018.00066

82

 Ressources en ligne

Team, Keras. (consulté en Décembre 2022). Keras documentation: Conditional GAN.
https://keras.io/examples/generative/conditional_gan/

Generative Adversarial Networks: Basics & 4 Popular Extensions. (consulté en Décembre 2022.).
Datagen. https://datagen.tech/guides/computer-vision/generative-adversarial-networks/

Maynard-Reid, Margaret. (2022, 13 septembre). Intro to Generative Adversarial Networks (GANs).
PyImageSearch. https://pyimagesearch.com/2021/09/13/intro-to-generative-adversarial-networks-
gans/

Brownlee, Jason. (2023, 12 mars). How to Setup Your Python Environment for Machine Learning
with Anaconda. MachineLearningMastery.com. https://machinelearningmastery.com/setup-
python-environment-machine-learning-deep-learning-anaconda/

Autoencoders in Deep Learning: Tutorial & Use Cases [Décembre 2022]. (s. d.).
https://www.v7labs.com/blog/autoencoders-guide, https://www.v7labs.com/blog/autoencoders-
guide

Réseaux convolutifs (CNN) : comment ça marche ? (consulté en Décembre 2022) Formation Tech
et Data en ligne | Blent.ai. https://blent.ai/blog/a/cnn-comment-ca-marche

 Livres et conferences

Stanislas Chaillou, Intélligence et Architecture, consulté en Décembre 2022,
https://www.youtube.com/watch?v=xNW_UnSIrqk&pp=ygUbaWEgZXQgYXJjaGl0ZWN0dXJlIGN
oYWlsbG91

83

GLOSSAIRE

Intelligence Artificielle (IA) : La science et l'ingénierie de la fabrication de machines intelligentes
capables de réaliser des tâches qui nécessitent des processus mentaux de haut niveau,
généralement effectuées par des êtres humains.

Algorithme : Un algorithme est une séquence finie et non ambiguë d'instructions permettant de
résoudre un problème ou d'effectuer une tâche donnée.

Deep Learning : Une branche de l'intelligence artificielle qui utilise des réseaux neuronaux
artificiels pour résoudre des problèmes complexes en apprenant à partir de données.

Modularité : La notion de créer un modèle d'architecture idéal qui est ensuite multiplié pour
former un ensemble d'architecture, réduisant ainsi les temps et coûts de conception et de
construction.

DAO (Dessin Assisté par Ordinateur) : L'utilisation de logiciels informatiques pour simplifier et
accélérer le processus de dessin et de représentation en architecture.

Paramétrisme : Un principe de synthétisation et de décomposition des différentes étapes
nécessaires à la réalisation d'un design, permettant l'application de paramètres ajustables à
chaque étape du processus de conception.

Grasshopper : Un environnement de modélisation algorithmique utilisé dans la conception
architecturale, souvent associé au logiciel Rhino.

Python : Un langage de programmation largement utilisé, particulièrement dans le domaine de
l'apprentissage machine et de l'IA.

Bibliothèque : Une bibliothèque, dans le contexte de la programmation informatique, est un
ensemble de fonctions pré-écrites qui peuvent être utilisées pour effectuer des tâches
spécifiques. Les bibliothèques peuvent inclure des fonctions pour divers domaines tels que la
manipulation de fichiers, les opérations mathématiques, la manipulation de chaînes de caractères,
la visualisation de données, l'interaction avec des bases de données, etc.

Auto-encodeurs (AE) : Des modèles de machine learning qui apprennent à représenter les
données en les compressant dans un format compact, puis en les décompressant pour les
reconstruire.

84

Réseaux de Neurones Convolutifs (CNN) : Des réseaux de neurones artificiels utilisés pour la
reconnaissance d'images et la vision par ordinateur, efficaces pour détecter des patterns dans les
images.

Réseaux de Neurones Récurrents (RNN) : Des réseaux de neurones adaptés au traitement de
données séquentielles, tels que les séquences de mots ou de sons, capables de prendre en
compte l'historique des données.

Réseaux Adversaires Génératifs (GAN) : Une classe de cadres d'apprentissage automatique où
deux réseaux neuronaux, un générateur et un discriminateur, sont en concurrence pour créer des
artefacts réalistes indiscernables des artefacts réels.

Conditionals GAN (cGAN) : Une catégorie de GAN qui permet d'avoir plus de contrôle sur les
résultats générés en introduisant des conditions supplémentaires, tels que des étiquettes de
classe, dans le processus d'apprentissage.

GAN Pix2Pix : Une technique de GAN utilisée pour la conversion d'images d'un domaine à un
autre, par exemple, transformer des dessins en images réalistes.

VAE-GAN (Variational Autoencoder Generative Adversarial Network) est une architecture de
réseau de neurones qui combine les techniques de l'autoencodeur variationnel (VAE) et des
réseaux génératifs adversaires (GAN) pour générer des données réalistes à partir d'un espace
latent. Cette méthode permet d'apprendre une représentation dense des données d'entrée et de
générer de nouvelles données tout en conservant leurs caractéristiques essentielles.

SMPL (Simplified Human Body Model) est un modèle de corps humain simplifié largement utilisé
dans les domaines de la vision par ordinateur, de la réalité virtuelle et de la synthèse d'images
pour représenter la forme et la pose du corps humain de manière paramétrique. Il offre une
représentation compacte et expressive de la forme du corps, permettant une variété
d'applications dans la modélisation et l'animation 3D.

Nvidia : Nvidia est une société spécialisée dans la conception de cartes graphiques, de processeurs
graphiques et de systèmes intégrés utilisés dans les domaines du jeu vidéo, de la visualisation
professionnelle, de l'intelligence artificielle et du calcul haute performance.

85

ANNEXES

Code informatique

Script du GAN :
example of training a stable gan for generating a handwritten digit
from os import makedirs

Vérifier la présence de Keras
import keras
print(keras.__version__)

Vérifier la présence de NumPy
import numpy as np
print(np.__version__)

Vérifier la présence de Matplotlib
import matplotlib
print(matplotlib.__version__)

Vérifier la présence de mlxtend
import mlxtend
print(mlxtend.__version__)

from numpy import expand_dims
from numpy import zeros
from numpy import ones
from numpy.random import randn
from numpy.random import randint
from keras.datasets.mnist import load_data
from keras.optimizers import Adam
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Reshape
from keras.layers import Flatten
from keras.layers import Conv2D
from keras.layers import Conv2DTranspose
from keras.layers import LeakyReLU
from keras.layers import BatchNormalization
from keras.initializers import RandomNormal
from matplotlib import pyplot

86

define the standalone discriminator model
def define_discriminator(in_shape=(28,28,1)):
 # weight initialization
 init = RandomNormal(stddev=0.02)
 # define model
 model = Sequential()
 # downsample to 14x14
 model.add(Conv2D(64, (4,4), strides=(2,2), padding='same',
kernel_initializer=init, input_shape=in_shape))
 model.add(BatchNormalization())
 model.add(LeakyReLU(alpha=0.2))
 # downsample to 7x7
 model.add(Conv2D(64, (4,4), strides=(2,2), padding='same',
kernel_initializer=init))
 model.add(BatchNormalization())
 model.add(LeakyReLU(alpha=0.2))
 # classifier
 model.add(Flatten())
 model.add(Dense(1, activation='sigmoid'))
 # compile model
 opt = Adam(lr=0.0002, beta_1=0.5)
 model.compile(loss='binary_crossentropy', optimizer=opt,
metrics=['accuracy'])
 return model

define the standalone generator model
def define_generator(latent_dim):
 # weight initialization
 init = RandomNormal(stddev=0.02)
 # define model
 model = Sequential()
 # foundation for 7x7 image
 n_nodes = 128 * 7 * 7
 model.add(Dense(n_nodes, kernel_initializer=init, input_dim=latent_dim))
 model.add(LeakyReLU(alpha=0.2))
 model.add(Reshape((7, 7, 128)))
 # upsample to 14x14
 model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same',
kernel_initializer=init))
 model.add(BatchNormalization())
 model.add(LeakyReLU(alpha=0.2))
 # upsample to 28x28
 model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same',
kernel_initializer=init))
 model.add(BatchNormalization())
 model.add(LeakyReLU(alpha=0.2))
 # output 28x28x1

87

 model.add(Conv2D(1, (7,7), activation='tanh', padding='same',
kernel_initializer=init))
 return model

define the combined generator and discriminator model, for updating the
generator
def define_gan(generator, discriminator):
 # make weights in the discriminator not trainable
 discriminator.trainable = False
 # connect them
 model = Sequential()
 # add generator
 model.add(generator)
 # add the discriminator
 model.add(discriminator)
 # compile model
 opt = Adam(lr=0.0002, beta_1=0.5)
 model.compile(loss='binary_crossentropy', optimizer=opt)
 return model

import mlxtend
import numpy as np

from mlxtend.data import loadlocal_mnist

trainX, trainy = loadlocal_mnist(
 images_path=r'Z:\Fahé POUHE\Mémoire - Fahé\test-images-idx3-ubyte',
 labels_path=r'Z:\Fahé POUHE\Mémoire - Fahé\test-labels-idx1-ubyte')

print(trainX.shape[0], trainX.shape[1])
trainX=np.reshape(trainX,(trainX.shape[0],28,-1))
print(trainX.shape[0], trainX.shape[1], trainX.shape[2])

load mnist images
def load_real_samples():
 # load dataset
 # expand to 3d, e.g. add channels

 X = expand_dims(trainX, axis=-1)
 # select all of the examples for a given class
 selected_ix = trainy == 8
 X = X[selected_ix]
 # convert from ints to floats
 X = X.astype('float32')
 # scale from [0,255] to [-1,1]
 X = (X - 127.5) / 127.5
 return X

88

select real samples
def generate_real_samples(dataset, n_samples):
 # choose random instances
 ix = randint(0, dataset.shape[0], n_samples)
 # select images
 X = dataset[ix]
 # generate class labels
 y = ones((n_samples, 1))
 return X, y

generate points in latent space as input for the generator
def generate_latent_points(latent_dim, n_samples):
 # generate points in the latent space
 x_input = randn(latent_dim * n_samples)
 # reshape into a batch of inputs for the network
 x_input = x_input.reshape(n_samples, latent_dim)
 return x_input

use the generator to generate n fake examples, with class labels
def generate_fake_samples(generator, latent_dim, n_samples):
 # generate points in latent space
 x_input = generate_latent_points(latent_dim, n_samples)
 # predict outputs
 X = generator.predict(x_input)
 # create class labels
 y = zeros((n_samples, 1))
 return X, y

generate samples and save as a plot and save the model
def summarize_performance(step, g_model, latent_dim, n_samples=100):
 # prepare fake examples
 X, _ = generate_fake_samples(g_model, latent_dim, n_samples)
 # scale from [-1,1] to [0,1]
 X = (X + 1) / 2.0
 # plot images
 for i in range(10 * 10):
 # define subplot
 pyplot.subplot(10, 10, 1 + i)
 # turn off axis
 pyplot.axis('off')
 # plot raw pixel data
 pyplot.imshow(X[i, :, :, 0], cmap='gray_r')
 # save plot to file
 pyplot.savefig('results_baseline/generated_plot_%03d.png' % (step+1))
 pyplot.close()
 # save the generator model
 g_model.save('results_baseline/model_%03d.h5' % (step+1))

89

create a line plot of loss for the gan and save to file
def plot_history(d1_hist, d2_hist, g_hist, a1_hist, a2_hist):
 # plot loss
 pyplot.subplot(2, 1, 1)
 pyplot.plot(d1_hist, label='d-real')
 pyplot.plot(d2_hist, label='d-fake')
 pyplot.plot(g_hist, label='gen')
 pyplot.legend()
 # plot discriminator accuracy
 pyplot.subplot(2, 1, 2)
 pyplot.plot(a1_hist, label='acc-real')
 pyplot.plot(a2_hist, label='acc-fake')
 pyplot.legend()
 # save plot to file
 pyplot.savefig('results_baseline/plot_line_plot_loss.png')
 pyplot.close()

train the generator and discriminator
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=10,
n_batch=50):
 # calculate the number of batches per epoch
 bat_per_epo = 10
 # calculate the total iterations based on batch and epoch
 n_steps = bat_per_epo * n_epochs
 # calculate the number of samples in half a batch
 half_batch = int(n_batch / 2)
 # prepare lists for storing stats each iteration
 d1_hist, d2_hist, g_hist, a1_hist, a2_hist = list(), list(), list(),
list(), list()
 # manually enumerate epochs
 for i in range(n_steps):
 # get randomly selected 'real' samples
 X_real, y_real = generate_real_samples(dataset, half_batch)
 # update discriminator model weights
 d_loss1, d_acc1 = d_model.train_on_batch(X_real, y_real)
 # generate 'fake' examples
 X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch)
 # update discriminator model weights
 d_loss2, d_acc2 = d_model.train_on_batch(X_fake, y_fake)
 # prepare points in latent space as input for the generator
 X_gan = generate_latent_points(latent_dim, n_batch)
 # create inverted labels for the fake samples
 y_gan = ones((n_batch, 1))
 # update the generator via the discriminator's error
 g_loss = gan_model.train_on_batch(X_gan, y_gan)
 # summarize loss on this batch
 print('>%d, d1=%.3f, d2=%.3f g=%.3f, a1=%d, a2=%d' %
 (i+1, d_loss1, d_loss2, g_loss, int(100*d_acc1), int(100*d_acc2)))

90

 # record history
 d1_hist.append(d_loss1)
 d2_hist.append(d_loss2)
 g_hist.append(g_loss)
 a1_hist.append(d_acc1)
 a2_hist.append(d_acc2)
 # evaluate the model performance every 'epoch'
 if (i+1) % bat_per_epo == 0:
 summarize_performance(i, g_model, latent_dim)
 plot_history(d1_hist, d2_hist, g_hist, a1_hist, a2_hist)

make folder for results
makedirs('results_baseline', exist_ok=True)
size of the latent space
latent_dim = 50
create the discriminator
discriminator = define_discriminator()
create the generator
generator = define_generator(latent_dim)
create the gan
gan_model = define_gan(generator, discriminator)
load image data
dataset = load_real_samples()
print(dataset.shape)
train model
train(generator, discriminator, gan_model, dataset, latent_dim)

91

Programme de Grasshopper

Script GhPython :

Script "Formes"

SCRIPT FORMES

import rhinoscriptsyntax as rs

Entrée manuelle depuis Grasshopper pour le rectangle x
x = x # Utilise la variable x stockée dans le contexte sc

Entrée manuelle depuis Grasshopper pour le nombre de rectangles y
y = int(y) # Convertit y en un nombre entier

Initialise la liste des formes générées
generated_shapes = []

Vérifie si x est un rectangle
if rs.IsCurve(x) and rs.IsCurvePlanar(x):
 if rs.IsCurveClosed(x):
 # Calcule la superficie du rectangle x
 x_area = rs.Area(x)

 # Calcule la superficie cible des formes (60% de la superficie de x)
 target_shape_area = 0.6 * x_area

 # Boucle pour générer les formes
 for i in range(y):
 # Calcule la longueur et la largeur du rectangle pour atteindre la
superficie cible
 current_rectangle_area = 0
 current_length = rs.CurveLength(x) # Longueur initiale

 while current_rectangle_area < target_shape_area:
 current_length += 1
 current_width = target_shape_area / current_length
 current_rectangle_area = current_length * current_width

 # Crée le rectangle
 shape = rs.AddRectangle([0,0,0], current_length, current_width)

 if shape:
 # Ajoute le rectangle à la liste des rectangles générés
 generated_shapes.append(shape)
 else:
 print("Impossible de créer un rectangle.")
 else:
 print("L'objet sélectionné n'est pas un rectangle fermé.")

92

else:
 print("Veuillez sélectionner un objet de type courbe (rectangle) en
entrée.")

Sortie "a" contenant les rectangles générés
a = generated_shapes

Script "Terrains"

import rhinoscriptsyntax as rs

Entrée manuelle depuis Grasshopper pour le rectangle x
x = x # Utilise la variable x stockée dans le contexte sc

Entrée manuelle depuis Grasshopper pour le nombre de rectangles y
y = int(y) # Convertit y en un nombre entier

Initialise la liste des objets dupliqués
duplicated_rectangles = []

Vérifie si x est un rectangle
if rs.IsCurve(x) and rs.IsCurvePlanar(x):
 if rs.IsCurveClosed(x):
 # Boucle pour dupliquer le rectangle x
 for i in range(y):
 # Duplique le rectangle x
 duplicated_rectangle = rs.CopyObject(x, [i * 25, 0, 0]) # Ajuste
la translation selon les besoins
 duplicated_rectangles.append(duplicated_rectangle)
 else:
 print("L'objet sélectionné n'est pas un rectangle fermé.")
else:
 print("Veuillez sélectionner un objet de type courbe (rectangle) en
entrée.")

Sortie "a" contenant les objets dupliqués
a = duplicated_rectangles

93

Script "Insertion"

SCRIPT INSERTIONS

import rhinoscriptsyntax as rs

Entrée manuelle depuis Grasshopper pour les terrains (rectangles)
terrains = x # Utilise la variable terrains stockée dans le contexte sc

Entrée manuelle depuis Grasshopper pour les formes générées
formes_generees = y # Utilise la variable formes_generees stockée dans le
contexte sc

Ajoutez ces sorties pour imprimer les types et le contenu des variables
print(type(terrains))
print(type(formes_generees))

Vérifie si les terrains et les formes générées sont des listes
if isinstance(terrains, list) and isinstance(formes_generees, list):
 # Vérifie si les terrains et les formes générées sont valides
 if terrains and formes_generees:
 # Boucle pour positionner les formes à l'intérieur des terrains
 for terrain, forme_generee in zip(terrains, formes_generees):
 # Vérifie si les terrains et les formes sont des courbes
 if rs.IsCurve(terrain) and rs.IsCurve(forme_generee):
 # Copie la forme générée à l'intérieur du terrain
 rs.CopyObject(forme_generee, translation=[0,0,0], copy=True)
 else:
 print("Les objets sélectionnés ne sont pas des courbes.")
 else:
 print("Veuillez fournir les terrains et les formes générées en
entrée.")
else:
 print("Les entrées ne sont pas valides. Assurez-vous que terrains et
formes_generees sont des listes.")

94

ddddeefffinnne ttheee sttandaloone discriminator model
deeeff ddddefiinnee__diisccrimiinaattor(in_shape=(28,28,1)):

wwweiighhtt iiinnittializaation
 iiniit = RanndommNormall(stddev=0.02)

dddefffinnee mmmodeel
 mmoddell == Seequeential()
 #### dddowwwnssaamppple to 14xx14
 mmoddell.aadd(Connv2D(64, (4,4), strides=(2,2), padding='same',
keerrneel__innitiialiizer=innit, input_shape=in_shape))
 mmoddell.aadd(BattchNormmalization())
 mmoddell.aadd(LeaakyReLUU(alpha=0.22))
 #### dddowwwnssaamppple to 7x77
 mmoddell.aadd(Connv2D(64, (4,4), strides=(2,2), padding='same',
keerrneel__innitiialiizer=innit))
 mmoddell.aadd(BattchNormmalization())
 mmoddell.aadd(LeaakyReLUU(alpha=0.22))

ccclaaasssiifiiier
 mmoddell.aadd(Flaatten()))
 mmoddell.aadd(Dennse(11, activation='sigmoid'))
 #### cccommmpiille mmoddel
 ooptt == AAdamm(lrr=0..00002, beta_1=0.5)
 mmoddell.ccoommpiilee(loss=='binary_crossentropy', optimizer=opt,
meettriicss=[['aacccurracy']))
 rrretturrrn moddel

ddddeefffinnne ttheee sttandaloone generator model
deeeff ddddefiinnee__geenneeratoor(latent_dim):
 #### wwweiighhtt iiinnittializaation
 iiniit = RanndommNormall(stddev=0.02)
 #### dddefffinnee mmmodeel
 mmoddell == Seequeential()
 #### fffouuunddaatiiion for 7xx7 image
 nn_nnoddess = 1128 * 77 ** 7
 mmoddell.aadd(Dennse(n_nnodes, kernel_initializer=init, input_dim=latent_dim))
 mmoddell.aadd(LeaakyReLUU(alpha=0.22))
 mmoddell.aadd(Resshape((7, 7, 128)))
 #### uuupssammppleee too 14xx144
 mmoddell.aadd(Connv2DTraanspose(128, (4,4), strides=(2,2), padding='same',
keerrneel__innitiialiizer=innit))
 mmoddell.aadd(BattchNormmalization())
 mmoddell.aadd(LeaakyReLUU(alpha=0.22))
 #### uuupssammppleee too 28xx288
 mmoddell.aadd(Connv2DTraanspose(128, (4,4), strides=(2,2), padding='same',
keerrneel__innitiialiizer=innit))
 mmoddell.aadd(BattchNormmalization())
 mmoddell.aadd(LeaakyReLUU(alpha=0.22))
 #### ooouttpuutt 2228x228x1
 mmoddell.aadd(Connv2D(1,, (7,7), activation='tanh', padding='same',
keerrneel__innitiialiizer=innit))
 rrretturrrn moddel

