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INTRODUCTION



0| INTRODUCTION

Dans ce mémoire, nous allons explorer comment les techniques informatiques les
plus récentes pourraient étre intégrées a la palette d’outils de I'architecte concepteur. En
d’autre termes, il s'agit de rechercher des applications possibles pour la conception ar-
chitecturale de ce gu’on appelle abusivement «/’intelligence artificielle», mais dont la
branche qui se développe le plus aujourd’hui est plus précisément 'apprentissage ma-
chine (ou machine learning)*. Ce travail propose en effet d’esquisser une piste d’applica-
tion qui permettrait d'améliorer certaines techniques d’aide a la conception déja déve-
loppées avec des modes de programmation plus «classiques», comme les grammaires de
forme? ou d’autres algorithmes génératifs (automates cellulaires, algorithmes génétiques).
Ce que toutes ces techniques ont en commun, est de chercher a automatiser le proces-
sus de conception architecturale, ce qui pose deux questions: pourquoi, et comment?

Pourquoi vouloir automatiser certaines taches de la conception architecturale?

La production architecturale a cela de particulier, qu’elle ne produit que des proto-
types, chaque projet répondant a une combinaison de contraintes objectives unique, aux-
guelles s'ajoutent des aspects subjectifs qui orientent implicitement les choix de conception.
Le concepteur procede donc par tatonnements, jusqu’a arriver a une solution convenable.
Non seulement ce processus demande énormément de temps, mais il ne garantit méme
pas d’arriver dans le temps imparti a une solution optimale (impossibilité d’explorer toutes
les combinaisons de paramétres intéressantes). Automatiser en partie la conception, c’est
a dire déléguer a la machine, permettrait alors non seulement de gagner du temps pour
d’autres taches, mais encore d’aller plus loin dans la résolution des problémes posés, grace
a la mise a profit de la capacité de la machine a effectuer massivement et rapidement des
taches numériques précises.

Comment automatiser certaines taches du processus de conception?

Il a toujours été difficile et peu rentable de développer des outils informatiques
sur mesure, répondants aux besoins toujours changeants de l'architecte concepteur. Alors
gu’on sait aujourd’hui automatiser de maniere extrémement fiable des taches complexes
(comme jouer aux échecs, conduire une voiture, ou traduire un texte par exemple) notam-
ment grace a I'apprentissage automatique, on peine encore a soulager les concepteurs de
taches répétitives et laborieuses. Cette limite est due a la nature méme des taches a auto-
matiser, ce qu’on peut appeler le «probléeme de la formulation explicite»®. En effet, pour
déléguer des taches a la machine, il faut pouvoir les expliciter sous la forme de parametres
guantitatifs a résoudre, ce qui est long et parfois impossible (beaucoup de parametres étant
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1. Plus de détails dans la partie 1 sur I’histoire et les principes de base de I'apprentissage machine
Plus de détails dans la partie 2 sur I'état de I'art
3. Ce que Jean-Pierre Chupin expose aussi comme les «vilains problemes mal formulés»

N

in J.-P. Chupin, Analogie et théorie en architecture: de la vie, de la ville et de la conception, méme. Gollion: Infolio, 2013, p.242



Le Machine Learning au service de la conception architecturale

de nature implicite ou subjective). Si de nombreux courants de pensée* ont tenté de pro-
duire une «syntaxe» qui permette de formaliser dans leur ensemble les parametres a ré-
soudre lors du processus de conception architecturale, ils se sont généralement heurté aux
limites de I'exercice. Cest ici que I'idée d’utiliser I'apprentissage machine est intéressante:
et si I'architecte pouvait transmettre ses connaissances a la machine, sans avoir besoin de
les expliciter de maniere fastidieuse? Notre hypothese est que les plans (ainsi que d’autres
modes de représentation), sont des supports de cette connaissance, en ce qu’ils sont uti-
lisés par les architectes eux-méme pour apprendre a partir de solutions existantes, mais
aussi d’'apprendre au fil du processus de conception en tant qu’ils permettent de mettre a
I'épreuve les choix de conception. Il pourrait donc étre intéressant d’explorer comment la
machine pourrait étre amenée a «comprendre intuitivement» les critéres de I'architecte,
sans que celui-ci ait besoin de passer par un mode d’expression qui n’est pas le sien, c’est a
dire en lisant directement des plans.

Apprendre les machine a lire des plans...

Si les limites de temps et de moyens de ce travail n‘ont pas permis de formaliser
de maniére exhaustive un outils opérationnel, I'approche choisie consiste donc a présen-
ter une synthese des connaissances acquises pour réaliser une expérimentation appelant a
étre approfondie. Il s’agissait donc de mettre en pratique ce type d’outils sur un probléme
simple : 'apprentissage machine de quelques «connaissances architecturales» a partir d’'un
corpus de plans. Le contenu du mémoire aborde donc diverses problématiques qui appa-
raissent lors d’une telle expérimentation. On peut citer entre autres : le choix du support de
connaissances a soumettre a lI'apprentissage®, la formalisation précise des connaissances a
apprendre ou encore le paramétrage de l'algorithme d’apprentissage adapté aux données

soumises.

Dans la premiére partie, on reviendra donc sur le contexte technique et théorique
dans lequel se situe notre sujet. Cela nous permettra en particulier d’introduire plus pré-
cisément les notions de base de I'apprentissage machine, mais aussi d’identifier certains
besoins de l'architecte en matiére d’outil d’assistance a la conception, auxquels pourraient
répondre certaines applications cette technologie.

Dans la seconde partie, il sagira de préciser notre problématique au regard de I'état
de I'art plus spécialisé. 'analyse de certains travaux de recherche nous permettra en par-
ticulier d’identifier des absences de questionnement ou des pistes non explorées, pouvant
faire I'objet de notre recherche. On définira ainsi les objectifs de notre expérimentation.

4.

Entre autres on peut citer C.Alexander et son «Pattern Langage» ou Philippe Boudhon et son «Architecturologie», évoqués en partie 1



Dans la troisitme partie, on exposera en détail les étapes de I'expérimentation.
Chaque étape sera l'occasion d’aborder des problématiques de mise en ceuvre plus géné-
rales. Si les résultats exposés sont encore peu convaincants quand a leur applicabilité, on
pourra toutefois noter que la méthode mise en place constitue en elle méme un résultat

intéressant.

On évoquera finalement dans la derniere partie, des pistes d’approfondissement
possibles a partir de I'analyse des résultats de notre expérimentation, mais aussi a partir des
connaissances collectées pour sa réalisation. Au dela de leur aspect prospectif, ces pistes
ont surtout pour vocation d’illustrer les intentions implicites de cette recherche, et les appli-
cations concréetes qui pourraient en découler.

Enfin, la conclusion permettra notamment de revenir sur les fantasmes qui en-
tourent ces technologie dites d’intelligence artificielle, a la lumiére des problématiques ren-
contrées dans notre mise en ceuvre expérimentale. La question de I'automatisation totale
des compétences de I'architecte n’est non seulement pas 'objet de notre exposé, mais en-
core moins une menace d’actualité au regard des différents parameétres évoqués au fil de ce

mémoire.

Introduction
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CONTEXTE

Intelligence artificielle et réves de concepteur



1| CONTEXTE

1.1 «lintelligence artificielle», un sujet d’actualité

La notion «d’intelligence artificielle» (IA) est apparue des I'invention des premiers
ordinateurs, mais elle jouit aujourd’hui d’'un essor d a des succes technologiques tres ré-
cents. Elle véhicule aujourd’hui beaucoup de fantasmes, notamment a cause de I'ambiguité
des termes employés pour la décrire au grand public. Pour illustrer les crispations qu’elle
peut générer dans le domaine pourtant encore assez peu concerné de l'architecture, on
peut citer une récente pétition lancée par le syndicat des architectes (UNSFA) a propos de
la déclaration du patron d’Autodesk qui évoquait I'intégration d’une IA dans ces logiciels
d’outils d’aide a la conception®. Si les architectes a l'origine de cette pétition s’inquiétent
en particulier pour leur droit d’auteur (et c’est légitime), de nombreuses questions sont
également soulevées par cette annonce: mais que peut vraiment faire une «intelligence
artificielle» en terme de conception architecturale, méme avec l'aide de données récoltées
aupres des nombreux utilisateurs? Afin de mieux saisir les enjeux de ce sujet vaste, revenons
donc rapidement sur quelques principes, et quelques techniques qui existent actuellement
sur le marché, en terme d’IA.

1.1.1 Histoire d’'un développement retardé

Si la notion «d’intelligence artificielle» apparait pour la premiere fois lors d’une
conférence en 1956, les premiers modeles théoriques de «réseaux de neurones artificiels»
inspirés de la compréhension du cerveau, datent de 1943, soit avant méme le premier ordi-
nateur électronique. Inspirée au départ de la biologie, cette technologie s’est ensuite natu-
rellement développée pour réaliser des taches mettant a profit les capacités calculatoires et
systématiques de 'ordinateur, pour assister I'humain dans des taches laborieuses. Un débat
continue dailleurs aujourd’hui d’animer les chercheurs sur I'ambiguité des termes liés a
une interprétation biologique, qui est non seulement porteuse d'ambiguités anthropomor-
phiques mais peut surtout induire en erreur les recherches.

«Définir I'intelligence artificielle n’est pas chose facile. (...) L'intelligence artificielle désigne en
effet moins un champ de recherches bien défini qu’un programme, fondé autour d’un objectif
ambitieux : comprendre comment fonctionne la cognition humaine et la reproduire ; créer
des processus cognitifs comparables a ceux de I'étre humain.» Cédric Villani?

« Méme si les avions ont des oiseaux pour modéles, ils ne battent pas des ailes. De facon
comparable, les RNA sont progressivement devenus assez différents de leurs cousins bio-
logiques. Certains chercheurs soutiennent méme qu’il faudrait éviter totalement 'analogie
biologique, par exemple en disant unité au lieu de neurone, de peur que nous ne limitions
notre créativité aux systéemes biologiquement plausibles. » Aurélien Géron?

Pour résumer son histoire récente, I'lA a donc connu un développement avec des périodes
d’enthousiasme et de désillusions, repoussant toujours plus les limites de ce qu’on croyait
pouvoir n'étre fait que par les humains. Apres les premieres découvertes, dont le prin-
cipe du «perceptron» (modele permettant de réaliser des opérations logiques grace a une

1. «Je moppose au pillage des données stockées dans le cloud d’AUTODESK », Petitions24.net.
Disponible sur: https.//www.petitions24.net/je_moppose_au_pillage_des_donnees_stockees_dans_le
cloud_dautodesk.

2. C. Villani, Rapport « Donner un sens a l'intelligence artificielle, pour une stratégie nationale et euro-
péenne », 2018.
Disponible sur: https.//www.aiforhumanity.fr.

3. A. Géron, Deep Learning avec TensorFlow - Mise en ceuvre et cas concrets. Dunod, 2017, p.73
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Premiere formulation théorique des
“réseaux de neurones artificiels” par le
neurophysiologiste W.McCulloch et le
mathématicien W.Pitts

ENIAC, premier ordinateur entiérement
électroniaue

Regle d'apprentissage de Hebb "Les
neurones qui sactivent entre méme
temos se lient entre eux"

Création du test de Turing

Premigres formulations théoriques du
concept d'apprentissage par
renforcement

1BM 650 , premier ordinateur commercial
oroduit en série

Conférence de Dartmouth, abordant
pour la premiére fois la notion
dintelligence artificielle par John
McCarthy Marvin (inventeur de LISP)

Invention du principe de perceptron par
F Rosenblatt

Premier Modem (transmission de
données binaires sur lizne téleohoniaue)
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Début de "Ihiver de A"

Prix Nobel de médecine attibué aux
chercheurs D.H.Hubel et T.Wiesel pour
leurs travaux sur le cortex visuel des
chats et des singes

Concept du néocognitron inspiré par le
cortex visuel

1BM PC (personal computer)

Naissance d'internet (protocole TCP/IP)

Fin de "Ihiver de IA"

Découvertes pionniéres en méthodes de
machine learning

Invention par D.Rumlhart et al. de
Jalgorithme d'entrainement a rétro-
brooaaation

Naissance du Wold Wide Web (protocole
HTTP. langage HTML)

Yahoo, premier moteur de recherche

Le programme "DeepBlue " vainqueur
contre le champion du monde en titre
aux échecs Kasoarov

Publication par Y.LeCun, L Bottou,
Y.Bengio et P Haffner de la célebre
architecture LeNet-5 capable de
reconnaitre les numéros de chéques
gréce a l'nvention des couches de
convolutions

ImageNet Challenge

Découverte cruciale par X.Glorot et
Y.Bengio de I'intérét de 'initalisation
aléatoire

Reccord ImageNet battu par AlexNet

La start-up DeepMind présente un
systeme capable d'apprendre 3 jouer &
n'importe quel jeu Attari 4 partir des
seules régles du jeu, grace 3 un
aporentissace oar renforcement

Reccord ImageNet battu par GoogleNet

DeepMind racheté par Google pour plus
de 500 millions de §

Google DeepMind "AlphaGo " vainqueur
face au champion du monde en titre de
Go

Invention par S.loffre et C Szegedy de la
techniaue de normalisation oar lots

Reccord ImageNet battu par ResNet

"LIA de Microsoft peut reconnaitre un
discours mieux aue des suiets humains”
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couche unigue de «neurones artificiels» unitaires ), I'lA (et plus précisément les «réseaux
de neurones artificiels») a connu ensuite une «traversée du désert». En effet, les espoirs
provoqués par ces découvertes ont été vite rattrapés par des limites infranchissables dues
a 'immaturité des technologies. Si les techniques d’apprentissage continuent a progresser
dans les années 80, grace a de nouvelles «architectures» des réseaux de neurones, les fi-
nancements sont redirigés vers des techniques alternatives, telles que les SVM (machines a
vecteurs de support), dont on comprend mieux les fondements théoriques. Dans les années
1990 un premier rebond apparait, mais c’est surtout dans les années 2010 qu’on observe
une véritable amélioration des performances des systéemes dits «d’apprentissage machine»
(ou apprentissage automatique ou encore machine learning). Aujourd’hui on entend parler
d’IA a longueur de journée, fort des succés récents et médiatiques de ces technologies. Pour
résumer les atouts qui en font probablement une révolution technologique partie pour du-
rer, voyons les arguments listés par I'auteur Aurélien Géron (dans son ouvrage qui a servi de
référence trés importante dans ce travail de mémoire):

«Finalement, nous assistons aujourd’hui a un regain d’intérét pour les RNA (réseaux de neu-
rones artificiels). Va-il s’évaporer comme les précédents ? Il y a quelques bonnes raisons de
croire que celui-ci sera différent et qu’il aura un impact bien plus profond sur nos vie :

1. Il existe des données en quantité absolument gigantesques pour entrainer les RNA, et ils
sont souvent bien meilleurs que les autres techniques d’apprentissage automatique sur les
problémes larges et complexes.

2. L'extraordinaire augmentation de la puissance de calcul depuis les années 1990 rend au-
jourd’hui possible I'entrainement de grands réseaux de neurones en un temps raisonnable.
Cela est en partie dd a la loi de Moore, mais également a I'industrie du jeu qui a produit par
millions (et donc a bas colt) des cartes graphiques équipées de GPU puissants.

3. Les algorithmes d’entrainement ont également été améliorés. Pour étre honnéte, ils ne
sont que légérement différents de ceux des années 1990, mais ces ajustements relativement
limités ont eu un impact extrémement positif.

4. Certaines limites théoriques des RNA se sont avérées plutét bénignes dans la pratique. Par
exemple, de nombreuses personnes pensaient que les algorithmes d’entrainement des RNA
étaient condamnés car ils resteraient certainement bloqués dans un optimum local, alors
que ces cas se sont révélés plutét rares en pratique (et lorsqu’ils surviennent, ils sont en gé-
néral assez proches de I'optimum global).

5. Les RNA semblent étre entrés dans un cercle vertueux de financement et de progreés. Des
produits incroyables fondés sur les RNA font régulierement la une de l'actualité. Les RNA
attirent ainsi de plus en plus d’attention, et donc les fonds. Cela conduit a de nouvelles avan-
cées et encore plus de produits étonnants.» Aurélien Géron*

1.1.2 Quelques principes de I'apprentissage machine

Afin de pouvoir comprendre ce qui distingue les différentes branches qui consti-
tuent I'apprentissage automatique, on va d'abord évoquer trés sommairement ses principes
de bases. On favorisera ici les explications "qualitatives" sans alourdir I'exposé de considéra-
tions mathématiques (qui sont toutefois a la base de ces concepts). Voici donc tout d'abord
trois définitions citées par A.Géron>:

Définition 1
"L'apprentissage automatique est la science ou l'art de programmer les ordinateurs pour
qu’ils puissent apprendre a partir de données."



Définition 2
« L'apprentissage automatique est la discipline donnant aux ordinateurs la capacité d’ap-
prendre sans qu’ils soient explicitement programmeés. » Arthur Samuel, 1959

Définition 3

« Etant donné une tdche T et une mesure de performance P, on dit qu’un programme infor-
matique apprend a partir d’une expérience E si les résultats obtenus sur T, mesurés par P,
s‘améliorent avec l'expérience E. » Tom Mitchell, 1997

Dans ces différentes définitions, la caractéristique principale du systeme mis en place est
donc d'apprendre a partir d'exemples (appelés couramment jeu d'entrainement ou training
set). Mais comment le systeme fait-il pour apprendre par lui méme ? Voici encore une expli-
cation tres claire donnée par A.Géron®:

«l‘approche la plus fréquente consiste a créer un modéle prédictif et d’en régler les para-
meétres pour qu’il fonctionne au mieux aux données d’entrainement. Un modeéle linéaire par
exemple donne une prédiction qui est une somme pondérée des paramétres plus un terme
constant. La phase d’entrainement du modele consiste a trouver la valeur des coefficients de
pondération (ou poids) a appliquer aux variables d’entrées pour minimiser I'erreur du modéle
sur I'ensemble du jeu de données d’entrainement. Une fois les parameétres réglés, on peut
utiliser le modéle pour faire des prédictions sur de nouvelles observations. L'espoir est que
si le modele fonctionne bien sur les données d’entrainement, il fonctionnera également bien
sur de nouvelles observations. Si la performance est bien moindre, on dit que le modéle a
« surajusté » le jeu de données d’entrainement. Cela arrive généralement quand le modéle
possede trop de parameétres par rapport a la quantité de données d’entrainement disponible
et a la complexité des tdches a réaliser.»

En réalité, deux principes de base permettent d'expliquer ce processus: le modele de base
du réseau neurone artificiel (ou perceptron), et le processus dit de rétropropagation. En
effet, le modele du réseau neurone artificiel a tout d'abord été inventé et utilisé dans sa
composition la plus simple: une seule couche de neurones artificiels (chacun pouvant ré-
aliser une classification binaire simple, basée sur une fonction de seuil), étant entrainée
selon la regle de Hebb (définie en 1949), résumée historiquement ainsi: « les neurones qui
s’activent en méme temps se lient entre eux ». En d'autres termes, pour chaque neurone de
sortie qui produit une prédiction erronée, il renforce donc les poids des connexions liées aux
entrées qui auraient contribué a la prédiction juste. Ces perceptrons ont ensuite été enrichis
d'une ou plusieurs couches cachées (devenant alors des réseaux de neurones profonds), et
il a alors été bien plus difficile de les entrainer. C'est la que l'invention de l'algorithme de
rétropropagation (1986) a joué un role fondamental, en permettant de décomposer I'en-
tralnement en une succession de "passes en avant" et de "passes en arriere". L'explication
qui suit pourra étre complétée par la visualisation du schéma réalisé dans la partie 3.3.3 :

«Pour l'exprimer de facon concise : pour chaque instance d’entrainement, I'algorithme de
rétropropagation commence par effectuer une prédiction (passe vers l'‘avant), mesure l'er-
reur, traverse chaque couche en arriére pour mesurer la contribution a l'erreur de chaque
connexion (passe vers l'arriére) et termine en ajustant légerement les poids des connexions
de maniere a réduire I'erreur (étape de descente du gradient).»’

Contexte
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Ibid, p.74
Ibid, p.5
Ibid, p.7
Ibid, p.82
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Schéma présentant une ar-
borescence des différentes
"branches" de I'lA.%

Voyons maintenant les différents types de taches pouvant étre apprises, ainsi que les tech-
nigques d'entralnement qui permettent spécifiguement de les obtenir. C'est ici qu'apparait
I'importance des données d'entrainement, puisqu'elles conditionnent en grande partie ce
qui peut étre appris par le systeme (en effet les "connaissances" a acquérir doivent étre lues
par la machine dans ces données). On distingue trois types d'apprentissage:

L'apprentissage supervisé, qui requiert un jeu de données d’entrainement « étiqueté »,
c'est-a-dire pour lequel chaque observation est accompagnée de la réponse souhaitée, que
I'on nomme étiquette ou cible (label ou target en anglais). Celui-ci peut étre utilisé pour
apprendre les deux types de taches suivants:

e Tache de classification: attribution d'une classe par mesure de similarité
e Tache de régression : prédiction d’une valeur en fonction de divers parametres

L'apprentissage non supervisé, pour lequel le jeu d’entralnement n’est pas étiqueté. Celui-ci
peut étre utilisé pour apprendre les trois types de taches suivants:

e Tache de détection d’anomalie : détection de différence par rapport a de nombreux
exemples connus

e Tache de partitionnement d’un jeu de données: classement des données par familles
de similarité

e Tache de réduction de la dimensionnalité: simplification selon certains parametres

L'apprentissage par renforcement, qui est capable de générer ses propres données d'en-
tralnement a partir de regles de bases (utilisé par exemple pour I'apprentissage de jeux de
stratégie comme les échecs ou le Go). Ce dernier est de loin le plus intéressant, mais le plus
complexe a mettre en ceuvre.

Artificial
Intelligence
Deduction, Knowledge Planning Perception:
Reasoning, Representation Computer Vision
Problem Solving
Machine Robotics: Motion Matural Language Social
Learning and Processing Intelligence
Manipulation
Supervised Learning Unsu pervised Reinforcement
Learning Learning
| 1T 1 |
Decision Assocation Clustering Similarity Bayesian Neural
Tree Rule and Metric Networks Networks
Learning Learning Learning
| R = | | T T R i | | PR T |
Inchu ctive Supp ot Sparse Genetic Desp Manifold
Logic Vector Dictionary Algorithms Learning Learming
Pragramming Machines Learning

8. ANZIEU, « S‘amuser avec le Machine Learning ! Part2 », Alexis ANZIEU, 09-mars-2018 .



On notera enfin que les applications de I'apprentissage machine sont trés développées dans
certains domaines, pour des raisons spécifiques, dues notamment a la nature des données
a disposition. Par exemple, la reconnaissance automatique de photographies a bénéficié
d'une grande quantité de données labellisées (grace aux réseaux sociaux) et accessibles sur
le web. On peut aussi évoquer ici les types de réseaux de neurones capables de réaliser ces
différentes taches, et dont l'invention a chaque fois permis de réaliser de nouvelles perfor-
mances. En effet, apres les réseaux de neurones profonds (RNP), on a inventé les réseaux
de neurones convolutifs (RNC,dont le principe inspiré du cortex visuel a permis une nette
amélioration des capacités "visuelles" de reconnaissances de motifs), puis les réseaux de
neurones récurrents (RNR, capables de créer de la musique grace a leur mémorisation de
séries temporelles), et enfin les autoencodeurs qui sont capable d'apprentissage non super-
visé. Si on voulait entrer dans le détail, on verrait que de nombreuses innovation techniques
mais aussi méthodologiques on permis petit a petit d'améliorer la maniére dont on entraine
ces réseaux, afin de dépasser les problemes de divergence ou de sur-apprentissage qui ne
cessent de réapparaitre avec la complexification des architectures.

1.1.3 Quelques enjeux sociaux et économiques

Si I'lA pose encore beacoup de questions techniques, elle souleve aussi de nom-
breux enjeux sociaux et économiques. Parmi de nombreux auteurs s'essayant sur ces sujets,
on peut citer le rapport officiel du député Cédric Villani, paru en 2018 et qui dresse un état
des lieux a I'échelle francaise et européenne des évolutions de l'industrie liée a ces tech-
nologies. Si I'architecture et la construction ne font pas partie des secteurs prioritaires de
développement qu'il préconise, ses recommandations d'ordre général s'appliquent a tous
les domaines. Les problématiques qu'il pointe en particulier sont celle des emplois menacés
par l'automatisation des taches, ainsi que les problématiques de souveraineté de nos sys-
témes de connaissance.

«Dans ce monde-la, qui est désormais le nétre, ces technologies représentent beaucoup plus
qu’un programme de recherche : elles déterminent notre capacité a organiser les connais-
sances, a leur donner un sens, a augmenter nos facultés de prise de décision et de contréle
des systemes. Et notamment a tirer de la valeur des données. L'intelligence artificielle est
donc une des clés du pouvoir de demain dans un monde numérique.»

«Ll’intelligence artificielle est loin d’étre une fin en soi et son développement doit prendre en
compte plusieurs aspects. Tout d’abord la nécessité de penser les modes de complémentarité
entre 'lhumain et les systemes intelligents. Que ce soit au niveau individuel ou collectif, cette
complémentarité peut prendre plusieurs formes et peut étre aliénante comme libératrice. Au
ceeur du développement de I’IA doit résider la nécessité de mettre en ceuvre une complémen-
tarité qui soit capacitante, en ce qu’elle permet de dés-automatiser les tdches humaines. »®

Du point de vue de I'architecte, on a bien-slr un prisme de lecture de ces enjeux assez spé-
cifique. En effet, si les emplois de nature créative sont encore peu menacés par |'automati-
sation, on cherche pourtant a s'en approcher pour des raisons d'efficacité dans les taches de
plus en plus complexes a réaliser. Pourtant, notre métier ayant un fort impact sur la société,
on ne peut pas déléguer a la machine des responsabilités trop importantes. On doit égale-
ment veiller a ne pas supprimer aux concepteurs leur autonomie (ou souveraineté) de créa-

Contexte
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9. C. Villani, Rapport « Donner un sens a l'intelligence artificielle, pour une stratégie nationale et européenne », 2018.



14

Le Machine Learning au service de la conception architecturale

tion, par une domination des éditeurs de logiciels par exemple. Si I'lA peut devenir un outil
de création trés intéressant, c'est également une technologie tres centralisatrice, dont ceux
qui possedent des données en nombre auront le monopole. On peut tres bien imaginer des
applications développées par des éditeurs de logiciels, mais aussi par des promoteurs dont
les motivations essentiellement financieres pourraient aveugler quand au pouvoir de stan-
dardisation et autres biais possibles de ces technologies.

1.2 Tentatives historiques d’automatisation de la conception architecturale
1.2.1 Le développement de I'informatique vécu par les architectes

Il serait bien trop long de détailler ici la longue liste histoire de I'appropriation par
les architectes de I'outil informatique. En effet, depuis I'apparition des premiers ordinateurs,
les concepteurs ont cherché a en faire un allié de travail dans leurs taches besogneuses
mais aussi dans leurs recherches les plus créatives. Si il existait déja une infinité "d'écoles"
de conception architecturale, la maniére de se servir d'un ordinateur ajoute encore un pa-
rametre a cette diversité des pratiques architecturales. Toutefois les théoriciens et histo-
riens observent des "mouvements architecturaux", des tendances qui s'organisent autour
de techniques computationnelles bien définies. C'est ainsi que Mario Carpo'® évoque par
exemple le réle des "modeleurs de spline", développés a l'origine pour la conception au-
tomobile, dans I'émergence d'un mouvement architectural obnubilé par les courbes. Dans
son ouvrage du méme nom, I'auteur annonce par ailleurs ce qu'il appelle "the second digital
turn" (un deuxiéme tournant digital), qui serait d'apres lui en train d’apparaitre du fait no-
tamment de I'explosion de la quantité de données que I'on peut a présent stocker. Ce qu'il
évoque par la est un certain essoufflement des mouvements "pionniers" de la conception
numérique consistants uniguement a rechercher la complexité formelle a I'aide de proces-
sus complexes mais peu "intelligents" (au sens de "donnant du sens a leurs actions"). Leur
maniere d'utiliser la puissance de calcul de I'ordinateur étant tres démonstrative, elle ne
simplifie pourtant en rien, la tache de I'architecte. Mais si ces écoles de conception démons-
tratives et formelles (qu'on désigne souvent comme les "déconstructivistes") sont celles
dont on parle le plus souvent, en matiere de digitalisation de la conception architecturale,
d'autres plus discretes se sont véritablement confrontées au "probleme de la formulation
explicite" (évoqué en introduction), qui semble étre la véritable limite de la digitalisation du
processus de conception, en ce qu'il bride la fluidité de la communication entre I'architecte
et son outil qu'il aimerait pouvoir "éduquer". En effet, lorsqu'on tente de faire faire a 'ordi-
nateur les taches "intelligentes" du concepteur, on se heurte a un probleme de traduction
(ou de formulation) d'instructions claires et suffisantes pour la réalisation de cette tache.
Le concepteur doit donc choisir entre deux manieres (incomplétes) d’utiliser la machine:
soit il I'utilise pour optimiser un ensemble de parametres qu’il a préalablement explicités
(ce qui revient a un travail laborieux voir impossible selon le probléme posé), soit il I'utilise
pour générer des formes abstraites, ne résolvant que quelques parametres géométriques
du probleme, gu’il doit ensuite «adapter» a la réalité du probleme en terme d’usages et
d’aménagements (ce qui revient a résoudre un probléme dans le probleme, avec de nou-
velles contraintes géométriques).

10. M. Carpo, The second digital turn design beyond intelligence. Cambridge, MA: The MIT Press, 2017, p.55
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1.2.2 Des théories pour formaliser le processus de conception

En parallele du développement de I'informatique, la quéte de |'automatisation a
poussé de nombreux concepteurs et théoriciens de la conception a un auto-analyse pous-
sée, afin de pouvoir formuler une syntaxe communicable a la machine pour décrire les
opérations du concepteur. Plusieurs écoles de pensée sont alors apparues, se confrontant
majoritairement autour de deux positions: I'une voulant conserver le mystere de la "boite
noire" du concepteur (de peur d'en perturber le bon fonctionnement), et I'autre défendant
une approche purement rationnelle consistant a décortiquer de maniere exhaustive le pro-
cessus de conception. Dans son ouvrage "Analogie et théorie en architecture"?, J.P. Chupin
procéde a une analyse trés documentée de ces différents courants de pensée et évoque
notamment le cas de C. Alexander et son "Pattern Langage", la premiére tentative assez
caricaturale de décomposition exhaustive des choix du concepteur. Si Alexander a fini par lui
méme désavouer sa propre méthode, d'autres tentatives plus élaborées ont été elles méme
confrontées a des limites: c'est le cas de Philippe Boudon?? et sa théorie de "I'architectu-
rologie" qui devait décrire intégralement sous forme "d'échelles architecturologiques" les
parametres a déterminer par le concepteur, et dont le nombre ne cesse d'augmenter au gré
des besoins toujours plus divers de la conception. Pour résumer, cette école du «problem
solving» qui propose de réduire la question posée en un ensemble de paramétres quantita-
tifs a faire optimiser par la machine, pose la question de la complexité d’une telle résolution
(paramétres nombreux et parfois contradictoires). Mais sa limite est surtout I'impossibilité
a expliciter compléetement le probléeme en terme de parameétres explicites (sans compter le
caractére unigue de chaque probléme).

1.2.3 Une troisieme voie

Dans son livre "Permutation Design: Buildings, Texts ans Contextes", Kostas Terzi-
dis®® tente de proposer une alternative a la guerre de position entre les défenseurs de la
boite noire, et les adeptes du "problem-solving" a I'infinité de paramétres. Il souligne d'ail-
leurs I'apport selon lui majeur de C. Alexander passé plutot inapercu qui f(it de proposer
une définition de ce qui, dans la conception était "systématisable" et ce qui ne I'était pas,
ainsi que la théorie selon laquelle une bonne modélisation du processus de conception de-
vait inclure des changements de contraintes (changement d'avis du concepteur). Apres une
analyse similaire a celle présentée ici, Terzidis déduit un type d'usage qui devrait étre fait de
I'ordinateur, dans le but de résoudre aussi bien les limites de formulation explicite des "pro-
blem-solver" que les limites des concepteurs "a la boite noire", qui ne parviennent pas tou-
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Schémas présentant les
"trois types de concepteurs"

selon J.C.Jones 1969:

1. "Designer as Magician"

2. "Designer as computer"
(traitement systéma-
tique de l'information)

3. "Designer as self-orga-

nizing system" (le réle
de la reflexivité dans la
conception)

11. J.-P. Chupin, Analogie et théorie en architecture: de la vie, de la ville et de la conception, méme. Gollion: Infolio, 2013.

12. P Boudon, Sur I'espace architectural: essai d'épistémologie de I'architecture. Marseille: Parenthéses, 2003.
13. K. Terzidis, Permutation Design: Buildings, Texts, and Contexts. London ; New York: Routledge, 2014.
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jours a la solution optimale avec leur méthode de tatonnement. D'apres lui, la "conception
automatique devrait permettre de garantir ces deux résultats: explorer une grande quantité
d'options, et sélectionner la meilleure. Aprés avoir rappelé I'efficacité des méthodes d'al-
location spatiale pour les problemes trés fonctionnalistes (comme les hdpitaux), il évoque
méme la nécessité de développer une méthode plus adaptative (proche du processus de ta-
tonnement), au cours duquel la machine apprendrait par elle méme. Finalement le principe
défendu par Terzidis est ce qu'il appelle les "permutation", dont il donne ici la définition:

«In design, the problems that designers are called upon to solve can be regarded as pro-
blems of permutations. A permutation is an ordered arrangement of elements in a set. In our
case, the set is design and the elements are design components, such as lines, shapes, forms,
or spaces.» Kostas Terzidis

Cette approche n'est pas sans rappeler une théorie moins récente: celle des grammaires
de formes (ou shape grammars), proposée pour la premiére fois par G. Stiny!* en 1980,
mais qui depuis continue a étre I'objet de recherches. Si cette approche semble tout aussi
laborieuse que les précédentes (celles des "problem-solving"), elle présente tout de méme
un intérét majeur: elle se concentre sur la question spatiale, au lieu de vouloir intégrer tous
les aspects du probléme posé. Une telle approche permet non seulement de tirer parti des
compétences de I'ordinateur sur une tache trés bien définie, mais elle permet également
de puiser dans le champs des références déja réalisées afin d'en extraire des connaissances
(elle ne consiste donc pas a partir de rien). Pour illustrer ces considération, nous citerons
un travail faisant désormais autorité dans cette branche de recherche : L'étude des mai-
sons de Malagueira de I'architecte Alvaro Siza, par José Pinto Duarte!®.Dans Cette étude, le
chercheur s'appuie sur un corpus de plans réels et sur les conseils de I'architecte lui méme,
afin de formuler une grammaire permettant non seulement de décrire les plans existants,
mais encore d'en générer de nouveaux. Cet exemple bien qu'on ne peut plus unique, nous
donne une piste d'exploration: les grammaires de forme comme moyen d'apprendre a partir
d'exemples existants.

1.3 L'apprentissage machine, un piste de résolution?

Dans cette section, on produira quelques hypothéses sur la maniere dont I'appren-
tissage machine semble pouvoir répondre aux besoins spécifiques du concepteur évoqués
précédemment, et ce d'apres ce qu'on comprend "intuitivement" des possibilités d'usages
de ces systemes. Ces hypothéses se basent sur une caractéristique récurrente des réseaux
de neurones: la reconnaissance de motifs. Ces hypotheses nous guideront ensuite pour na-
viguer dans I'état de I'art, qui est vaste et touche a des champs disciplinaires tres variés.
Si I'expérimentation présentée en partie 3 ne permettra que partiellement d'en évaluer la
validité, il est intéressant de les exposer ici, afin de donner a voir le cheminement vers notre
problématique et les ambitions de départ, forcément trop larges, du travail de recherche.

Comme on peut déduire des théories de K. Terzidis notamment, I'apprentissage de I'archi-
tecture se fait en intégrant un vocabulaire de formes qui permettent une certaine abstrac-
tion de la réalité de l'objet a concevoir : la conception consiste en effet a manipuler ces abs-
tractions pour les agencer et ensuite les retranscrire en une réalité constructible. L'une des
fonctions que sont capables d'apprendre certains réseaux de neurones (les réseaux convo-

14. G. Stiny, « Introduction to shape and shape grammars », Environment and Planning B: Planning and Design, vol. 7, n® 3, p. 343-351, 1980.
15. J. P Duarte, « Towards the Mass Customization of Housing: The Grammar of Siza’s Houses at Malagueira », Environment and Planning B:

Planning and Design, vol. 32, n° 3, p. 347-380, juin 2005.
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Figure 7. Partial tree diagram showing the derivation of basic patterns, types, subtypes, and
layouts. The patterns are not dimensioned to stress the commonalities among types. The diagram
includes designs in the corpus and a new design. For graphical clarity, the label ci (circulation)
was substituted by a shaded black area indicating the staircase.

Diagramme d'arborescence exposant les regles de composition des différents types de plans, conformément a
la "grammaire de forme" mise au point a Il'aide d'un corpus de références, et des avis de I'architecte.
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lutifs en particulier), est justement la reconnaissances de motifs (ou patterns). On pourrait
alors imaginer "enseigner" a un réseau des connaissances architecturales sous la forme de
motifs. Deux possibilités s'offrent alors: I'apprentissage supervisé de motifs identifiés au
préalable, ou bien I'apprentissage de motifs non supervisé sur des plans réels non étiquetés.
Chacune des deux options peut avoir un intérét, méme si la deuxieme option semble la plus
prometteuse, et la premiere la plus réaliste. Pour illustrer qualitativement la capacité des
réseaux de neurones a apprendre a reconnaitre de motifs de maniére non-supervisée, on
citera encore une fois I'ouvrage de A.Géron, a propos de la capacité de ceux-ci a produire en
interne une représentation efficace des données d’entrainement:

« Prenons une série de nombres a mémoriser : une série plus longue mais obéissant a
quelques régles simples est beaucoup plus simple a mémoriser (ex : suite de Syracuse). Si
nous avions la capacité de mémoriser rapidement et facilement de trés longues séries, nous
n‘aurions pas besoin de nous préoccuper de l'existence d’un motif dans la seconde suite et
nous pourrions simplement apprendre chaque nombre par cceur. C'est cette difficulté de
mémorisation des longues suites qui donne tout son intérét a la reconnaissance de motifs.
Comme le cerveau humain, si on contraint l'entrainement d'un réseau de neurones artificiel
on le pousse a découvrir et a exploiter les motifs présents dans les données. »

«La relation entre mémoire, perception et correspondance de motifs a été étudiée sur les
joueurs d’échec par William Chase et Herbert Simon deés le début des années 1970. IIs ont
étudié comment les joueurs pouvaient mémoriser en trés peu de temps la configuration de
I'échiquier. lls ont montré que les joueurs n‘avaient pas une mémoire exceptionnelle, mais
que c’était bien leur expérience du jeu qui leur permettait de reconnaitre plus facilement des
motifs de placement. A l'instar des joueurs d’échecs, un réseau de neurones artificiel examine
les entrées, les convertit en une représentation interne efficace et produit en sortie quelque
chose qui ressemble énormément a l'entrée. »*®

A partir d'un entrailnement sur des plans réels, on pourrait donc imaginer de produire un
corpus de motifs, décrivant d'une certaine maniere ces plans. Pourrait-on alors mettre en
évidence un aspect "diagrammatique" de ces motifs? Seraient-ils intelligibles si on arrivait
a les lire? Comment pourrait-on les utiliser? Le "mandala" de Sou Fujimoto’ représenté ci-
contre illustre une maniere manuelle "d'encoder" des motifs, afin de les réinterpréter lors
de la conception. Cette pratique permet a l'architecte de saisir I'essentiel d'une référence
avant de la réinterpréter. Ce genre de mode de représentation pourrait-il devenir le langage
de communication directe avec la machine si recherché par les architectes?

16. A. Géron, Deep Learning avec TensorFlow - Mise en ceuvre et cas concrets. Dunod, 2017, p.50
17. J. Lucan, Précisions sur un état présent de I'architecture. Lausanne: Presses Polytechniques et Universitaires Romandes, 2015.
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PROBLEMATIQUE

Etat de I'art quand a 'automatisation de la conception



2| PROBLEMATIQUE

Dans cette partie, il s'agit d'énoncer notre problématique, en s'appuyant sur une
analyse (succincte) de I'état de I'art. Précédemment, on a donc évoqué les objectifs de
cette recherche: extraire des "connaissances architecturales" a partir de plans, en tentant
d'exploiter les capacités de "reconnaissance de motifs" propres aux réseaux de neurones
(convolutifs en particulier). Afin de préciser nos objectifs, en terme de faisabilité mais aussi
de méthode, nous allons donc rassembler les éléments qui pourraient nous orienter.

2.1 Structure de I’état de I’art

Tout d'abord, il s'agit d'avoir une vision claire de la structure de notre état de I'art.
En effet, les domaines de recherche qui touchent a notre sujet sont variés et peuvent étre
répartis en cing grandes familles thématiques:

1. Les grammaires de formes et autres algorithmes génératifs

Ces recherches! ont déja été évoquées, mais elles ont servi ici plus spécifiquement a
nous aiguiller pour la réalisation de notre générateur de plans. Ceci dit, celui-ci reste
tres sommaire, et un intérét de la recherche serait justement de pouvoir se dispenser
de 'usage laborieux de ces grammaires de formes.

2. Le machine learning pour I'architecture

Bien qu'assez éloignées de I'application spécifique de lecture des plan, ces recherches
nous ont donné des pistes sur le type de données dont dispose d'architecte pour
entrainer un réseau de neurones, mais aussi sur différentes applications possibles.

On a par exemple pu voir des réseaux entrainés sur des "décisions implicites" d"un
concepteur? (ce qui pose un gros probleme de proportion entre la quantité d'opéra-
tions nécessaires a I'apprentissage, et la quantité d'opérations effectivement automa-
tisées). Cette recherche présentait par contre une méthode intéressante, qui consistait
a utiliser le réseau de neurone comme fonction d'évaluation d'un algorithme géné-
tique, ce qui permettait de I'intégrer directement dans le processus de conception. On
a également pu voir I'usage de données générées grace a une maquette numérique,
permettant un apprentissage supervisé de reconnaissance de types d'espaces a partir
d'images perspectives 3. Une autre étude proposait quand a elle de produire des
"réves architecturaux", en utilisant un réseau déja entrainé sur une banque d'images
d'animaux, afin de tester I'adaptabilité d'un tel réseau pour un usage a petite échelle®.
Ces recherches donnent des pistes d'exploration intéressantes, et sont surtout la
preuve d'un intérét grandissant des architectes pour ces technologies, bien que les
applications soient encore loin d'étre opérationnelles.

Problématique
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1. M. Barros, J. P. Duarte, et B. M. Chaparro, « A Grammar-Based Model for the Mass Customisation of Chairs: Modelling the Optimisation

Part », Nexus Netw J Nexus Network Journal : Architecture and Mathematics, vol. 17, n® 3, p. 875-898, 2015.

2. C.Sjoberg, C. Beorkrem, et J. Ellinger, « Emergent Syntax: Machine Learning for the Curation of Design Solution Space », in ACADIA 2017:
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2017.

4. J.Silvestre et Y. Ikeda, « ARTIFICIAL IMAGINATION OF ARCHITECTURE WITH DEEP CONVOLUTIONAL NEURAL NETWORK », p. 10.« Image-to
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3. Le machine learning pour la création en général

La créativité ou le design sont traités essentiellement de deux points de vue par la re-
cherche en apprentissage automatique: I'application de motifs (ou de textures) >, et la
suggestion temporelle de séquence de croquis °. Il est intéressant de constater que ces
application moins contraintes que celles en architecture, semblent permettre d'élabo-
rer des solutions transposables a 'avenir a l'architecture. Il y a aussi des applications
trés proches de ce qu'on souhaite faire ici, comme |'apprentissage de motifs pour
classer des peintures d'archives 7.

4. Le machine learning pour d’autres applications (techniques intéressantes)

Cette partie de I'état de I'art est plutot technique. En effet, pour comprendre ce qui

est faisable et dans quelles conditions pour répondre a un probleme donné, on peut
étre amené a consulter ce qui se fait dans des domaines annexes ou les recherches ont
de I'avance pour des raisons souvent d'enjeux économiques ou de meilleures condi-
tions (comme des donnée abondantes par exemple). Dans notre cas, on a pu s'inspirer
de recherches allant de la détection d'objets en 3D a l'aide d'objets modélisés syn-
thétiqguement?, jusqu'a la classification de fagade, qui se fait a partir de photos mais
consiste aussi en la détection de motifs®.

5. Lalecture automatique des plans

Enfin, une branche de I'état de I'art sur laquelle on ne pouvait pas faire I'impasse était
celle qui concernait précisément notre sujet. Etonnamment, les applications propo-
sées se focalisaient essentiellement sur la reconstitution de maquettes en 3D a partir
de la détection des murs'®!+12 Cette approche conduit a occulter tout autre para-
meétre qu'on pourrait tenter de lire dans les plans, et procéde souvent d'une définition
trés précise de ce qu'est un mur. On remarque aussi que ce sont essentiellement des
méthodes d'apprentissage supervisé qui sont mises en ceuvre, sur la base de bases de
données de plans de promoteurs accessibles en ligne.

© N o u

10.

11.

12.

Image Translation with Conditional Adversarial Networks ». [En ligne]. Disponible sur: https://phillipi.github.io/pix2pix/.
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2.2 Positionnement vis a vis de I'état de l'art

Si I'état de I'art spécifique sur la lecture automatique de plans nous a renseigné sur
I'avancée des méthodes spécifiques pour la détection des murs, nous sommes obligés de
nous en distancer un peu, étant donné que notre sujet est plus élargi. En effet, on cherche a
mettre au point, non pas un systéme de détection de murs, mais d'un systeme qui pourrait
potentiellement détecter d'autres "caractéristiques architecturales”, telles que les propor-
tions, les trames ou autres. Il nous fallait bien un prétexte pour démarrer, mais nous ne
perdrons pas de vue nos objectifs. On aura donc un positionnement plus élargi sur |'état
de I'art, afin de pouvoir envisager les perspectives plus larges de notre travail, quand a ses
applications possibles pour assister la conception.

2.3 Définition des objectifs d’expérimentation

Au cours de cette expérience, nous chercherons donc a nous approcher le plus
possible d'un résultat consistant a faire déchiffrer a un modele entrainé, une "caractéris-
tique architecturale" contenue dans des plans réels. Dans les limites de |'expérience, on
travaillera avec des plans étiquetés qui seront générés par nos soins, mais toujours dans le
but de comprendre comment on pourrait atteindre notre objectif, sans passer par une étape
trop laborieuse (c'est a dire ni en étiquetant des centaines de plans, ni en ayant besoin de
produire un générateur sans cesse plus complexe). Il s'agit donc de réaliser un entrainement
supervisé pour une tache de classification de plans d'appartement, qui prédise le nombre
de piéces dans celui-ci.

Problématique
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EXPERIMENTATION

Construire un systeme d'apprentissage destiné a la lecture de plans



3| EXPERIMENTATION

Dans cette partie, on exposera en détail les étapes de I'expérimentation mise en
place pour répondre a la problématique élaborée dans la partie précédente. Pour résumer,
cette expérimentation consiste a produire un réseau de neurone et a I'entrainer sur un jeu
de données, afin qu’il soit utilisable pour extraire un parameétre a partir d’'un plan: le nombre
de piéces. Il s'agit donc de réaliser une tache de classification, ou chaque classe correspond
a un nombre de pieces possible. Le réseau utilisé est un réseau de neurone profond (c’est
a dire avec plusieurs couches cachées), et convolutif (qui comprend une couche dite de
convolution). Les données sur lesquelles est entrainé le réseau de neurone sont des plans
générés, ce qui permet d’en produire en quantité illimitée sans avoir a les labelliser manuel-
lement. La recherche consistera donc a évaluer I'influence sur la performance du réseau de
guelgues paramétres: la taille de I'échantillon d’entrainement, la proportion entre I'échantil-
lon d’entrainement et I'échantillon de test (ou de validation), ou encore la diversité (ou com-
plexité) des échantillons. Finalement, on analysera les limites de I'expérience, notamment
guand a la possibilité d’utiliser le réseau pour lire de vrais plans.

3.1 Choisir I'outil de programmation

Pour réaliser cette expérience, il fallait tout d’abord choisir le support et le langage
de programmation a utiliser. En effet, si certains logiciels permettent déja d’utiliser des ré-
seaux de neurone de maniéere intégrée, comme le plugin LunchBoxML*, il reste néanmoins
plus simple d’utiliser un outils plus commun pour le Machine Learning: la librairie Tensor-
Flow du langage python. Cet outil a plusieurs avantages:

e Lelangage python

Outre le fait qu’il soit trés majoritairement utilisé dans les applications de Machine
Learning, les internautes sont généralement unanimes pour vanter les qualités synthé-
tiques de ce langage. Aujourd’hui il est d’ailleurs devenu le premier langage enseigné
dans les écoles d’ingénieur, et est compatible avec de nombreux logiciels ayant une
interface de programmation comme Grasshopper ou Dynamo. La citation ci-dessous
résume bien les arguments en faveur de cet outil:

«Pourquoi préférer Python aux autres langages? Python est un langage facile a ap-
prendre et son code est plus lisible, il est donc plus facile a maintenir. Il est parfois
jusqu’a 5 fois plus concis que le langage Java par exemple, ce qui augmente la produc-
tivité du développeur et réduit mécaniquement le nombre de bugs. L'environnement
python est riche en librairies. Vous trouverez toujours des projets open source qui vous
faciliteront la vie.»?

e Les bibliotheques python, dont TensorFlow
Les nombreuses bibliotheéques qui enrichissent le langage python, permettent de réali-

ser avec le méme langage des taches spécialisées de maniere compacte et modulable.
Pour notre expérience, on utilise par exemple les librairies matplotlib (pour le tracé
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@ python’

Logo de python, langage
de programmation

matpl:tlib

Logo de matplotlib, une
bibliothéque spécialisée
pour les tracés 2D, utili-
sée par exemple en info-
graphie.

Tensor

Logo de TensorFlow, une
bibliotheque spécialisée
pour le calcul numeé-
rique.

Keras

Logo de Keras, une bi-
bliothéque intégrée a
Tensorflow  permettant
une mise en oeuvre
simplifiée de réseaux de
neurones.

1. Plugin développé par le développeur Proving Ground, compatible avec les logiciels Rhino ou Revit a travers leur interface de programma-
tion respectives Grasshopper et Dynamo. Cet outils développé pour les concepteurs, pourrait faire I'objet d’une recherche plus approfondie.

Source: https.//provingground.io/tools/lunchbox/

2. Source: http.//apprendre-python.com/ A. Géron, Deep Learning avec TensorFlow - Mise en ceuvre et cas concrets. Dunod, 2017.
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géométrigue des plans), numpy (pour les manipulations matricielles) ou encore os
(pour les imports et exports de documents). La librairie spécifiqguement utilisée pour
mettre en place le réseau de neurone s‘appelle TensorFlow.

«Tensorflow est une bibliothéque logicielle open source puissante destinée au calcul
numérique. Elle est particulierement bien adaptée et optimisée pour 'apprentissage
automatique a grande échelle. Congue pour étre flexible, utilisable a toutes les échelles
et préte a 'emploi en production. »®

e La communauté python et TensoFlow sur GitHub

Le choix d’un langage de programmation se fait aussi par rapport a la dimension de la
communauté qui participe a I'enrichir et qui garantit notamment les mises a jour né-
cessaires. De ce point de vue, python semblait également étre un choix judicieux. Sur
la plateforme de partage GitHub, on trouve notamment beaucoup d’extraits de codes
sur des problémes trés similaires a celui qui nous concerne. On y trouve par exemple
le code du projet Pix2Pix*, une application open source qui permet de convertir une
image d’entrée en une autre image (par exemple une facade dessinée en imitation de
photographie).

e La bibliotheque Keras

Keras est une interface de programmation applicative (API) de haut niveau, permettant
une implémentation rapide de réseaux de neurones, grace a une optimisation intégrée
des hyperparametres. Pour une recherche plus fine, ce type d’outil peut étre limité

car optimisé de maniéere automatique. Toutefois, dans le cadre de notre expérimenta-
tion, il s'est avérée largement suffisant et a permit d’obtenir rapidement des résultats
encourageants, sans nécessiter une grande expérience.

La configuration choisie pour réaliser I'expérience est donc une configuration tout a fait
accessible et gratuite, qui permet de se familiariser avec les problématiques propres a la
conception d’un systéme d’apprentissage automatique. Cette expérience de mise en pra-
tique nous a tout particulierement permit de constater qu’au dela des résultats «tech-
niques» limités obtenus, la mise en place d’une méthode est en réalité la difficulté majeure
de I'exercice (et non pas I'apprentissage du langage de programmation, qui fait souvent peur
aux non initiés).

3.2 Constituer un jeu de données d’entrainement

La question des données d’entrainement est cruciale pour I'apprentissage machine.
Comme précisé précédemment, les réseaux de neurones ne sont devenus une technologie
intéressante que tres récemment, et ce en grande partie au regard de la quantité de don-
nées exponentielle partagée sur le web. On observe d’ailleurs que les domaines dans les-
quels 'utilisation de cette technologie s’est le plus développée correspondent aux domaines
possédant le plus de données disponibles: la classification de photos ou de vidéos, la traduc-
tion de textes, la reconnaissance vocale... La recherche dans ces domaines bénéficie d’ail-
leurs de nombreuses contributions, dont la mise en place de bases de données étiquetées.
Pour notre expérience, plusieurs stratégies s'offraient a nous: rechercher une base de don-
née accessible déja étiquetée (il en existe déja quelques unes pour les plans d’architecture),

3.
4.

A. Géron, Deep Learning avec TensorFlow - Mise en ceuvre et cas concrets. Dunod, 2017, p.47
https://phillipi.github.io/pix2pix/



produire notre propre base de donnée manuellement (ce qui implique de sélectionner, puis
labelliser chaque plan), ou enfin de générer directement une base de donnée correspon-
dant a nos besoins. avantage majeur de cette derniere option, est de pouvoir attribuer
automatiquement une étiquette a chaque élément généré, puisqu’il suffit d’extraire I'un
des parametres génératif qui est alors connu. Un autre avantage est de pouvoir a moindre
co(t obtenir un trés large échantillon, et ainsi ne pas étre limité par la quantité. Enfin, le fait
de générer permet de choisir les parametres pertinents a faire varier. Par exemple, il n’est
pas nécessaire de se préoccuper de la pertinence architecturale des plans, tant qu’on veut
apprendre a lire des parameétres géométrique comme le nombre de pieces.

Pour notre expérience, nous avons donc choisi de générer nos données d’entrailnement
selon un modeéle simple. Afin de tester I'effet de différents parameétres sur la performance
du réseau, nous avons d’ailleurs généré plusieurs versions de I'échantillon d’entrainement :

e Une version «Basiquev,
gui nous a permit de rapidement tester le réseau, mais dont la faible variété des para-
metres implique des biais d’apprentissages importants (distribution des angles discrete
limitée, orientation unique des pieces, textes aléatoires).

e Une version «Evoluéey,
qui nous permet de corriger quelques biais d’apprentissages immédiatement observés
avec la version basique, mais qui ne permet toujours pas d’atteindre des résultats sur
des plans réels ou trop détaillés (avec des portes, des meubles ou d’autres épaisseurs
de trait).

e Une version «Mixte»,
qui tente d’'influencer a la marge le réseau par 'ajout d’'un mélange de quelques plans
complexifiés manuellement (par un traitement sur Photoshop) et de quelques plans
réels, étiquetés manuellement. Si cette derniere base de donnée ne permet pas en-
core d’obtenir des résultats probants, on verra néanmoins dans quelles conditions elle
permettrait de s’en approcher.

3.2.1 La version «Basique» de la base de données (version B)

Pour générer rapidement des figures géométriques ayant les caractéristiques de
base d’un plan, on utilise des regles trés simples (une sorte de grammaire de forme®), qui
consistent a fixer certaines valeurs aléatoires (inclinaison, distance la plus grande, nombre
de piéces) puis a déduire par des opérations simples (division, addition, transformation) les
sous-parametres permettant de construire la figure. Ainsi, chacun des plans générés est
une version du plan de base (illustré ci-contre), qui lui méme est réalisé selon les étapes
suivantes:

1. Détermination aléatoire du couple (hO,w0), qui seront les coordonnées du point
PO le plus éloigné. Ce parametre délimite I'enveloppe dans laquelle se situe le plan.

2. Détermination par déduction d’une liste de point P1, P2, ... P11 qui permettent de
tracer le plan «maximal» (un plan qui aurait 3 chambres). Ce découpage se fait avec
un degré daléa dans les proportions entre les distances, mais selon certains para-
metres fixes (qui assurent par exemples que toutes les pieéces sont des rectangles).
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plan234_3.png

Exemple type d’un élément
issu de la base de donnée
«Basique» : chaque élé-
ment est constitué par un
plan, et une étiquette qui
se trouve encodée dans le
nom de fichier. Ici, il s‘agit
du 234eme plan généré
dont la classe est la classe
3 (pour 3 chambres).

5. Cette notion fait 'objet d’une autre partie plus détaillée, et nous a permit d‘avoir une méthode de base pour arriver rapidement a un résultat.



28 Le Machine Learning au service de la conception architecturale

Cuis Ch.3

Sejour

plan34 _2.png

Exemple d’un élément issu
de la base de donnée «Ba-
sique» : Ce cas particulier
ne se retrouvera pas dans
la version «Evoluée», dans
laquelle on s’assurera de
nommer les chambres
selon le nombre total de
chambres présentes. Ici la
chambre appelée «Ch.3»
devra s‘appeler «Ch.2».

Extrait de version «Evo-
luée» de la base de donnée:
on peut le remarquer par
les symétries, les degrés
de rotation ou encore les
noms des piéces correspon-
dant au nombre réellement
présent. On peut égale-
ment visualiser la logique
d’étiquetage via les noms
des fichiers d’export sous
chacun des plans.

3. Détermination aléatoire des parametres c1, c2 et c3 qui indiquent I'existence ou non
de chacune des 3 chambres selon qu’ils prennent la valeur 1 ou 0. On attribuent en-
suite aux chambres qui sont effectivement présentes un nom allant de «Ch.1» a «Ch.3».

4. Enfin, détermination aléatoire d’un angle de rotation parmi une liste d’angles possibles,
et rotation du plan autour du point de base (0,0).

A partir de ces 4 regles ou étapes, on génere donc un nombre souhaité d’éléments, qu’'on
exporte chacun dans un fichier au format PNG de taille 300x300 pixels et dont le nom com-
prend I'indice de génération (qui permet de localiser le plan dans la base de donnée) et la
valeur du parametre de classe qui nous intéresse (de valeur 1,2 ou 3).

3.2.2 La version «Evoluée» de la base de données (version E)

Apres les premiers essais d’entrainement (qui seront détaillés plus loin), on a rapi-
dement constaté des failles dans la robustesse du systeme dues a la trop grande homogé-
néité des données d’entrainement. Par exemple, le réseau de neurones était incapable de
reconnaitre un plan sur lequel il avait été entrainé avec un taux d’erreur de 0% si celui-ci
subissait une simple rotation d’un angle non compris dans la liste des angles possibles. Entre
la version basique et la version évoluée, ce sont donc quelques modifications simples qui
ont été opérées, permettant d'augmenter la diversité des plans a soumettre au réseau. On
a notamment rajouté un degré de symétrie aléatoire, ainsi qu’un intervalle continu d’angles
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possibles. Enfin, afin de pousser le réseau a baser sa lecture sur les parametres textuels, on
a fait en sorte que les noms des chambres attribués correspondent bien au nombre réelle-
ment présent (c’est-a-dire que le nom «Ch.3» ne soit pas utilisé pour nommer une chambre
siil n’y en a que deux par exemple).

3.2.3 La version «Mixte» de la base de données (version M)

Aprés d’autres tests d’entrainements sur la version «Evoluée» de la base de don-
nées, on a pu constater d’autres limites (qui seront détaillées plus loin), mais on a surtout pu
mesurer la distance a parcourir dans le perfectionnement des plans a générer si on voulait
avoir une chance de pouvoir lire des plans réels. Finalement, le probleme ainsi posé re-
viendrait a décrire trés précisément par une grammaire de forme tres aboutie, une grande
diversité de plans, ce qui remettrait en cause tout I'intérét supposé de I'utilisation de I'ap-
prentissage profond, décrit dans les parties précédentes. Cette derniére tentative est donc
le début de ce qui mériterait un réel travail de recherche: combiner un apprentissage sur
des données générées et sur des données réelles. En effet, le temps imparti pour ce travail
de mémoire ne permettait pas le long travail de sélection et d’étiquetage de plans réels en
guantités suffisantes. On verra par la suite que l'objectif ne serait d’ailleurs pas plus atteint
de cette maniere, qui ne fait décaler le probleme, et qu’il existe des méthodes alternatives
pour traiter le probleme des données non étiquetées (reposant sur une combinaison entre
I'apprentissage supervisé et I'apprentissage non supervisé). En attendant on a donc «bri-
colé» cette troisieme base de données en ajoutant des éléments manuellement, dans une
proportion peu signifiante malheureusement.

Finalement, une fois la base de donnée a utiliser constituée, il reste a formater
les données pour I'entralnement: en d’autres termes, il faut les convertir dans un format
qui soit lisible par le réseau de neurones. Cet aspect sera détaillé dans la partie suivante,
puisqu’elle est conditionnée par la forme méme du réseau utilisé.

3.3 Créer et entrainer un modele

Une fois qu’on dispose d’une base de données exploitable, il faut donc y prélever
un échantillon de données d’entrainement ainsi qu’un échantillon de test. En effet, le ré-
seau de neurone utilisera les données d’entrainement pour modifier ses poids (processus
dit de rétro-propagation), et les données de test serviront a offrir une visualisation de la
performance du réseau au cours de I'entrainement, ce qui est surtout utile pour connaitre le
nombre d’époques nécessaires pour avoir un entrainement satisfaisant. On comprend que
seul I'échantillon d’entrainement a un impact sur I'apprentissage du réseau.

3.3.1 Formater les données d’entrée

Comme énoncé précédemment, les données brutes de la base de données doivent
tout d’abord étre importées puis formatées pour pouvoir étre lues par le réseau. Plus spéci-
figuement, c’est la premiére couche du réseau qui détermine le format nécessaire (ou inver-
sement, on peut étre amené a choisir le type de la premiére couche adapté au format des
données a traiter). Nos plans étant générés, ils sont déja dans un format homogene (format,
dimension et profil colorimétrique identiques), ce qui nous épargne une étape d’harmoni-
sation qui serait nécessaire pour des plans réels. Toutefois il est nécessaire de les conver-
tir en tableaux de valeurs numériques (ou matrice), pour gu’ils puissent étre exploités par
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Exemple dun  élément
ajouté manuellement a la
base de donnée «Mixte»:
il s’agit d’'un plan trouvé
sur internet® et sélection-
né pour sa simplicité et sa
proximité avec les plans
générés. On notera que la
salle de bain est ici consi-
dérée comme une chambre
pour simplifier.

6. « 62 Prémio Pré-Fabricados para Estudantes — 1° Lugar — Parque Guaianazes / Jhonny Rezende », ArchDaily Brasil, 02-janv-2012. Disponible
sur: http://www.archdaily.com.br/br/01-18871/60-premio-pre-fabricados-para-estudantes-1-graus-lugar-parque-guaianazes-jhonny-

rezende.
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Matrice X_Train
N images de 300x300 pixsls

Représentation ~ schéma-
tique du réseau utilisé pour
l'expérience: en «entrée,
on lui donne en réalité une
matrice de valeurs d’en-
trées associée a une ma-
trice de valeurs de sorties,
grdce auxquelles il pourra
réaliser son entrainement
(on dit que le modele
s‘ajuste aux données d’en-
trainement). On voit aussi
les différentes couches qui
composent ce réseau (re-
présentation  simplifiée),
ainsi que le format des en-
trées et sorties de chacune
d’elle.

le réseau qui fonctionne par opérations matricielles. Enfin, il est également nécessaire de
mettre sous forme matricielle les étiquettes (ou labels) décrivant les plans. On produit donc
deux matrices d’entralnement X_train et Y_train comprenant respectivement I'ensemble
des plans et les valeurs de classe correspondantes (le nombre de pieces, allant de 0 a 4),
dans un ordre identique qui permettra au réseau de les associer. On procede de méme pour
les matrices de test X_test et Y_test. Parmi les parameétres que 'on fait varier pour I'expé-
rience, celui de la taille de I'échantillon d’entrainement (on entraine le réseau avec 300 puis
avec 3000 plans) nous permet d’évaluer la bonne proportion a adopter entre la complexité
des objets a classer, le nombre de classes possible et |a taille de I'échantillon a soumettre au
réseau pour obtenir un degré de reconnaissance satisfaisant.

Matrice ¥_Train
N étiquettes danz [0,1,2,3]

INFUT Couche 2 Couche 3 Couche 4 Couche 5

CONVOLUTION POOLING FLATTEN DENSE

Couches cachées

3.3.2 Choisir la structure du réseau

Pour choisir la structure du réseau adaptée a nos besoins, une facon simple était de
partir d’'un exemple de base disponible sur le site web de TensorFlow’, puis de 'adapter en
modifiant simplement la nature et le nombre de couches. La seule contrainte est de s’assurer
gue chaque couche est compatible avec le format de sortie de la couche précédente, et que
la derniere sortie est de dimension scalaire (numéro de la classe). On ajoutera par exemple
une couche de convolution, dont l'utilisation dans de nombreux exemples (par exemple
dans le réseau utilisé par Pix2Pix?) semble indiquer I'efficacité. Il est d’ailleurs reconnu que
les réseaux de neurones dits convolutifs (ayant au moins un couche de convolution), sont
tres efficaces pour les taches de classification d’image mais aussi pour la reconnaissance
du langage naturel®. Mais pour avoir un apercu général du principe de fonctionnement de
notre réseau (pourquoi il fonctionne autrement dit), expliquons le principe et l'utilité de
chacune des couches qui le composent:

e Lacouche d’entrée
Cette couche est indispensable puisqu’elle a pour fonction de distribuer les entrées sur
la couche suivante. Toutefois elle ne subit pas d’ajustement, et ne sert a rien d’autre
gu’a permettre au systeme de lire la matrice des données. Elle ne fait pas partie des
couches dites cachées du modele.

7. https://www.tensorflow.org/tutorials/
8. https.//phillipi.github.io/pix2pix/
9. A. Géron, Deep Learning avec Tensorflow - Mise en ceuvre et cas concrets. Dunod, 2017, p.179
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In [&2]: import tensorflow as tf

import tensorflow.keras as k
model = k.models.Sequential ([

k.layers.Conv2ZD(1l&, (3, 3), strides=3, input shape=(300,300,1),activation="relu")
r

k.layers.MaxPooling2D(pool size=(Z2, 2)),

k.layers.Flatten(),

k.layers.Dense(4,activation=tf.nn.scftmax)
1)
medel .compile(loss="sparse categorical crossentropy',ocptimizer='adam',
metrics=['accuracy'])
model.fit (X train, y train, epochs=10,batch size=8) model.evaluate(¥ test, vy test)
Epoch 1/10
ZOO0FZ000 [mem—mm——m—————e———— e ] o iy SmE/Shep - logg: 10T082 - Heor Q5460
Epoch 2/10
2000/2000 [==============================] - 105 5Sms/step - loss: 0.5664 - acc: 0.7955
Epoch 3/10
HIOOARA00 [memmemme e s | i Smmdaiber - losme 0.3787 < Hogn § .Bugh
Epoch 4/10
TOENIANDE [mrmmmmmemmremme e —me—ee—es] o 4E TS EEelr  ThEsl 00848~ oandy @ w8000
Epoch 5/10
2000/2000 [==============================] - 4g 2ms/step - loss: 0.1912 - acc: 0 .9510
Epoch &/10
SRR IN0N eeeseseese e s e e e v s on gl Oty o D o) DO S s 0 BT EG
Epoch 7/10
2000/2000 [==============================] - 4g 2ms/step - loss: 0.0980 - acc: 0 .9835
Epoch 8/10
TOENIANDE [mrmmmmmemmremre e o 4E JHiEdeEelr  ThEsl 00880 o abnds @ 80915
Fpoch 9/10
JOO0AZ0NY [Rsssssmosms s s s R s s ) D gl Se Bl W e 00T Y oands o 959580
Epoch 10/10
200042000 [s======================——=====] - 4z 2mz/step - loszz: 0.0422 - acc: 0 5845
200/200 [=m——=—=———————eee e~ ] - 1s 3ms/sStep

out[e2]: [0.29691603004932404, 0.915]

La couche de convolution

C’est le bloc de construction le plus important d’un RNC (Réseau de Neurones Convo-
lutif). Dans la premiere couche de convolution, les neurones ne sont pas connectés a
chaque pixel de I'image d’entrée mais uniquement aux pixels dans leur champs récep-
teurs (c’est a dire une matrice de dimension réduite appliquant un filtre sur toutes les
sous-parties de méme dimension de I'image, par balayage). Cette architecture, inven-
tée en imitant le fonctionnement du cortex visuel humain®®, permet au réseau de se
focaliser sur des caractéristiques de bas niveau dans les premieres couches cachées,
puis de les assembler en caractéristiques de plus haut niveau dans les couches supé-
rieures. Ici, les motifs a reconnaitre étant assez simples, un seul niveau de convolution
suffit a obtenir des résultats satisfaisants. Si toutefois on souhaiter améliorer notre sys-

10.

Ibid, p.181

Extrait du code qui suffit a
définir, entrainer et évaluer
le réseau de neurone utili-
sé dans notre expérience:
quelgues lignes suffisent
pour définir I'ensemble des
couches de neurones (sur-
lignées en jaune), et les
nombreux parameétres tels
que le type de fonction de
codt, la fonction d’activa-
tion, la méthode d’optimi-
sation ou encore le nombre
d’époques d’entrainement.
En sortie on peut lire la
valeur du codt (loss) et de
la précision (accuracy) a
chaque étape de l'entrai-
nement (epochs). Ici, on a
entrainé le réseau sur les
données «Mixtes».
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Marge de zéros

Schéma de principe®® d’une
opération de convolution:
ici la dimension de ba-
layage est 3x3 pour une
image de 7x7.

Visualisation de la structure
de notre réseau de neurone
(appelé «graphe»), grdce
a TensorBoard, un outil in-
clus dans TensorFlow qui
offre une interface web de
visualisation pour visualiser
aussi bien la composition
du réseau, que les courbes
d‘apprentissage (voir ci-
apres). On peut constater la
complexité des connexions,
pour notre réseau qui est
pourtant tres basique par
rapport a I'état de I'art des
CNN (moins de 10 couches
cachées). A noter, on ne
visualise ici le modele qu’a
un niveau trés peu détaillé
(absolument pas a I'échelle
d’un «neurone» unitaire).

init_1 init

group_deps[0-5]

loss

dense fa...

teme (cf. Considérations de la partie 4), on gagnerait a multiplier ce type de couches
dans la mesure du niveau de diversité de «motifs» a reconnaitre. La dimension de
balayage est également un parametre important a adapter suivant le type de motifs a
repérer par chaque couche.

La couche de pooling

Cette couche a pour objectif de réduire la charge de calcul, 'utilisation de la mémoire
et le nombre de parametres (limitant ainsi le risque de sur ajustement). Son fonction-
nement est trés similaire aux couches de convolution, mais les neurones de pooling
ne possédent aucun poids. Elle se contente donc d’agréger les entrées en utilisant une
fonction d’agrégation, comme la valeur maximale ou la moyenne. Les autres entrées
sont ignorées. Cette couche est tres destructrice, a utiliser avec parcimonie dans un
réseau plus complexe.

La couche d’aplatissement (ou flatten)
Cette couche a uniqguement pour fonction de convertir la sortie de la couche précé-
dente dans un format lisible par la couche d’activation suivante.

La couche dense

Cette couche est indispensable pour réaliser la tache de classification. En effet c’est
elle qui permet d’appliquer la fonction d’activation, dont le réle et de déterminer la
classe de sortie. Ici, on utilise une fonction d’activation «softmax», ce qui est la solu-
tion standard si on ne veut pas spécialement s’y intéresser (fonctionne dans beaucoup
de cas).

La couche de sortie

De méme que la couche d’entrée, celle-ci sert a distribuer les valeurs de sortie. Elle
permet notamment de lancer la rétro-propagation dans l'autre sens, apres une éva-
luation de la réponse donnée a chaque tour par le réseau, par comparaison de celle-ci
avec le résultat connu (étiquette donnée par la matrice d’entrainement).

Ainsi on dispose d’un réseau de neurones (ou modeéle) assez simple, qui donne des résul-
tats satisfaisants pour la tache qui lui est demandée. On verra dans la partie 3.5 pourquoi
un parameétrage plus fin du réseau n‘a pas été nécessaire, dans la mesure ou le facteur
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limitant est surtout la question des données d’entrainement et du type de systéme mis en
place (systétme simple de classification supervisé) pour arriver a nos objectifs les plus am-
bitieux (lire des plans réels, sans avoir a en étiqueter un grande quantité manuellement).

Remarque: |a représentation du graphe de notre modele, visible ci-dessous, ressemble va-
guement a un «canvas Grasshopper» d’une certaine complexité. Or le tres faible nombre
de lignes de code qui en est a l'origine (cf. lllustration) nous évoque I'intérét que pourraient
avoir les réseaux de neurones pour les concepteurs du point de vue de la compacité de la
programmation. On peut s’intéresser en la matiere a la thése de Daniel Davis'! qui étudie le
mangue de flexibilité de la «programmation visuelle» pour les concepteurs.

3.3.3 Visualiser I'entrainement

Afin d’apprendre a réaliser la tache de classification des plans, le modéle réalise un
certain nombre «d’époques» d’entrailnement. A chaque époque, il s'ajuste pour minimiser
son erreur sur un certain nombre de plans, grace au mécanisme dit de rétro-propagation,
dont voici une courte définition'?:

« L'algorithme de rétro-propagation :

Pendant de nombreuses années, les chercheurs se sont efforcés de trouver une maniere d’en-
trainer les RNA (réseaux de neurones artificiels), sans succes. En 1986, D.Rumlhart et al. ont
publié un article révolutionnaire dans lequel ils introduisent un algorithme d’entrainement
a rétro-propagation (Learning International Representation by Error Propagation, D.Rumel-
hart, G.Hinton et R.Williams, 1986). Pour I'exprimer de facon concise : pour chaque instance
d’entrainement, l'algorithme de rétro-propagation commence par effectuer une prédic-
tion (passe vers l'‘avant), mesure l'erreur, traverse chaque couche en arriére pour mesurer
la contribution a l'erreur de chaque connexion (passe vers l'arriére) et termine en ajustant
légerement les poids des connexions de maniére a réduire I'erreur (étape de descente du
gradient).»

11. Davis, Daniel. 2013. “Modelled on Software Engineering: Flexible Parametric Models in the Practice of
Architecture.” PhD dissertation, RMIT University.
12. A. Géron, Deep Learning avec TensorFlow - Mise en ceuvre et cas concrets. Dunod, 2017, p.81
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Matrice X_Train
M images de 300x300 pixels

Matrice ¥_Train
M étiquattes dans [0,1,2.3]

Couche &
QUTPUT

S Ay
Retro-propagation :
Adaptation des poids des neuronss pour

INFUT Couche 2 Couche 3 Couche 4 Couche 5
ultat donné par le résesu ds

CONVOLUTION POOLING FLATTEN DEMNSE coer ) I
\—/\Kx/ r 153 en le rapprochant de s valeur
donnée ds I'stiqustts

Couches cachées

Représentation schématique du réseau utilisé pour I'expérience, pendant la phase d’apprentissage.

Si il n’y a rien a faire pendant I'apprentissage (d’ou l'appellation «apprentissage automa-
tique»), il est tout de méme indispensable d’avoir une certaine visibilité sur la facon dont le
systeme apprend. En effet, dans la phase de conception du modéle (ou du réseau de neu-
rone), on doit choisir un certain nombre de parametres afin qu’il puisse apprendre de ma-
niére satisfaisante. Pour avoir des indications sur les défauts a corriger, on peut notamment
observer la courbe d’apprentissage, qui donne I'évolution de la mesure de I'erreur au cours
du temps. Cette courbe nous permet par exemple de savoir si I'apprentissage converge ou
diverge, mais encore au bout de combien de temps I'erreur est suffisamment faible (pour
utiliser le temps d’entrainement optimal). Dans notre cas, la courbe d’apprentissage est as-
sez basique et converge plus ou moins rapidement selon la quantité de donnée, ou se-
lon la base de donnée utilisée. Nous n‘avons pas observé de grande différence suivant les
modalités d’expérience. D’autres indications nous renseignent aussi sur 'optimisation de
I'apprentissage, comme la durée d’entrainement de chaque époque (cf. Extrait de code pré-
cédemment). Enfin, il reste important de vérifier qu’on ne se situe pas dans une situation
trompeuse, comme un sur-gjustement ou une convergence vers un mauvais optimum.

loss

0.800
0.600
0.400

0.200

0 1 2 3 4 5 6 7 8 9

Courbe d’apprentissage d’un des entrainements réalisés, visualisée via I'outil TensorBoard.



Représentation schématique du réseau utilisé pour I'expérience, pendant la phase d’utilisation.

3.4 Utiliser le modeéle

Une fois entrainé, le modele a surtout été congu pour étre utilisé. Si nous n‘avons
pas pu faire une analyse tres poussée des biais d'apprentissage du réseau dans le cadre de
ce mémoire, nous avons utilisé la phase d’'implémentation du réseau pour tester sa réaction
a différents types de plans plus ou moins éloignés de ce pour quoi il a été entrainé. Ainsi
les caractéristiques des plans testés, comparées a la capacité du réseau a les identifier nous
a permis de déduire certains parametres sensibles et d’autres moins sensibles au change-
ment. Les tests étant menés dans l'optique de se rapprocher de la capacité a lire (ou classer)
des plans réels, ils consistent essentiellement a des ajouts de détails sur des plans ayant
servi a I'entrailnement (qui sont donc reconnus avec une incertitude minime par le réseau).
Le résultat donné par le modele, se présente sous la forme des probabilités d’attribution de
chacune de 4 classes, dont la plus haute est retenue comme le classement du plan analysé.
Pour chaque test, on observera donc non seulement la réponse donnée par le réseau, mais
surtout les variations dans les probabilités des différentes classes (voir partir 3.5). Comme
on le verra dans la synthése des résultats, on utilisera les résultats de ces différents tests
pour faire évoluer I'expérience. On utilisera notamment les plans modifiés pour tenter d’in-
fluencer l'apprentissage, en les intégrant dans une base de donnée mixte (évoquée précé-
demment) qui servira a son tour a entrainer le réseau.

3.4.1 Utiliser le modéle sur des plans modifiés

Afin d’introduire une synthése des résultats des différentes expériences menées
commencons donc par détailler les types de transformations testées. Ici, il s'agit donc de
modifications réalisées «manuellement» (avec un logiciel de dessin) sur des plans issus de
notre base de donnée générée Cela permet notamment de conserver le méme format, ce
qui facilite 'opération de formatage afin de les soumettre a I'évaluation du réseau (méme
conversion matricielle). On distinguera une premiere «vague» de modifications, dont le test
nous a conduit a réaliser la base de donnée «Evoluée», puis quelques modifications supplé-
mentaires destinées a tester plus spécifiquement cette deuxiéme base de donnée. Si ces
nuances seront détaillée lors de la synthese des résultats, on se contentera ici d’illustrer par
catégories I'ensemble des modifications testées dans I'expérience. On a représenté ici cote a
coOte ces modifications réalisées sur un méme plan de départ (voir page suivante), qui a servi
d’échantillon témoins pour chacune de nos expériences.

Expérimentation
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Plan d’origine

Plan sur lequel on applique les modifica-
tions décrites ci-contre. Ce plan issu de
la base de donnée «Basique», pourrait
aussi bien avoir été généré par la deu-
xiéme version «Evoluée» de I'algorithme
génératif (mémes caractéristiques).

hl

Plan modifié 1

Plan sur lequel on a appliqué la suppres-
sion des textes (réduction du nombre
d’indices)

Plan modifié 2

Plan sur lequel on a appliqué le change-
ment de style de trait, en appliquant un
filtre «effet photocopie» (modification
de I'apparence des indices).

Plan modifié 3

Plan sur lequel on a appliqué le change-
ment d’échelle, ou de cadrage (modifi-
cation de I'apparence des indices).

\E
O )

Plan modifié 4
Plan sur lequel on a appliqué I'ajout de
portes (complexification du plan).

Plan modifié 5

Plan sur lequel on a appliqué I'ajout de
mobilier, d’épaisseur de trait identique
aux murs (complexification du plan).

Plan modifié 6

Plan sur lequel on a appliqué I'ajout de
mobilier, d’épaisseur de trait différente
de celle des murs (complexification du
plan).
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Supprimer le texte (réduire le nombre d’indices)

Les textes qui indiquent le nom des pieces ont été intégré des la base de donnée «Ba-
siquey, avec I'idée d’identifier si le réseau préfererait s'appuyer sur ces petits éléments
plutdt que sur les «motifs» constitués par les murs pour identifier le nombre de piéces.
Un premier test intéressant consiste donc a supprimer ces textes, afin de répondre

a cette question. Cette opération revient donc a réduire le nombre d’indices (ou de
propriétés) sur lesquels le modele peut se baser pour évaluer le plan.

Changer le type de traits (modifier I'apparence des indices)

Un autre parametre qui varie d’un plan a un autre malgré les conventions, est le type
de traits. Ces variations peuvent étre dues a des résolutions différentes, mais aussi a
des modes (ou styles) de représentation différents (du fait d’outils de dessins différents
par exemple). Il est donc important de tester I'effet la modification des styles de traits.
Il existe bien sdr de multiples manieres d’obtenir un style de ligne différent, ici on a
choisi d'appliquer un filtre «effet photocopie».

Changer I'échelle (modifier 'apparence des indices)

Dans l'optique de traiter des plans réels issus d’internet par exemple, on peut envi-
sager que le cadrage des plans récoltés varie beaucoup. Dans I'idée d’automatiser la
récolte d’un grand nombre de plans, on doit pouvoir maitriser ce parameétre: soit en
automatisant un cadrage optimal des plans récoltés, soit en entrainant le réseau de
sorte qu’il soit insensible a un changement d’échelle. Comme on le verra dans les ré-
sultats, cette deuxiéme option n’est pas si évidente. Elle pose aussi la question encore
plus complexe de I'échelle des plans, qu’il serait intéressant d’apprendre a reconnaitre
de maniere automatique...

Ajouter des portes (complexifier le plan)

Dans la perspective de pouvoir évaluer des plans réels, on va ensuite procéder a des
transformations consistant a complexifier (ou enrichir) le plan, afin de le rendre plus
réaliste. On testera ainsi la «robustesse» du réseau a diversité des modes de représen-
tation, mais surtout sa capacité a extraire des «motifs» importants, sur lesquels il aura
été spécifiguement entrainé. Cette premiere complexification qui consiste a ajouter
des portes n’est pas anodine, puisqu’elle implique d’interrompre les lignes des murs
tout en ajoutant des «motifs» perturbateurs (de forme arrondie).

Ajouter des meubles (complexifier le plan)

Dans la méme logique que pour 'ajout des portes, on ajoute ensuite un degré de
complexité supplémentaire en dessinant des éléments de mobilier (a une échelle ap-
proximative, mais visuellement réaliste). On distinguera ici deux versions de la trans-
formation: I'une en conservant le méme type de trait (épaisseur et couleur identique),
et l'autre avec des traits distinctifs (couleur atténuée). En effet, dans I’hypothese ou

le réseau s'appuie sur les motifs constitués par les lignes de mur, on peut craindre
que les éléments de mobilier d’'une échelle comparable (les lits par exemple), soient
interprétés comme des murs. D'ailleurs, toujours dans la perspective de la lecture de
plans réels, on notera que les conventions de représentation, quel qu’elles soient,
impliguent toujours une distinction assez nette entre les murs et le mobilier.

37



38

Le Machine Learning au service de la conception architecturale

Série de plans réels N°1

Source: « 62 Prémio Pré-Fabricados para Estudantes — 1° Lugar — Parque Guaianazes / Jhonny Rezende », ArchDaily Brasil,
02-janv-2012. Disponible sur: http.//www.archdaily.com.br/br/01-18871/60-premio-pre-fabricados-para-estudantes-1-
graus-lugar-parque-guaianazes-jhonny-rezende.

Série de plans réels N°2

Source: « Mengéo honrosa no concurso CODHAB Sol Nascente — trecho 2, por Metamoorfose Studio, Eduardo Martorelli e
Bianca de Cillo », ArchDaily Brasil, 24-mars-2017. Disponible sur: http.//www.archdaily.com.br/br/805831/mencao-honro-
sa-no-concurso-codhab-sol-nascente-nil-trecho-2-por-metamoorfose-studio-eduardo-martorelli-e-bianca-de-cillo.
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Série de plans réels N°3

Source: « Primeiro Lugar no concurso da Operacdo Urbana Consorciada Agua Branca / Estidio 41 », ArchDaily Brasil,
22-juin-2015. Disponible sur: http://www.archdaily.com.br/br/768842/primeiro-lugar-no-concurso-da-operacao-urba-
na-consorciada-agua-branca-estudio-41.



3.4.2 Utiliser le modéle sur des plans réels

Bien gu’il soit trés peu probable que le réseau puisse miraculeusement déchiffrer
des plans réels, aprés n‘avoir appris que sur nos simili de plans générés (ce serait bien trop
beau), on a tout de méme tenté de lui faire lire certains plans réels, autant pour combler
une certaine frustration due aux limites de notre expérience, que pour en déduire des pistes
d’amélioration possibles. Afin de ne pas non plus jeter des «pavés dans la marre», on a soi-
gneusement choisi les plans réels a tester, afin qu’ils remplissent au moins quelques criteres
propres aux conditions de notre expérience. Les plans choisis sont donc des plans rectangu-
laires @ murs orthogonaux, dont le nombre de pieces ne dépasse pas 5 (dans la mesure du
possible). Concernant le nombre de pieces, on notera d’ailleurs que les salles de bain sont
souvent des pieces a part entiéere, alors que les cuisines sont rarement des pieces fermées,
ce qui nous éclaire déja sur une des limites de I'exercice (dont I'ambiguité de la définition
de ce gu’est une piece). Pour simplifier I'expérience, on considérera donc comme «piece»
tout espace rectangulaire délimité par quatre murs, et le nombre de chambre sera déduit
du nombre total de pieces, auquel sera soustrait le nombre de 2 (équivalent a I'ensemble
séjour+cuisine). Une fois cette convention fixée, on peut évaluer la réponse donnée par le
réseau comme sa capacité a reconnaitre les «motifs» qui correspondent a des murs. On
notera aussi que les plans sélectionnés sont regroupés par familles, au nombre de trois.
En effet, nos recherches nous on conduit a trouver des séries de plans similaires et compa-
tibles avec nos criteres, ce qui permet de tester des variations d’une série a l'autre, tout en
multipliant facilement le nombre d’éléments pouvant étre ajoutés dans notre derniére base
de donnée «Mixte». On utilisera également une derniere astuce consistant a modifier ma-
nuellement ces plans pour augmenter encore notre échantillon de plan réels (on appliquera
par exemple des rotations, des symétries, mais encore des découpages ou collage de pieces
pour modifier leur nombre). Cette astuce permettra aussi de supprimer les pieces en exces
si nécessaire (se référer a I'échantillon de plans réels «kaugmenté» illustré en annexe 3).

Remarque: Il est important de préciser que les plans utilisés pour «augmenter» la base de
donnée «Mixte» ne seront pas ceux utilisés pour tester le réseau (on parle ici des tests «ma-
nuels» en mode utilisation, et non des tests qui permettent le suivi du taux d’erreur durant
I'apprentissage).

3.5 Synthése des résultats

Pour finir cette partie, on analysera une série de tests réalisés afin de «visualiser»
les compétences acquises par le modeéle, selon qu’il ait été entrainé sur la base de donnée
«Basique», la base de donnée «Evoluée» ou la base de donnée «Mixte». Bien entendu, ces
tests ne constituent pas une analyse compléte ni exhaustive des capacités et des limites du
réseau, puisqu’elles sont menées sur un échantillon assez peu représentatif (d'un effectif
de 16 éléments). On notera aussi un aspect important qui n’est pas visible dans cet «extrait
de résultat»: les résultats donnés par le modele changent dés qu’il subit un nouvel entraf-
nement, et ce méme si c’est sur le méme échantillon. En effet, I'entrainement comprend
une phase d’initialisation aléatoire qui explique en partie ces différences. Il ne faut donc
pas prendre les résultats présentés das les tableaux suivants pour une évaluation ferme et
définitive. Enfin, on comprendra que la mise «au propre» de ces résultats étant un travail
conséquent, il n'a pas été possible de récolter des données aussi précises sur I'ensemble des
expériences réalisées durant le processus de recherche. Certains résultats ayant contribué
a des évolutions importantes de I'expérience, tels que ceux ayant conduit a la constitution
d’une nouvelle base de donnée plus évoluée n‘ont en effet pas été relatés ici. Voici donc une
présentation partielle des résultats, qui malgré ses limites, a l'avantage d’étre structurée afin
de pouvoir comparer des expériences menées dans des conditions identiques.

Expérimentation
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3.5.1 Série de tests sur plans modifiés

Les plans testés ici nont pas été ajouté dans les bases de données, ils ont sim-
plement été utilisés comme tests de robustesse a différents types de transformations. A
propos du plan original utilisé pour subir les modifications, il a été choisi pour étre le plus
quelconque possible, et pouvant étre trouvé dans chacune des bases de données. Pourtant
il semble qu’il n‘ait pas été correctement identifié par le deuxiéme réseau, entrainé avec
la base de donnée E. U'une des hypotheses qu’on peut avancer, (et qui expliquerait aussi
plus généralement les mauvaises performance de ce réseau sur I'ensemble des tests) est
que la grande diversité des plans sur lesquels il s’est entrainé nécessitait un effectif plus
important de données ou encore un nombre d'époques d’entrainement plus grand que
10. En effet, un indice qui abonde dans ce sens est le «taux de réussite a I'entrainement»
donné par le réseau (et son processus de suivi interne de I'entrainement, par test sur un
échantillon dédié): au bout de 10 époques d’entrailnement, ce réseau présente un «taux de
réussite a I'entrailnement» de 90%, ce qui est relativement faible en comparaison aux 98%
du réseau entrainé sur la base de donnée B. Mais a ces considérations s’ajoutent deux ob-
servations: d’une part le réseau entrainé sur la base M ayant de meilleurs résultats, affiche
pourtant un «taux de réussite a I'entrainement» de 89%, et d’autre part un «taux de réussite
a I'entralnement» tres élevé peut étre le signe d’un sur-ajustement et donc paradoxale-
ment d’une mauvaise performance (bien que l'usage d’un échantillon de test d’une taille
suffisante permet normalement de s’en prémunir). Pour approfondir ces considérations,
on pourra se référer a I'annexe 7.3 qui rassemble les courbes d’apprentissage, ainsi que le
valeurs du suivi de I'entralnement de chaque expérience. On peut donc observer beaucoup
de choses a partir de ces quelques résultats, bien que ca ne reste a cette échelle que des hy-
potheses. Il est donc intéressant d’établir cette sorte de «test témoin» pour s’en servir dans
la conception d’un systeme d’apprentissage, et cette méthode pourrait étre approfondie.

Série test de plans modifiés

Pour se faire une idée des capacités du réseau

Vﬂ\r entrainé, et tenter de comprendre un peu sa
m‘@ «maniere d’apprendre», on l'utilise pour pré-

_ dire (ou évaluer) le nombre de piéce des plans

o Q de cet échantillon témoin, issu de la modifica-

tion de plans générés par notre algorithme.
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Plans modifiés manuellement

Original Modifié 1 Modifié 2 Modifié 3 Modifié 4 Modifié 5 Modifié 6
\ s — —
\f\ \L \\/’\ ‘ K \ \ \
= — \ (gt St
Image \ - \ L ‘ \ \ | k \
= | L o \ 3 el
[ N L ‘\_ /\,»J \/A/\
Réponse attendue 2 2 2 2 2 2 2
Réponses du modeéle entrainé avec la base de donnée BASIQUE
0 1,38E-05 4,92E-04 3,76E-05 1,55E-07 5,40E-05 4,54E-10 5,22E-10
1 2,44E-05 1,45E-01 4,96E-04 1,00E+00 1,96E-01 2,48E-09 2,90E-09
2 1,00E+00 8,54E-01 9,99E-01 7,70E-08 8,04E-01 9,99E-01 9,99E-01
3 1,64E-04 4,00E-08 1,09E-04 8,36E-16 2,98E-09 8,81E-04 7,74E-04
Histogrammes
(échelle relative)
Taux de réussite= 86%
Réponses du modéle entrainé avec la base de donnée EVOLUEE
0 1,46E-04 9,59E-05 2,09E-05 7,70E-07 7,39E-06 4,97E-15 8,89E-15
1 4,93E-04 9,94E-01 6,08E-04 1,00E+00 9,94E-01 1,19E-10 1,18E-10
2 3,35E-01 5,72E-03 5,99E-01 1,36E-07 6,00E-03 1,41E-02 1,92E-02
3 6,64E-01 4,49E-05 4,00E-01 5,51E-12 1,16E-05 9,86E-01 9,81E-01
Histogrammes
(échelle relative)
Taux de réussite= 14%
Réponses du modeéle entrainé avec la base de donnée MIXTE
0 1,14E-02 9,35E-05 1,18E-03 1,58E-05 1,78E-06 2,14E-07 2,07E-07
1 2,90E-02 9,99E-01 7,99E-02 1,00E+00 1,00E+00 2,54E-03 1,22E-03
2 7,88E-01 4,37E-04 8,00E-01 4,14E-08 4,67E-04 9,10E-01 9,33E-01
3 1,72E-01 3,35E-07 1,19E-01 9,86E-14 3,69E-08 8,74E-02 6,62E-02

Histogrammes
(échelle relative)

Tableau de résultats des tests sur plans modifiés
Pour chaque plan, la réponse du modeéle se décompose en quatre valeurs, chaque valeur étant la probabilité d’ap-
partenir a une classe. La prédiction du modele, c’est a dire la probabilité la plus haute est soit vraie (couleur verte),
soit fausse (couleur rouge) par rapport a la valeur attendue.

Taux de réussite= 71%
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3.5.2 Série de tests sur plans réels

Dans cette phase de l'expérience on réalise cette fois des test sur des plans réels.
On notera que I'expérience est réalisée «dans la foulée» de la phase précédente, afin de
comparer non pas six, mais bien trois réseaux de neurones ne différant que par la base de
donnée sur laquelle ils sont entrainés (c’est a dire qu’un réseau une fois entrainé est sou-
mis a la suite aux deux séries de test sur plans modifiés, et sur plans réels). Cela permettra
entre autre de tirer des conclusions sur les «scores totaux» de chacun des réseaux, en plus
de les comparer sur chacun des tests séparément. Lorsqu’on observe donc plus particulie-
rement les résultats de cette phase de test, la premiére chose qu’on peut remarquer est la
progression dans la capacité a classer les plans réels que permet la base de données M. Cela
semble confirmer nos hypotheses, et surtout il est intéressant de noter qu’une proportion
de 36 plans réels sur 2000 plans d’entrainement au total (soit moins de 2%), permet d’in-
fluencer notablement la capacité du réseau. Ce résultat est intéressant, bien qu’il doive étre
nuancé, en tenant compte du fait qu’il a fallu non seulement étiqueter, mais aussi modifier
«manuellement» ces plans un a un pour augmenter artificiellement notre échantillon. Ce
processus est non seulement laborieux, mais il présente aussi quelques biais, notamment
en ce qu’il limite la diversité des styles de graphisme auquel le réseau est soumis. Un autre
biais tout aussi problématique est I'ambiguité qu’on peut avoir pour étiqueter ces plans:
en effet, notre définition du nombre de piéces basée sur la logique de notre générateur, se
retrouve vite confrontée a la grande diversité des cloisonnements et des types d’organisa-
tion possibles des piéces. De ce point de vue, si le but est d’apprendre au systeme a «lire»
des murs, il faudra un travail beaucoup plus subtil et un générateur bien plus diversifié. On
comprend donc par cet exemple toute la difficulté qu’il y a a vouloir identifier ne serait-ce
gu’un parametre aussi simple qu’un nombre de piéces. On peut donc s'amuser a analyser
dans le détail les nuances de ces résultats, mais il est surtout intéressant de prendre du recul
et d’identifier les perspectives d'améliorations possible pour ne pas tomber a nouveau dans
I'impasse du «probleme de la formulation explicite» évoqué en introduction.

Série test de plans réels

Pour chaque famille de plans réels présentée en
partie 3, on a sélectionné trois configurations
issues de modifications «manuelles» (chacune
correspondant aux nombres de pieces 1, 2 et
3), afin de les utiliser comme échantillon té-

moin. Cet échantillon complétera celui consti-

tué par les plans générés modifiés (page pré-
cédente), pour I'évaluation des performance
du réseau selon les différents entrainements.
On notera que ces plans particuliers n‘ont pas
été ajoutés a la base de donnée «Mixte», afin
d’éviter de biaiser les résultats prédictifs.
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Plans réels

Famille 1 Famille 2
i I T lals o "® M*A[
Image > ] £ l_ . |_-4 k- E
| | 5 [ 2 |
Réponse attendue 1 2 3 1 2 3 1 2 3
Réponses du modele entrainé avec la base de donnée BASIQUE
0 1,12E-15 9,76E-18 4,96E-19 1,26E-08 9,88E-22 5,58E-24 1,99E-10 1,35E-13 9,05E-19
1 1,43E-20 1,09E-18 2,42E-16 8,96E-06 2,02E-17 6,65E-22 5,21E-03 9,19E-05 4,41E-12
2 5,89E-04 3,46E-02 1,05E-01 9,98E-01 1,87E-04 6,82E-07 9,95E-01 8,20E-01 2,50E-03
3 9,99E-01 9,65E-01 8,95E-01 1,59E-03 1,00E+00 1,00E+00 1,49E-05 1,80E-01 9,98E-01

Histogrammes
(échelle relative)

Taux de réussite= 44%

Réponses du modele entrainé avec la base de donnée EVOLUEE

0 8,85E-12 1,09E-24 8,62E-27 7,87E-17 1,19E-30 3,25E-32 1,91E-15 7,21E-24 9,25E-27
1 6,89E-13 1,18E-23 3,75E-27 4,30E-12 1,83E-24 1,12E-32 9,02E-10 1,57E-18 4,52E-26
2 1,31E-01 1,22E-06 6,07E-07 2,50E-02 6,82E-07 4,22E-10 5,78E-01 2,21E-02 1,84E-04
3 8,69E-01 1,00E+00 1,00E+00 9,75E-01 1,00E+00 1,00E+00 4,22E-01 9,78E-01 1,00E+00

Histogrammes
(échelle relative)

Taux de réussite= 33%

Réponses du modele entrainé avec la base de donnée MIXTE

0 2,43E-04 3,11E-11 2,11E-15 9,47E-10 6,93E-18 1,17E-14 2,23E-12 9,27E-18 1,63E-14
1 7,75E-02 8,87E-04 9,46E-07 1,00E+00 5,46E-06 7,156-07 6,15E-03 3,25E-06 1,44E-04
2 9,21E-01 9,55E-01 1,00E+00 1,85E-05 9,99E-01 4,61E-01 9,94E-01 1,00E+00 9,98E-01
3 9,93E-04 4,42E-02 2,35E-04 3,37E-10 7,29E-04 5,39E-01 7,99E-08 3,07E-06 1,59E-03

Histogrammes
(échelle relative)

Taux de réussite= 56%

Tableau de résultats des tests sur plans réels

Pour chaque plan, la réponse du modele se décompose en quatre valeurs, chaque valeur étant la probabilité d’appartenir a une classe.
La prédiction du modele, c’est a dire la probabilité la plus haute est soit vraie (couleur verte), soit fausse (couleur rouge) par rapport a la
valeur attendue.
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PERSPECTIVES

Vers un apprentissage et une utilisation sur des plans réels



4| PERSPECTIVES
4.1 Pistes d’amélioration possibles

Comme on a pu le remarquer a travers la synthese de notre expérimentation, nous
sommes encore loin d'atteindre I'objectif qui est de déchiffrer des "caractéristiques archi-
tecturales" sur des plans réels quelconques. Pourtant il existe de nombreuses techniques
qui permettraient d'améliorer notre systeme, et en particulier toutes celles qui permettent
de réaliser un pré-entrainement non supervisé du réseau. En effet, la limite principale de
notre expérience réside dans la questions des données d'entrainement dont on dispose.
Si le fait de générer certaines données afin de "diriger" I'apprentissage pour qu'il recon-
naisse les critéres souhaités reste intéressante, on ne peut absolument pas envisager d'aller
dans un détail tel qu'on obtienne des plans quasiment réels (cela reviendrait a encoder
de maniere extrémement précise un ensemble de plans qu'on souhaite le plus diversifié
possible). Il n'est pas non plus envisageable d'étiqueter manuellement des centaines de
plans réels pour "augmenter artificiellement" notre base de donnée (notre but étant d'avoir
un systéme généralisable). Une alternative serait donc de pré-entrainer le réseau sur une
grande quantité de plans réels de maniére non supervisée (car on ne disposera jamais de
plans étiquetés avec exactement le parametre recherché). Cette solution présente un avan-
tage majeur: une fois pré-entrainé sur une grande quantité de plans, un petit échantillon
étiqueté suffit a orienter 'apprentissage du réseau qui saura déja reconnaitre des motifs
communs dans les plans (tels que des murs ou des textes). Cette méthode de pré-entraine-
ment est rendue possible grace au principe de transfert d'apprentissage: ce principe stipule
gue les couches de bas niveau apprenant spontanément a détecter des caractéristiques
de bas niveau peuvent étre conservées et verrouillées, afin de simplement ré-entrainer les
couches les plus élevées du réseau. Reste bien-sir a bien dimensionner tous les éléments,
et notamment le nombre de couches a conserver entre les deux entrainement. Une autre
astuce intéressante est le pré-entrainement a partir d'une tache secondaire, pour laquelle
on peut aisément obtenir ou générer des données d'entrainement étiquetées. On pourra
par exemple étiqueter comme "bons" tous les plans réels dont on dispose, puis générer
des nouvelles instances d'entrainement par altération des bonnes en étiquetant celles-ci
comme "mauvaises", puis pré-entrainer le modele a classer cet échantillon. Enfin, un aspect
gu'il serait intéressant d'explorer, serait la visualisation des caractéristiques apprises, afin
d'évaluer leur degré d'intelligibilité, et donc leur usage potentiel comme outil d'analyse ou
de conception. Cela est possible?, et il existe des méthodes pour visualiser pour chaque neu-
rone, les instances qui 'activent le plus. On a d'ailleurs pu piéger des réseaux de neurones?,
en utilisant ces "marqueurs”, afin de les faire identifier des éléments qui n'étaient pas réels.

4.2 Applications pour la conception

Si l'objectif de départ de cette recherche vise a instrumenter en particulier le pro-
cessus de conception, il reste encore du chemin a parcourir avant de disposer d'un outil
opérationnel, avec une application utile a la pratique de I'architecte dans des conditions
réelles. Sion peut désormais espérer avoir un modele qui apprenne a partir de références,
ce qui permettrait par exemple de dépasser les grammaires de formes "manuelles" a par-
tir d'un corpus, cela pose tout de méme la question de la transposition entre des projets
existants et les parameétres toujours uniques du probleme posé. Une autre application inté-

1. A. Géron, Deep Learning avec TensorFlow - Mise en ceuvre et cas concrets. Dunod, 2017, p.251

2. Ibid, p.249

3. A. Nguyen, J. Yosinski, et J. Clune, « Deep Neural Networks are Easily Fooled: High Confidence Predictions
for Unrecognizable Images », arXiv:1412.1897 [cs], déc. 2014.
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ressante serait alors 'apprentissage pendant le processus de conception. Comme vu dans
certains papiers de recherche de I'état de I'art?, ce genre de résultat requiert la combinaison
de notre systéme, que I'on peut qualifier de "systéme d'évaluation"”, avec un algorithme de
type génératif (par exemple, un algorithme génétique). Mais dans l'idée d'utiliser ce genre
de systéme dans les agences d'architecture, il faudrait alors explorer les conditions néces-
saires a leur déploiement a I'échelle des agences d’architecture. La possibilité de greffer a
un réseau entrainé de maniére «généraliste», un petit réseau entrainé de maniére spéci-
fique (sur un ensemble de données plus restreint), pourrait alors permettre de dépasser
les limites techniques, et notamment offrir des outils personnalisables a petite échelle, cor-
respondant au besoin spécifique du concepteur. Restent les questions autour de la proprié-
té intellectuelle, qui a I'neure de I'open source et de la conception collaborative gagnerait
peut-étre a étre réinterrogé.

4.3 Applications pour la recherche

Si ¢ca ne constituait pas un objectif de notre recherche, les applications possibles
pour la recherche en architecture sont pourtant trés nombreuses. En effet, on pourrait ima-
giner utiliser des systémes d'apprentissage dédiés au classement des archives (comme on
le fait déja par exemple pour les peintures®), ou encore a l'analyse des types par analyse
comparative de corpus de plans. Mais ces recherches peuvent aussi étre utiles concernant
la recherche en informatique elle méme: en effet, dans le domaine de I'lA, la recherche se
nourrit de toutes les exigences des domaines intéressés par le fait de s'approprier cette tech-
nologie. Parmi les nombreux domaines touchés par ce développement, I'architecture (ainsi
que d'autres domaines créatifs) fait figure d'exception en ce qu'elle releve d'une grande
complexité, qui met au défi les techniques les plus avancées. De plus, les supports de repré-
sentation graphique étudiés ont la caractéristique d'étre a haut degré de sémantique (c'est
a dire, contenant beaucoup de conventions signifiantes), ce qui en fait des cas d'étude in-
termédiaires entre le traitement du langage écrit et le traitement des photos (notons qu'on
utilise aussi des plans et des schémas dans d'autres domaines comme |'électronique, qui
pourraient bénéficier de telles recherches).

5.
6.

C. Sjoberg, C. Beorkrem, et J. Ellinger, « Emergent Syntax: Machine Learning for the Curation of Design Solution Space », in ACADIA 2017: DIS-
CIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)
ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 552- 561, 2017.

B. L. A. Seguin, « Making large art historical photo archives searchable », Laboratoire d'humanités digitales, EPFL, 2018

D. Boudet, Nouveaux logements a Zurich: la renaissance des coopératives d’habitat. 2017.



Plan illustrant la couverture du mémoire

Ce plan d'étage de I'opération suisse Hunziker Areal® illustre les li-
mites rencontrées lors de cette recherche, comme un rappel que la
subtilité du langage architectural ne se laisse pas dompter facile-
ment. En effet, ce plan posséde des caractéristiques d'adaptabilités
trés riches, qu'il serait extrémement difficile de pouvoir repérer par
un systéme de lecture automatique (on peut par exemple aussi bien
aménager |'étage en deux grandes collocations, que le cloisonner
pour avoir quatre logements indépendants). Et pourtant cette sub-
tilité est a l'origine méme de toute la conception de ce batiment, ce
qui en fait un caractére fondamental a interpréter.
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CONCLUSION



5| CONCLUSION

Dans ce mémoire, on a donc pris le parti de I'expérimentation, afin de pouvoir
aborder ce sujet par la pratique, sans quoi il aurait été trop abstrait a traiter. Pour finir sur
une note qualitative, ce travail f(t tres enthousiasmant, bien que les résultats ne soient
pas vraiment au rendez-vous, car il balaye beaucoup de questions autour de la nature de
la conception architecturale, ainsi que de l'interface homme-machine dans I'activité de
conception. Malheureusement, les aspects plus théoriques, notamment sur les typologies,
les diagrammes ou encore les grammaires de forme n'ont pu étre abordés que brievement,
alors gqu'ils constituent avec les objectifs expérimentaux un tout indissociable. De méme, on
aura pas pris le temps de développer les questions philosophiques et éthiques que souléve
ce sujet, car ce n'était pas lI'enjeu du présent travail. Toutefois, fort de cette expérience
pratique, on peut aujourd'hui relativiser a propos des nombreux fantasmes sur la toute puis-
sance de I'lA. En effet, les taches créatives restent encore assez difficile a automatiser, et ce
pour de multiples raisons qui n'ont pas toutes a voir avec leur "complexité" inhérente. En
effet, il semble que la limite principale en terme d'apprentissage machine soit la question
des données, tant du point de vue de leur quantité que de leur degré d'étiquetage (sans
parler du probleme de l'acces et de la propriété intellectuelle).

Conclusion

49



50 Le Machine Learning au service de la conception architecturale

BIBLIOGRAPHIE



Bibliographie

6| BIBLIOGRAPHIE
6.1 Travaux de recherche

(1]
S. Ahmed, M. Weber, M. Liwicki, C. Langenhan, A. Dengel, et F. Petzold, « Automatic analysis and sketch-based
retrieval of architectural floor plans », Pattern Recognition Letters, vol. 35, p. 91-100, janv. 2014.

(2]
J. Algeciras-Rodriguez, « TRAINED ARCHITECTONICS », p. 8.

(3]

A. Andia, « Automated Architecture: Why CAD, Parametrics and Fabrication are Really Old News », in Procee-
dings of the XVII Conference of the Iberoamerican Society of Digital Graphics- SIGraDi: Knowledge-based
Design, Valparaiso, Chile, 2013, p. 83-86.

(4]
N. Audebert et al., « Deep learning for urban remote sensing », in 2017 Joint Urban Remote Sensing Event
(JURSE), Dubai, United Arab Emirates, 2017, p. 1-4.

(5]

M. Barros, J. P. Duarte, et B. M. Chaparro, « A Grammar-Based Model for the Mass Customisation of Chairs:
Modelling the Optimisation Part », Nexus Netw J Nexus Network Journal : Architecture and Mathematics, vol.
17,n° 3, p. 875-898, 2015.

(6]
G. Cleuziou, « Une méthode de classification non-supervisée pour I'apprentissage de régles et la recherche
d’information », p. 209.

(7]
L.-P. de las Heras, S. Ahmed, M. Liwicki, E. Valveny, et G. Sdnchez, « Statistical segmentation and structural
recognition for floor plan interpretation », IJDAR, vol. 17, n° 3, p. 221-237, sept. 2014.

(8]
S. Dodge, J. Xu, et B. Stenger, « Parsing floor plan images », in 2017 Fifteenth IAPR International Conference on
Machine Vision Applications (MVA), 2017, p. 358-361.

(9]
J. P. Duarte, « Towards the Mass Customization of Housing: The Grammar of Siza’s Houses at Malagueira »,
Environment and Planning B: Planning and Design, vol. 32, n° 3, p. 347-380, juin 2005.

[10]
R. Gadde, V. Jampani, R. Marlet, et P. V. Gehler, « Efficient 2D and 3D Facade Segmentation using Au-
to-Context », arXiv:1606.06437 [cs], juin 2016.

[11]
R. Gadde, R. Marlet, et N. Paragios, « Learning Grammars for Architecture-Specific Facade Parsing », Internatio-
nal Journal of Computer Vision, vol. 117, n°® 3, p. 290-316, mai 2016.

[12]
D. Ha et D. Eck, « A Neural Representation of Sketch Drawings », arXiv:1704.03477 [cs, stat], avr. 2017.

[13]
P.Isola, J-Y. Zhu, T. Zhou, et A. A. Efros, « Image-to-Image Translation with Conditional Adversarial Networks »,
arXiv:1611.07004 [cs], nov. 2016.

(14]
S. Kacher, « PROPOSITION D’UNE METHODE DE REFERENCEMENT D’IMAGES POURASSISTER LA CONCEPTION
ARCHITECTURALE:Application a la recherche d’ouvrages. », p. 238.

[15]

M. Kozinski, G. Obozinski, et R. Marlet, « Beyond Procedural Facade Parsing: Bidirectional Alignment via Linear
Programming », in 2014 Asian Conference on Computer Vision (ACCV), Singapore, Singapore, 2014, vol. 9006,
p. 79-94.

51



52

Le Machine Learning au service de la conception architecturale

[16]
M. Lin, Q. Chen, et S. Yan, « Network In Network », arXiv:1312.4400 [cs], déc. 2013.

[17]

A. Martinovi¢, M. Mathias, J. Weissenberg, et L. Van Gool, « A Three-Layered Approach to Facade Parsing », in
Computer Vision — ECCV 2012, vol. 7578, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, et C. Schmid, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, p. 416-429.

(18]

M. Mathias, A. Martinovic, J. Weissenberg, et L. V. Gool, « Procedural 3D Building Reconstruction Using Shape
Grammars and Detectors », in 2011 International Conference on 3D Imaging, Modeling, Processing, Visualiza-
tion and Transmission, Hangzhou, TBD, China, 2011, p. 304-311.

[19]
A. Nguyen, J. Yosinski, et J. Clune, « Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Unrecognizable Images », arXiv:1412.1897 [cs], déc. 2014.

[20]
S. A. Oliveira, « Machine vision algorithms on cadaster maps », p. 27.

(21]
S. A. Oliveira, F. Kaplan, et I. di Lenardo, « Abstract DH2017 Machine Vision algorithms on cadaster plans », p. 6.

[22]
S. Or, K-H. Wong, Y. Yu, et M. M. Chang, « Highly Automatic Approach to Architectural Floorplan Image Unders-
tanding & Model Generation », p. 9.

[23]

W. Peng, F. Zhang, et T. Nagakura, « Machines’ Perception of Space: Employing 3D Isovist Methods and a
Convolutional Neural Network in Architectural Space Classification », in ACADIA 2017: DISCIPLINES & DISRUP-
TION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architec-
ture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 474- 481, 2017.

[24]
P.S. Rajpura, H. Bojinoy, et R. S. Hegde, « Object Detection Using Deep CNNs Trained on Synthetic Images »,
arXiv:1706.06782 [cs], juin 2017.

[25]
B. L. A. Seguin, « Making large art historical photo archives searchable », p. 169.

[26]
J. Shin, R. Triebel, et R. Siegwart, « Unsupervised discovery of repetitive objects », in 2010 IEEE International
Conference on Robotics and Automation, 2010, p. 5041-5046.

(27]
J. Silvestre et V. Ikeda, « ARTIFICIAL IMAGINATION OF ARCHITECTURE WITH DEEP CONVOLUTIONAL NEURAL
NETWORK », p. 10.

[28]

C. Sjoberg, C. Beorkrem, et J. Ellinger, « Emergent Syntax: Machine Learning for the Curation of Design Solution
Space », in ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the
Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4
November, 2017), pp. 552- 561, 2017.

29]
G. Stiny, « Introduction to shape and shape grammars », Environment and Planning B: Planning and Design, vol.
7,n° 3, p.343-351, 1980.

(30]
C. Vargas et D. Alejandro, « Wall extraction and room detection for multi-unit architectural floor plans », Thesis,
2018.



Bibliographie

(31]

« Proposition d’un modele et d’un outil dédiés a la conception morphologique architecturale en phase
esquisse », ResearchGate. Disponible sur: https://www.researchgate.net/publication/324474290 Proposi-
tion_d%27un_modele_et d%27un_outil_dedies_a_la_conception_morphologique_architecturale_en_phase_
esquisse.

(32]

« Image-to-Image Translation with Conditional Adversarial Networks ». [En ligne]. Disponible sur: https://philli-
pi.github.io/pix2pix/.

(33]

« PhD Thesis — Modelled on Software Engineering: Flexible Parametric Models in the Practice of Architecture —
Daniel Davis ». Disponible sur: http://www.danieldavis.com/thesis/.

6.2 Ouvrages

(34]
A. Géron, Deep Learning avec TensorFlow- Mise en oeuvre et cas concrets. Dunod, 2017.

(35]
D. Boudet, Nouveaux logements a Zurich: la renaissance des coopératives d’habitat. 2017.

(36]
P. Boudon, Sur I'espace architectural: essai d’épistémologie de I'architecture. Marseille: Parentheses, 2003.

(37]
M. Carpo, The second digital turn design beyond intelligence. Cambridge, MA: The MIT Press, 2017.

(38]
J.-P. Chupin, Analogie et théorie en architecture: de la vie, de la ville et de la conception, méme. Gollion: Infolio,

2013.

(39]
A. Farel, Architecture et complexité: le troisieme labyrinthe. Marseille: Editions Parenthéses, 2008.

[40]
J. Lucan, Précisions sur un état présent de I'architecture. Lausanne: Presses Polytechniques et Universitaires

Romandes, 2015.

[41]
B. Stiegler, Automatic society. Vol. 1: the future of work. Cambridge: Polity Press, 2016.

[42]
G. Stiny, « Introduction to shape and shape grammars », Environment and Planning B: Planning and Design, vol.

7,n°3, p.343-351, 1980.

[43]
K. Terzidis, Permutation Design: Buildings, Texts, and Contexts. London ; New York: Routledge, 2014.

6.3 Guides et tutoriels de mise en pratique
https://github.com
https://keras.io/getting-started/sequential-model-guide/
https://www.tensorflow.org/

https://www.python.org/

53



54 Le Machine Learning au service de la conception architecturale

ANNEXES



7| ANNEXE

7.1 Code du générateur de plans

In [

In [

In [

1:

1:

# Imports des bibliothéques et des raccourcis utiles

import random

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

from matplotlib.path import Path

from matplotlib.patches import PathPatch
import matplotlib.text as mtext

import os

import math

# Chemin d'accés vers les plans
dossier="C:\Users\ProjetMémoire\Data\Plans\SérieEvoluée"

# Définition des fonctions de transformation:

def rotate(P,a):
(x,y)=P
A= math.radians (a)
X = math.cos(A)*x - math.sin(A)*y
Y = math.sin(A)*x + math.cos (R)*y
return (X,Y)

def symetrie (P,axeV,axeH) :
(x,y)=P
if axev>0:
P=(axeV- (x-axeV),y)
if axeH>0:
P=(x,axeH- (y-axeH))
return P

# Génération des plans

nombre_de_plans = 5000
i=0
for i in range (nombre_de plans):

# Attribution des indices des piéces

[cl]=random.sample ([0,1], k=1)
[c2]=random.sample ([0,1], )
[c3]=random.sample ([0, 1], )
C=[cl,c2,c3]
[chl,ch2,ch3]=[str(),str(),str()]
Ch=[chl, ch2,ch3]
T=['Ch.1','Ch.2','Ch.3"]
N=random.sample ([0,1,2], k=3)
=0
for k in range(3)
if C[N[k]]>0:
Ch[N[k]]=T[]] j=3+1
else:
Ch[N[k]]=str ()

k=1
k=1

# Attribution des variables aléatoires
[angle]=random.sample([0,0,0,0,0,0,0,0, random.uniform(-30,30)],
[w0,h0]=[random.uniform(8,15),random.uniform(10,20)]

# Composition du nom de fichier
filename="plan"+str (i+1)+"_"+str(cl+c2+c3)+".png"

# Liste des distances
dl2=random.uniform(0,w0/7)+w0/2
d23=w0-d12
d34=random.uniform(0,w0/7)+h0/4
d45=d23
d56=random.uniform(0,h0/10)+h0/3
d67=d23

d78=h0-d34-d56

dg9=d23

d9A=dl2

dAB=d78

k

1
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# Axes de symétrie
[axeV]=random.sample ([0, (d12+d23) /2], k=1)
[axeH]=random.sample ([0,h0/2], k=1)

# Liste des points
P1=(0,0)
=(d12,0)
=(d12+d23,0)
=(d12+d23,d34)
=(d12,d34)
=(dl2,d34+d56)
=(d12+d23,d34+d56)
P8=(d12+d23,d34+d56+d78)
P9=(d12,d34+d56+d78)
P10=(0,d34+d56+d78)
P11=(0,d34+d56)
P12=(d12,d34+d56)

# Coordonnées des points
x1,yl)=P1

X3,y3)—P3

(

(

(

(

(
(x6,y6)—P6
(x7,y7)=P7
(x8,y8)=P8
(x9,y9)=P9
(x10,y10)=P10
(x11,y11)=P11
(x12,y12)=P12

# Positions des textes au centre des piéces

PA=(0.5*% (x1+x2), 0.5*% (yl+yll))
PA=rotate (PA,angle)
PA=symetrie (PA, axeV, axeH)

(xA, yA)=

PB=(0.5*% (x1+x2), 0.5*(yll+yl10)
PB=rotate (PB,angle)
PB=symetrie (PB, axeV, axeH)

(xB, yB) =PB

PC1=(0.5% (x2+x3), 0.5% (y3+y4)
PCl=rotate (PC1l, angle)
PCl=symetrie (PCl, axeV, axeH)
(xCl,yCl)=PC1l

PC2=(0.5* (x5+x4), 0.5* (y5+y6))
PC2=rotate (PC2,angle)
PC2=symetrie (PC2, axeV, axeH)
(xC2,yC2)=PC2

PC3=(0.5* (x6+x7), 0.5* (y7+y8))
PC3=rotate (PC3, angle)
PC3=symetrie (PC3, axeV, axeH)
(xC3,yC3)=PC3

# Rotation des points
Pl=rotate (P1l,angle)
P2=rotate (P2, angle)
P3=rotate (P3,angle)
Pd4=rotate (P4, angle)
P5=rotate (P5,angle)
P6=rotate (P6,angle)
P7=rotate (P7,angle)
P8=rotate (P8, angle)
P9=rotate (P9, angle)
Pl0=rotate (P10, angle)
Pll=rotate (P11, angle)
Pl2=rotate (P12, angle)

# Symétrie des points
Pl=symetrie (P1l, axeV, axeH)
P2=symetrie (P2, axeV, axeH)
P3=symetrie (P3, axeV, axeH)
P4=symetrie (P4, axeV, axeH)
P5=symetrie (P5, axeV, axeH)
P6=symetrie (P6,axeV, axeH)
P7=symetrie (P7,axeV, axeH)
P8=symetrie (P8, axeV, axeH)
P9=symetrie (P9, axeV, axeH)
Pl0=symetrie (P10, axeV, axeH)
Pll=symetrie (P11, axeV, axeH)
Pl2=symetrie (P12, axeV, axeH)

# Coordonnées des points

(x1,yl)=P1
(x2,y2)=P2
(x3,y3)=P3
(x4,y4)=P4
(x5,y5)=P5
(x6,y6)=P6
(x7,y7)=P7
(x8,y8)=P8
(x9,y9)=P9

(x10,y10)=P10
(x11,y11)=P11
(x12,y12)=P12



# Tracé du plan piéce par piéce

vertices = []
codes = []

# Sejour-cuisine

codes = [Path.MOVETO] + [Path.LINETO]*3 + [Path.CLOSEPOLY]
vertices = [P1,P2,P9,P10,P1]

codes += [Path.MOVETO] + [Path.LINETO]*1

vertices += [P11,P12]

# Chambre 1

if c1>0:
codes += [Path.MOVETO] + [Path.LINETO]*3 + [Path.CLOSEPOLY]
vertices += [P2,P3,P4,P5,P2]

# Chambre 2

if c2>0:
codes += [Path.MOVETO] + [Path.LINETO]*3 + [Path.CLOSEPOLY]
vertices += [P4,P5,P6,P7,P4]

# Chambre 3

if ¢3>0:
codes += [Path.MOVETO] + [Path.LINETO]*3 + [Path.CLOSEPOLY]
vertices += [P6,P7,P8,P9,P6

vertices = np.array(vertices, float)

path = Path(vertices, codes)

pathpatch = PathPatch (path, facecolor='None', edgecolor='black')
fig = plt.figure(l, figsize=(300, 300))

fig, ax = plt.subplots()

ax.add_patch (pathpatch)

# Texte séjour
Tl=ax.text (xA, yA, 'Séjour', horizontalalignment='center', verticalalignment='center', fontsize=10, color='black')
# Texte cuisine
T2=ax.text (xB, yB, 'Cuis', horizontalalignment='center', verticalalignment='center', fontsize=10, color='black')
# Texte chl
if c1>0:
T3=ax.text (xCl, yCl, Ch[0], horizontalalignment='center', verticalalignment='center', fontsize=10, color='black')
# Texte ch2
if c2>0:
T4=ax.text (xC2, yC2, Ch[1l], horizontalalignment='center', verticalalignment='center', fontsize=10, color='black')
# Texte ch3
if ¢3>0:
T5=ax.text (xC3, yC3, Ch[2], horizontalalignment='center', verticalalignment='center', fontsize=10, color='black')

ax.set_axis_off ()

ax.autoscale view(tight=True, scalex=True, scaley=True)
ax.autoscale()

plt.axis('equal')

# Export de l'image dans le dossier nommé selon ses parametres
fig.savefig(os.path.join (dossier, filename), bbox_inches='tight', format="png"'

print('ok")
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7.2 Code de formatage des données, d’entrainement et d’utilisation du réseau

In [ 1: # Importation des bibliothéques et raccourcis utiles
import os
import matplotlib.pyplot as plt
import numpy as np
import skimage
from skimage import io
from skimage.transform import resize
import tensorflow as tf
import tensorflow.keras as k

# Chemin d'accés aux données

path Basique="C:\Users\ProjetMémoire\Data\Plans\SérieBasique"
path Evolué="C:\Users\ProjetMémoire\Data\Plans\SérieEvoluée"
path Mixte="C:\Users\ProjetMémoire\Data\Plans\SérieMixte"

In [2]: path train=path Evolué

# Fonction pour extraire les noms dans 1'ordre alphanumérique
import re

def sorted aphanumeric(data):

convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum key = lambda key:
[ convert(c) for c in re.split('([0-9]+)"', key) ]
return sorted(data, key=alphanum key)

# Liste des noms de fichier dans 1'ordre alphanumérique
ListePlansO=sorted aphanumeric(os.listdir (path train))
ListePlans = []
for names in ListePlans0:
if names.endswith(".png"):
ListePlans.append (names)
nbfiles=len (ListePlans)

# Fonction pour importer le plan (k)
def plan(k):

img = io.imread(os.path.join(path_train,ListePlans[k]),as_gray=True,mode='wa
rp')

arr = np.array(resize(img, (300, 300)),dtype='uint8"')

return arr

# Fonction pour lire le tag(k)

def tag(k):
nom=ListePlans (k] #nom du fichier du plan k
sep=nom.find('_"',4) #position du séparateur dans la chaine

[cccl=nom[sep+l] #extraire une sous-chaine
return ccc#somme des elements convertis en entiers

print ('ok")
ok
In [3]: # Boucle pour créer la table des datasets d'entrainement

n_train=2000
n_test=200

X _train=np.zeros((n_train,300,300,1)
X _trainO=np.stack(([plan(k) for k in range(n_train)]))
X train[:,:,:,0]=X_train0

y_train=np.array([tag(k) for k in range(n_train)]

X test=np.zeros((n_test,300,300,1))
X_testO=np.stack(([plan(k) for k in range(n_train,n_train+n_test)])) X test[:,:,:,0]=X_testO

y_test=np.array([tag(k) for k in range(n train,n train+n test)])

print ('ok')

ok



In [4]: # Import des bibliotheques spécifiques pour entrainer le réseau

import tensorflow as tf
import tensorflow.keras as k

# Marqueur a envoyer a TensorBoard pour le suivi de 1'entrainement

root logdir="C:\Users\ProjetMémoire\Data\Exports\Tensorboard.\\tflogs E 2000"
tbCallBack = tf.keras.callbacks.TensorBoard(log dir=root_ logdir, histogram freg= 0, batch size=32,
write_graph=True,write grads=False, write_images=True)

# Définition et entrainement du modéle

model = k.models.Sequential ([

k.layers.Conv2D(16, (3, 3), strides=3, input_shape=(300,300,1),activation="'rel u'),
k.layers.MaxPooling2D (pool_size=(2, 2)),

k.layers.Flatten(),

k.layers.Dense (4,activation=tf.nn.softmax)

model.compile (loss='sparse categorical crossentropy',

optimizer="'adam',
metrics=['accuracy'])

model.fit (X train, y train, epochs=10,batch size=8,callbacks=[tbCallBack])
model.evaluate (X test, y test)

Epoch 1/10
2000/2000 [ ] - 11s 5ms/step - loss: 1.0064 - acc : 0.5560
Epoch 2/10
2000/2000 [ ] - 8s 4ms/step - loss: 0.4872 - acc: 0.8250
Epoch 3/10
2000/2000 [ ] - 8s 4ms/step - loss: 0.3221 - acc: 0.8975
Epoch 4/10
2000/2000 [ ] - 8s 4ms/step - loss: 0.2275 - acc: 0.9305
Epoch 5/10
2000/2000 [ ] - 8s 4ms/step - loss: 0.1653 - acc: 0.9505
Epoch 6/10
2000/2000 [ ] - 8s 4ms/step - loss: 0.1099 - acc: 0.9760
Epoch 7/10
2000/2000 [ ] - 8s 4ms/step - loss: 0.0796 - acc: 0.9880
Epoch 8/10
2000/2000 [ ] - 8s 4ms/step - loss: 0.0601 - acc: 0.9920
Epoch 9/10
2000/2000 [ ] - 8s 4ms/step - loss: 0.0433 - acc: 0.9970
Epoch 10/10
2000/2000 [ ] - 9s 5Sms/step - loss: 0.0295 - acc: 0.9970 200/200
[ ] - 1s 4ms/step

Out[4]: [0.3476581168174744, 0.9]

In [9]: # Utiliser le réseau entrainé

path transformations="C:\Users\ProjetMémoire\Data\Plans\Modifiés\Série transformations"
path réels="C:\\Users\ProjetMémoire\Data\Plans\Modifiés\Série réels"
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In [10]: # Redéfinir les fonctions d'import les plans (fichier spécifique)

path_pred=path_réels

ListePlansl=sorted aphanumeric(os.listdir (path pred))

ListePlans_pred = []
for names in ListePlansl:

if names.endswith(".png"):
ListePlans_pred.append (names)

nbfiles_pred=len(ListePlans_pred)

def plan pred(k):

—

img = io.imread(os.path.join(path_pred,ListePlans_pred[k]),as_gray=True,mode ='warp')
arr = np.array(resize(img, (300, 300)),dtype='uint8"')
return arr

print ('ok")

ok

In [11]: # Formater les plans a évaluer

n=9

dep=0
arr=dep+n

X_predO=np.zeros ((n,300,300))
X_pred=np.zeros((n,300,300,1)
X_predO=np.stack(([plan_pred(k) for k in range(dep,arr)]))
X pred[:,:,:,0]=X pred0

print ('ok")

ok

In [12]: # Prédictions:

classes = model.predict classes (X pred, batch size=32) proba =
model.predict_proba (X pred, batch size=32)

print (classes)

print (proba)

[333333233]

.8510258e-12
.0912837e-24
.6232805e-27
.8679249%e-17

[

[8 .8902252e-13 1.3057047e-01
[1

[8

[7
[1.1916853e-30
[3

[1

[7

[9

]

.1756238e-23 .2221698e-06
.7461236e-27 .0699949e-07
.2974604e-12 .4954138e-02
.8311998e-24 .8162279e-07
.1239174e-32 .2158974e-10
.0173580e-10 .7813150e-01
.5667010e-18 .2114610e-02
.5249524e-26 .8356898e-04

.6942953e-01]
.9999881e-01]
.9999940e-01]
.7504586e-01]
.9999928e-01]
.2501784e-32 ]
.9060183e-15 ]
.206843%e-24 ]
.2460338e-27 ]

.0000000e+00
.2186847e-01
.7788543e-01
.9981648e-01
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7.3 Suivi de I'apprentissage des 3 configurations étudiées

loss.

loss

Courbes d’apprentissage

Superposition des trois entrainements avec chacune des bases de données B, E et M (seules les lignes brisées sont a prendre en compte). Ces courbes
représentent les valeurs de la précision ou taux de réussite (courbe du haut) et du codt ou taux d’échec (courbe du bas), mesurés sur I'échantillon
de test fourni au réseau (proportion utilisée: 1 plan de test pour 10 plans d’entrainement, comparativement a ce qu’il se fait dans I'état de I'art).

Epoch 1/10

2000/2000 [ ] - 13s 7ms/step - loss: 1.1132 - acc
0.5770

Epoch 2/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.3510 - acc:

0.9005A: Os - loss: 0.3633 - ac - ETA: 0Os - loss: 0.3568 - acc:

Epoch 3/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.1898 - acc:

0.9590

Epoch 4/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.1203 - acc:

0.9770

Epoch 5/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.0701 - acc:

0.9955

Epoch 6/10

2000/2000 [ ] - 9s 4ms/step - loss: 0.0421 - acc:

0.9985

Epoch 7/10

2000/2000 [ ] - 9s 4ms/step - loss: 0.0297 - acc:

0.9990

Epoch 8/10

2000/2000 [ ] - 9s 4ms/step - loss: 0.0199 - acc:

1.0000

Epoch 9/10

2000/2000 [ ] - 9s 4ms/step - loss: 0.0149 - acc:

1.0000

Epoch 10/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.0104 - acc:

1.0000 Scores d’apprentissage d chaque

200/200 [ ] - 1s 4ms/step époque d’entrainement sur la

[0.06463677272200584, 0.98] base de donnée B.
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Epoch 1/10
2000/2000 [ ] - 1ls 5ms/step - loss: 1.0064 - acc
0.5560

Epoch 2/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.4872 - acc:

0.8250

Epoch 3/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.3221 - acc:

0.8975

Epoch 4/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.2275 - acc:

0.9305

Epoch 5/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.1653 - acc:

0.9505A: 1s - loss:

Epoch 6/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.1099 - acc:

0.9760A: 1s - loss: 0.1095 - acc: - ETA: Os - loss: 0.1118 -

Epoch 7/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.0796 - acc:

0.9880

Epoch 8/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.0601 - acc:

0.9920A: O0s - loss: 0.0603

Epoch 9/10

2000/2000 [ ] - 8s 4ms/step - loss: 0.0433 - acc:

0.9970

Epoch 10/10

2000/2000 [ ] - 9s 5ms/step - loss: 0.0295 - acc:
Scores d’apprentissage a chaque 0.9970

époque d’entrainement sur la 200/200 [ ] - 1s 4ms/step
base de donnée E. [0.3476581168174744, 0.9]

Epoch 1/10
2000/2000 [ ] - 6s 3ms/step - loss: 1.2290 - acc:

0.5060

Epoch 2/10

2000/2000 [ ] - 4s 2ms/step - loss: 0.5972 - acc:
0.7760A: O0s - loss: 0.6027 -

Epoch 3/10

2000/2000 [ ] - 4s 2ms/step - loss: 0.3953 - acc:
0.8665

Epoch 4/10

2000/2000 [ ] - 4s 2ms/step - loss: 0.2623 - acc:
0.9240

Epoch 5/10

2000/2000 [ ] - 4s 2ms/step - loss: 0.1813 - acc:
0.9575

Epoch 6/10

2000/2000 [ ] - 5s 2ms/step - loss: 0.1442 - acc:
0.9655A: O0s - loss: 0.1393

Epoch 7/10

2000/2000 [ ] - 4s 2ms/step - loss: 0.1010 - acc:
0.9835

Epoch 8/10

2000/2000 [ ] - 4s 2ms/step - loss: 0.0736 - acc:
0.9875A: 1s

Epoch 9/10

2000/2000 [ ] - 5s 2ms/step - loss: 0.0532 - acc:
0.9945A: O0s - loss: 0.055

Epoch 10/10

2000/2000 [ ] - 4s 2ms/step - loss: 0.0344 - acc:
0.9980
, . .
Scores d’apprentissage a chaque 200/200 [ ] - 0s 2ms/step

époque d’entrainement sur la
base de donnée M.

[0.31143479168415067, 0.89]




7.4 Extrait de la base de donnée «Mixte»: échantillon «augmenté» de plans réels

HAA]
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