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0| INTRODUCTION

	 Dans ce mémoire, nous allons explorer comment les techniques informatiques  les 
plus récentes pourraient être intégrées à la palette d’outils de l’architecte concepteur. En 
d’autre termes, il s’agit de rechercher des applications possibles pour la conception  ar-
chitecturale de ce qu’on appelle abusivement «l’intelligence artificielle», mais dont la 
branche qui se développe le plus aujourd’hui est plus précisément l’apprentissage ma-
chine (ou machine learning)1. Ce travail propose en effet d’esquisser une piste d’applica-
tion qui permettrait d’améliorer certaines techniques d’aide à la conception déjà déve-
loppées avec des modes de programmation plus «classiques», comme les grammaires de 
forme2 ou d’autres algorithmes génératifs (automates cellulaires, algorithmes génétiques). 
Ce que toutes ces techniques ont en commun, est de chercher à automatiser le proces-
sus de conception architecturale, ce qui pose deux questions: pourquoi, et comment? 

Pourquoi vouloir automatiser certaines tâches de la conception architecturale? 
	
	 La production architecturale a cela de particulier, qu’elle ne produit que des proto-
types, chaque projet répondant à une combinaison de contraintes objectives unique, aux-
quelles s’ajoutent des aspects subjectifs qui orientent implicitement les choix de conception. 
Le concepteur procède donc par tâtonnements, jusqu’à arriver à une solution convenable. 
Non seulement ce processus demande énormément de temps, mais il ne garantit même 
pas d’arriver dans le temps imparti à une solution optimale (impossibilité d’explorer toutes 
les combinaisons de paramètres intéressantes). Automatiser en partie la conception, c’est 
à dire déléguer à la machine, permettrait alors non seulement de gagner du temps pour 
d’autres tâches, mais encore d’aller plus loin dans la résolution des problèmes posés, grâce 
à la mise à profit de la capacité de la machine à effectuer massivement et rapidement des 
tâches numériques précises.

Comment automatiser certaines tâches du processus de conception?
	
	  Il a toujours été  difficile et peu rentable de développer des outils informatiques 
sur mesure, répondants aux besoins toujours changeants de l’architecte concepteur. Alors 
qu’on sait aujourd’hui automatiser de manière extrêmement fiable des tâches complexes 
(comme jouer aux échecs, conduire une voiture, ou traduire un texte par exemple) notam-
ment grâce à l’apprentissage automatique, on peine encore à soulager les concepteurs de 
tâches répétitives et laborieuses. Cette limite est due à la nature même des tâches à auto-
matiser, ce qu’on peut appeler le «problème de la formulation explicite»3. En effet, pour 
déléguer des tâches à la machine, il faut pouvoir les expliciter sous la forme de paramètres 
quantitatifs à résoudre, ce qui est long et parfois impossible (beaucoup de paramètres étant 

1.	 Plus de détails dans la partie 1 sur l’histoire et les principes de base de l’apprentissage machine
2.	 Plus de détails dans la partie 2 sur l’état de l’art
3.	 Ce que Jean-Pierre Chupin expose aussi comme les «vilains problèmes mal formulés»  

in J.-P. Chupin, Analogie et théorie en architecture: de la vie, de la ville et de la conception, même. Gollion: Infolio, 2013, p.242

Introduction



Le Machine Learning au service de la conception architecturale6

de nature implicite ou subjective). Si de nombreux courants de pensée4 ont tenté de pro-
duire une «syntaxe» qui permette de formaliser dans leur ensemble les paramètres à ré-
soudre lors du processus de conception architecturale, ils se sont généralement heurté aux 
limites de l’exercice. C’est ici que l’idée d’utiliser l’apprentissage machine est intéressante: 
et si l’architecte pouvait transmettre ses connaissances à la machine, sans avoir besoin de 
les expliciter de manière fastidieuse? Notre hypothèse est que les plans (ainsi que d’autres 
modes de représentation), sont des supports de cette connaissance, en ce qu’ils sont uti-
lisés par les architectes eux-même pour apprendre à partir de solutions existantes, mais 
aussi d’apprendre au fil du processus de conception en tant qu’ils permettent de mettre à 
l’épreuve les choix de conception. Il pourrait donc être intéressant d’explorer comment la 
machine pourrait être amenée à «comprendre intuitivement» les critères de l’architecte, 
sans que celui-ci ait besoin de passer par un mode d’expression qui n’est pas le sien, c’est à 
dire en lisant directement des plans.

Apprendre les machine à lire des plans...

	 Si les limites de temps et de moyens de ce travail n’ont pas permis de formaliser 
de manière exhaustive un outils opérationnel, l’approche choisie consiste donc à présen-
ter une synthèse des connaissances acquises pour réaliser une expérimentation appelant à 
être approfondie. Il s’agissait donc de mettre en pratique ce type d’outils sur un problème 
simple : l’apprentissage  machine de quelques «connaissances architecturales» à partir d’un 
corpus de plans. Le contenu du mémoire aborde donc diverses problématiques qui appa-
raissent lors d’une telle expérimentation. On peut citer entre autres : le choix du support de 
connaissances à soumettre à l’apprentissage5, la formalisation précise des connaissances à 
apprendre ou encore  le paramétrage de l’algorithme d’apprentissage adapté aux données 
soumises.

	 Dans la première partie, on reviendra donc sur le contexte technique et théorique 
dans lequel se situe notre sujet. Cela nous permettra en particulier d’introduire plus pré-
cisément les notions de base de l’apprentissage machine, mais aussi d’identifier certains 
besoins de l’architecte en matière d’outil d’assistance à la conception, auxquels pourraient 
répondre certaines applications cette technologie. 

	 Dans la seconde partie, il s’agira de préciser notre problématique au regard de l’état 
de l’art plus spécialisé. L’analyse de certains travaux de recherche nous permettra en par-
ticulier d’identifier des absences de questionnement ou des pistes non explorées, pouvant 
faire l’objet de notre recherche. On définira ainsi les objectifs de notre expérimentation. 

4.	 Entre autres on peut citer C.Alexander et son «Pattern Langage» ou Philippe Boudhon et son «Architecturologie», évoqués en partie 1
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	 Dans la troisième partie, on exposera en détail les étapes de l’expérimentation. 
Chaque étape sera l’occasion d’aborder des problématiques de mise en œuvre plus géné-
rales. Si les résultats exposés sont encore peu convaincants quand à leur applicabilité, on 
pourra toutefois noter que la méthode mise en place constitue en elle même un résultat 
intéressant. 

	 On évoquera finalement dans la dernière partie, des pistes d’approfondissement 
possibles à partir de l’analyse des résultats de notre expérimentation, mais aussi à partir des 
connaissances collectées pour sa réalisation. Au delà de leur aspect prospectif, ces pistes 
ont surtout pour vocation d’illustrer les intentions implicites de cette recherche, et les appli-
cations concrètes qui pourraient en découler. 

	 Enfin, la conclusion permettra notamment de revenir sur les fantasmes qui en-
tourent ces technologie dites d’intelligence artificielle, à la lumière des problématiques ren-
contrées dans notre mise en œuvre expérimentale. La question de l’automatisation totale 
des compétences de l’architecte n’est non seulement pas l’objet de notre exposé, mais en-
core moins une menace d’actualité au regard des différents paramètres évoqués au fil de ce 
mémoire.

Introduction
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1| CONTEXTE 

1.1 «L’intelligence artificielle», un sujet d’actualité

	 La notion «d’intelligence artificielle» (IA) est apparue dès l’invention des premiers 
ordinateurs, mais elle jouit aujourd’hui d’un essor dû à des succès technologiques très ré-
cents. Elle véhicule aujourd’hui beaucoup de fantasmes, notamment à cause de l’ambiguïté 
des termes employés pour la décrire au grand public. Pour illustrer les crispations qu’elle 
peut générer dans le domaine pourtant encore assez peu concerné de l’architecture, on 
peut citer une récente pétition lancée par le syndicat des architectes (UNSFA) à propos de 
la déclaration du patron d’Autodesk qui évoquait l’intégration d’une IA dans ces logiciels 
d’outils d’aide à la conception1.  Si les architectes à l’origine de cette pétition s’inquiètent 
en particulier pour leur droit d’auteur (et c’est légitime), de nombreuses questions sont 
également soulevées par cette annonce: mais que peut vraiment faire une «intelligence 
artificielle» en terme de conception architecturale, même avec l’aide de données récoltées 
auprès des nombreux utilisateurs? Afin de mieux saisir les enjeux de ce sujet vaste, revenons 
donc rapidement sur quelques principes, et quelques techniques qui existent actuellement 
sur le marché, en terme d’IA.

1.1.1 Histoire d’un développement retardé

	 Si la notion «d’intelligence artificielle» apparaît pour la première fois lors d’une 
conférence en 1956, les premiers modèles théoriques de «réseaux de neurones artificiels» 
inspirés de la compréhension du cerveau, datent de 1943, soit avant même le premier ordi-
nateur électronique. Inspirée au départ de la biologie, cette technologie s’est ensuite natu-
rellement développée pour réaliser des tâches mettant à profit les capacités calculatoires et 
systématiques de l’ordinateur, pour assister l’humain dans des tâches laborieuses. Un débat 
continue d’ailleurs aujourd’hui d’animer les chercheurs sur l’ambiguïté des termes liés à 
une interprétation biologique, qui est non seulement porteuse d’ambiguïtés anthropomor-
phiques mais peut surtout induire en erreur les recherches.

«Définir l’intelligence artificielle n’est pas chose facile. (...) L’intelligence artificielle désigne en 
effet moins un champ de recherches bien défini qu’un programme, fondé autour d’un objectif 
ambitieux : comprendre comment fonctionne la cognition humaine et la reproduire ; créer 
des processus cognitifs comparables à ceux de l’être humain.» Cédric Villani2

« Même si les avions ont des oiseaux pour modèles, ils ne battent pas des ailes. De façon 
comparable, les RNA sont progressivement devenus assez différents de leurs cousins bio-
logiques. Certains chercheurs soutiennent même qu’il faudrait éviter totalement l’analogie 
biologique, par exemple en disant unité au lieu de neurone, de peur que nous ne limitions 
notre créativité aux systèmes biologiquement plausibles. » Aurélien Géron3

Pour résumer son histoire récente, l’IA a donc connu un développement avec des périodes 
d’enthousiasme et de désillusions, repoussant toujours plus les limites de ce qu’on croyait 
pouvoir n’être fait que par les humains. Après les premières découvertes, dont le prin-
cipe du «perceptron» (modèle permettant de réaliser des opérations logiques grâce à une 

Contexte

1.	 « Je m’oppose au pillage des données stockées dans le cloud d’AUTODESK », Petitions24.net. 
 Disponible sur: https://www.petitions24.net/je_moppose_au_pillage_des_donnees_stockees_dans_le_
cloud_dautodesk.

2.	 C. Villani, Rapport « Donner un sens à l’intelligence artificielle, pour une stratégie nationale et euro-
péenne », 2018.  
Disponible sur: https://www.aiforhumanity.fr.

3.	 A. Géron, Deep Learning avec TensorFlow - Mise en œuvre et cas concrets. Dunod, 2017, p.73

1940
1941
1942
1943 Première formulation théorique des 

"réseaux de neurones artificiels"  par le 
neurophysiologiste W.McCulloch et le 
mathématicien W.Pitts 

1944
1945
1946 ENIAC , premier ordinateur entièrement 

électronique

1947
1948
1949 Règle d'apprentissage de Hebb "Les 

neurones qui s'activent entre même 
temps se lient entre eux"

1950 Création du test de Turing

Premières formulations théoriques du 
concept d'apprentissage par 
renforcement

1951
1952
1953 IBM 650 , premier ordinateur commercial 

produit en série

1954
1955
1956 Conférence de Dartmouth, abordant 

pour la première fois la notion 
d'intelligence artificielle  par John 
McCarthy Marvin (inventeur de LISP)

1957 Invention du principe de perceptron  par 
F.Rosenblatt

1958 Premier Modem  (transmission de 
données binaires sur ligne télephonique)

1959
1960 Fin des premierscespoirs démesurés sur 

les capacités immédiates de l'IA

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976 Apple I

1977
1978
1979
1980 Début de "l'hiver de l'IA"

Prix Nobel de médecine attibué aux 
chercheurs D.H.Hubel et T.Wiesel pour 
leurs travaux sur le cortex visuel des 
chats et des singes

Concept du néocognitron  inspiré par le 
cortex visuel

1981 IBM PC (personal computer)

1982
1983 Naissance d'internet  (protocole TCP/IP)

1984
1985 Fin de "l'hiver de l'IA"

Découvertes pionnières en méthodes de 
machine learning

1986 Invention par D.Rumlhart et al. de 
l'algorithme d'entraînement à rétro-
propagation

1987
1988
1989
1990

1991 Naissance du Wold Wide Web  (protocole 
HTTP, langage HTML)

1992
1993

1994 Yahoo , premier moteur de recherche

1995
1996

1997 Le programme "DeepBlue " vainqueur 
contre le champion du monde en titre 
aux échecs Kasparov

1998 Publication par Y.LeCun, L.Bottou, 
Y.Bengio et P.Haffner de la célèbre 
architecture LeNet-5  capable de 
reconnaître les numéros de chèques 
grâce à l'invention des couches de 
convolutions

1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010 ImageNet Challenge

Découverte cruciale par X.Glorot et 
Y.Bengio de l'intérêt de l'initalisation 
aléatoire

2011
2012 Reccord ImageNet battu par AlexNet

2013 La start-up DeepMind présente un 
système capable d'apprendre à jouer à 
n'importe quel jeu Attari à partir des 
seules règles du jeu, grâce à un 
apprentissage par renforcement 

2014 Reccord ImageNet battu par GoogleNet

DeepMind racheté par Google pour plus 
de 500 millions de $

2015 Google DeepMind "AlphaGo " vainqueur 
face au champion du monde en titre de 
Go

Invention par S.Ioffre et C.Szegedy de la 
technique de normalisation par lots

Reccord ImageNet battu par ResNet

2016 "L'IA de Microsoft peut reconnaître un 
discours mieux que des sujets humains"

2017
2018
2019
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couche unique de «neurones artificiels» unitaires ), l’IA (et plus précisément les «réseaux 
de neurones artificiels») a connu ensuite une «traversée du désert». En effet, les espoirs 
provoqués par ces découvertes ont été vite rattrapés par des limites infranchissables dues 
à l’immaturité des technologies.  Si les techniques d’apprentissage continuent à progresser 
dans les années 80 , grâce à de nouvelles «architectures» des réseaux de neurones, les fi-
nancements sont redirigés vers des techniques alternatives, telles que les SVM (machines à 
vecteurs de support), dont on comprend mieux les fondements théoriques. Dans les années 
1990 un premier rebond apparaît, mais c’est surtout dans les années 2010 qu’on observe 
une véritable amélioration des performances des systèmes dits «d’apprentissage machine» 
(ou apprentissage automatique ou encore machine learning). Aujourd’hui on entend parler 
d’IA à longueur de journée, fort des succès récents et médiatiques de ces technologies. Pour 
résumer les atouts qui en font probablement une révolution technologique partie pour du-
rer, voyons les arguments listés par l’auteur Aurélien Géron (dans son ouvrage qui a servi de 
référence très importante dans ce travail de mémoire):

«Finalement, nous assistons aujourd’hui à un regain d’intérêt pour les RNA (réseaux de neu-
rones artificiels). Va-il s’évaporer comme les précédents ? Il y a quelques bonnes raisons de 
croire que celui-ci sera différent et qu’il aura un impact bien plus profond sur nos vie :

1. Il existe des données en quantité absolument gigantesques pour entraîner les RNA, et ils 
sont souvent bien meilleurs que les autres techniques d’apprentissage automatique sur les 
problèmes larges et complexes.

2. L’extraordinaire augmentation de la puissance de calcul depuis les années 1990 rend au-
jourd’hui possible l’entraînement de grands réseaux de neurones en un temps raisonnable. 
Cela est en partie dû à la loi de Moore, mais également à l’industrie du jeu qui a produit par 
millions (et donc à bas coût) des cartes graphiques équipées de GPU puissants.

3. Les algorithmes d’entraînement ont également été améliorés. Pour être honnête, ils ne 
sont que légèrement différents de ceux des années 1990, mais ces ajustements relativement 
limités ont eu un impact extrêmement positif.

4. Certaines limites théoriques des RNA se sont avérées plutôt bénignes dans la pratique. Par 
exemple, de nombreuses personnes pensaient que les algorithmes d’entraînement des RNA 
étaient condamnés car ils resteraient certainement bloqués dans un optimum local, alors 
que ces cas se sont révélés plutôt rares en pratique (et lorsqu’ils surviennent, ils sont en gé-
néral assez proches de l’optimum global).

5. Les RNA semblent être entrés dans un cercle vertueux de financement et de progrès. Des 
produits incroyables fondés sur les RNA font régulièrement la une de l’actualité. Les RNA 
attirent ainsi de plus en plus d’attention, et donc les fonds. Cela conduit à de nouvelles avan-
cées et encore plus de produits étonnants.»   Aurélien Géron4

1.1.2 Quelques principes de l'apprentissage machine

	 Afin de pouvoir comprendre ce qui distingue les différentes branches qui consti-
tuent l'apprentissage automatique, on va d'abord évoquer très sommairement ses principes 
de bases.  On favorisera ici les explications "qualitatives" sans alourdir l'exposé de considéra-
tions mathématiques (qui sont toutefois à la base de ces concepts). Voici donc tout d'abord 
trois définitions citées par A.Géron5: 

Définition 1
"L'apprentissage automatique est la science ou l’art de programmer les ordinateurs pour 
qu’ils puissent apprendre à partir de données."
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Définition 2
« L’apprentissage automatique est la discipline donnant aux ordinateurs la capacité d’ap-
prendre sans qu’ils soient explicitement programmés. » Arthur Samuel, 1959

Définition 3
« Etant donné une tâche T et une mesure de performance P, on dit qu’un programme infor-
matique apprend à partir d’une expérience E si les résultats obtenus sur T, mesurés par P, 
s’améliorent avec l’expérience E. » Tom Mitchell, 1997

Dans ces différentes définitions, la caractéristique principale du système mis en place est 
donc d'apprendre à partir d'exemples (appelés couramment jeu d'entraînement ou training 
set). Mais comment le système fait-il pour apprendre par lui même ? Voici encore une expli-
cation très claire donnée par A.Géron6:

«L’approche la plus fréquente consiste à créer un modèle prédictif et d’en régler les para-
mètres pour qu’il fonctionne au mieux aux données d’entraînement. Un modèle linéaire par 
exemple donne une prédiction qui est une somme pondérée des paramètres plus un terme 
constant. La phase d’entraînement du modèle consiste à trouver la valeur des coefficients de 
pondération (ou poids) à appliquer aux variables d’entrées pour minimiser l’erreur du modèle 
sur l’ensemble du jeu de données d’entraînement. Une fois les paramètres réglés, on peut 
utiliser le modèle pour faire des prédictions sur de nouvelles observations. L’espoir est que 
si le modèle fonctionne bien sur les données d’entraînement, il fonctionnera également bien 
sur de nouvelles observations. Si la performance est bien moindre, on dit que le modèle a 
« surajusté » le jeu de données d’entraînement. Cela arrive généralement quand le modèle 
possède trop de paramètres par rapport à la quantité de données d’entraînement disponible 
et à la complexité des tâches à réaliser.»

En réalité, deux principes de base permettent d'expliquer ce processus: le modèle de base 
du réseau neurone artificiel (ou perceptron), et le processus dit de rétropropagation. En 
effet, le modèle du réseau neurone artificiel a tout d'abord été inventé et utilisé dans sa 
composition la plus simple: une seule couche de neurones artificiels (chacun pouvant ré-
aliser une classification binaire simple, basée sur une fonction de seuil), étant entraînée 
selon la règle de Hebb (définie en 1949), résumée historiquement ainsi: « les neurones qui 
s’activent en même temps se lient entre eux ». En d'autres termes, pour chaque neurone de 
sortie qui produit une prédiction erronée, il renforce donc les poids des connexions liées aux 
entrées qui auraient contribué à la prédiction juste. Ces perceptrons ont ensuite été enrichis 
d'une ou plusieurs couches cachées (devenant alors des réseaux de neurones profonds), et 
il a alors été bien plus difficile de les entraîner. C'est là que l'invention de l'algorithme de 
rétropropagation (1986) a joué un rôle fondamental, en permettant de décomposer l'en-
traînement en une succession de "passes en avant" et de "passes en arrière". L'explication 
qui suit pourra être complétée par la visualisation du schéma réalisé dans la partie 3.3.3 :

«Pour l’exprimer de façon concise : pour chaque instance d’entraînement, l’algorithme de 
rétropropagation commence par effectuer une prédiction (passe vers l’avant), mesure l’er-
reur, traverse chaque couche en arrière pour mesurer la contribution à l’erreur de chaque 
connexion (passe vers l’arrière) et termine en ajustant légèrement les poids des connexions 
de manière à réduire l’erreur (étape de descente du gradient).»7

4.	 Ibid, p.74
5.	 Ibid, p.5
6.	 Ibid, p.7
7.	 Ibid, p.82
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Voyons maintenant les différents types de tâches pouvant être apprises, ainsi que les tech-
niques d'entraînement qui permettent spécifiquement de les obtenir. C'est ici qu'apparaît 
l'importance des données d'entraînement, puisqu'elles conditionnent en grande partie ce 
qui peut être appris par le système (en effet les "connaissances" à acquérir doivent être lues 
par la machine dans ces données). On distingue trois types d'apprentissage:

L'apprentissage supervisé, qui requiert un jeu de données d’entraînement « étiqueté », 
c’est-à-dire pour lequel chaque observation est accompagnée de la réponse souhaitée, que 
l’on nomme étiquette ou cible (label ou target en anglais). Celui-ci peut être utilisé pour 
apprendre les deux types de tâches suivants: 

•	 Tâche de classification: attribution d'une classe par mesure de similarité
•	 Tâche de régression : prédiction d’une valeur en fonction de divers paramètres

L'apprentissage non supervisé, pour lequel le jeu d’entraînement n’est pas étiqueté. Celui-ci 
peut être utilisé pour apprendre les trois types de tâches suivants: 

•	 Tâche de détection d’anomalie : détection de différence par rapport à de nombreux 
exemples connus

•	 Tâche de partitionnement d’un jeu de données: classement des données par familles 
de similarité 

•	 Tâche de réduction de la dimensionnalité: simplification selon certains paramètres

L'apprentissage par renforcement, qui est capable de générer ses propres données d'en-
traînement à partir de règles de bases (utilisé par exemple pour l'apprentissage de jeux de 
stratégie comme les échecs ou le Go). Ce dernier est de loin le plus intéressant, mais le plus 
complexe à mettre en œuvre.

8.	 ANZIEU, « S’amuser avec le Machine Learning ! Part2 », Alexis ANZIEU, 09-mars-2018 .

Schéma présentant une ar-
borescence des différentes 
"branches" de l'IA.8
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On notera enfin que les applications de l'apprentissage machine sont très développées dans 
certains domaines, pour des raisons spécifiques, dues notamment à la nature des données 
à disposition. Par exemple, la reconnaissance automatique de photographies a bénéficié 
d'une grande quantité de données labellisées (grâce aux réseaux sociaux) et accessibles sur 
le web. On peut aussi évoquer ici les types de réseaux de neurones capables de réaliser ces 
différentes tâches, et dont l'invention a chaque fois permis de réaliser de nouvelles perfor-
mances. En effet, après les réseaux de neurones profonds (RNP), on a inventé les réseaux 
de neurones convolutifs (RNC,dont le principe inspiré du cortex visuel a permis une nette 
amélioration des capacités "visuelles" de reconnaissances de motifs), puis les réseaux de 
neurones récurrents (RNR, capables de créer de la musique grâce à leur mémorisation de 
séries temporelles), et enfin les autoencodeurs qui sont capable d'apprentissage non super-
visé. Si on voulait entrer dans le détail, on verrait que de nombreuses innovation techniques 
mais aussi méthodologiques on permis petit à petit d'améliorer la manière dont on entraîne 
ces réseaux, afin de dépasser les problèmes de divergence ou de sur-apprentissage qui ne 
cessent de réapparaître avec la complexification des architectures.

1.1.3 Quelques enjeux sociaux et économiques 

	 Si l'IA pose encore beacoup de questions techniques, elle soulève aussi de nom-
breux enjeux sociaux et économiques. Parmi de nombreux auteurs s'essayant sur ces sujets, 
on peut citer le rapport officiel du député Cédric Villani, paru en 2018 et qui dresse un état 
des lieux à l'échelle française et européenne des évolutions de l'industrie liée à ces tech-
nologies. Si l'architecture et la construction ne font pas partie des secteurs prioritaires de 
développement qu'il préconise, ses recommandations d'ordre général s'appliquent à tous 
les domaines. Les problématiques qu'il pointe en particulier sont celle des emplois menacés 
par l'automatisation des tâches, ainsi que les problématiques de souveraineté de nos sys-
tèmes de connaissance.

«Dans ce monde-là, qui est désormais le nôtre, ces technologies représentent beaucoup plus 
qu’un programme de recherche : elles déterminent notre capacité à organiser les connais-
sances, à leur donner un sens, à augmenter nos facultés de prise de décision et de contrôle 
des systèmes. Et notamment à tirer de la valeur des données. L’intelligence artificielle est 
donc une des clés du pouvoir de demain dans un monde numérique.»

«L’intelligence artificielle est loin d’être une fin en soi et son développement doit prendre en 
compte plusieurs aspects. Tout d’abord la nécessité de penser les modes de complémentarité 
entre l’humain et les systèmes intelligents. Que ce soit au niveau individuel ou collectif, cette 
complémentarité peut prendre plusieurs formes et peut être aliénante comme libératrice. Au 
cœur du développement de l’IA doit résider la nécessité de mettre en œuvre une complémen-
tarité qui soit capacitante, en ce qu’elle permet de dés-automatiser les tâches humaines.»9

Du point de vue de l'architecte, on a bien-sûr un prisme de lecture de ces enjeux assez spé-
cifique. En effet, si les emplois de nature créative sont encore peu menacés par l'automati-
sation, on cherche pourtant à s'en approcher pour des raisons d'efficacité dans les tâches de 
plus en plus complexes à réaliser. Pourtant, notre métier ayant un fort impact sur la société, 
on ne peut pas déléguer à la machine des responsabilités trop importantes. On doit égale-
ment veiller à ne pas supprimer aux concepteurs leur autonomie (ou souveraineté) de créa-

9.	 C. Villani, Rapport « Donner un sens à l’intelligence artificielle, pour une stratégie nationale et européenne », 2018. 
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tion, par une domination des éditeurs de logiciels par exemple. Si l'IA peut devenir un outil 
de création très intéressant, c'est également une technologie très centralisatrice, dont ceux 
qui possèdent des données en nombre auront le monopole. On peut très bien imaginer des 
applications développées par des éditeurs de logiciels, mais aussi par des promoteurs dont 
les motivations essentiellement financières pourraient aveugler quand au pouvoir de stan-
dardisation et autres biais possibles de ces technologies.

1.2 Tentatives historiques d’automatisation de la conception architecturale

1.2.1 Le développement de l’informatique vécu par les architectes

	 Il serait bien trop long de détailler ici la longue liste histoire de l'appropriation par 
les architectes de l'outil informatique. En effet, depuis l'apparition des premiers ordinateurs, 
les concepteurs ont cherché à en faire un allié de travail dans leurs tâches besogneuses 
mais aussi dans leurs recherches les plus créatives. Si il existait déjà une infinité "d'écoles" 
de conception architecturale, la manière de se servir d'un ordinateur ajoute encore un pa-
ramètre à cette diversité des pratiques architecturales. Toutefois les théoriciens et histo-
riens observent des "mouvements architecturaux", des tendances qui s'organisent autour 
de techniques computationnelles bien définies. C'est ainsi que Mario Carpo10 évoque par 
exemple le rôle des "modeleurs de spline", développés à l'origine pour la conception au-
tomobile, dans l'émergence d'un mouvement architectural obnubilé par les courbes. Dans 
son ouvrage du même nom, l'auteur annonce par ailleurs ce qu'il appelle "the second digital 
turn" (un deuxième tournant digital), qui serait d'après lui en train d’apparaître du fait no-
tamment de l'explosion de la quantité de données que l'on peut à présent stocker. Ce qu'il 
évoque par là est un certain essoufflement des mouvements "pionniers" de la conception 
numérique consistants uniquement à rechercher la complexité formelle à l'aide de proces-
sus complexes mais peu "intelligents" (au sens de "donnant du sens à leurs actions"). Leur 
manière d'utiliser la puissance de calcul de l'ordinateur étant très démonstrative, elle ne 
simplifie pourtant en rien, la tâche de l'architecte. Mais si ces écoles de conception démons-
tratives et formelles (qu'on désigne souvent comme les "déconstructivistes") sont celles 
dont on parle le plus souvent, en matière de digitalisation de la conception architecturale, 
d'autres plus discrètes se sont véritablement confrontées au "problème de la formulation 
explicite" (évoqué en introduction), qui semble être la véritable limite de la digitalisation du 
processus de conception, en ce qu'il bride la fluidité de la communication entre l'architecte 
et son outil qu'il aimerait pouvoir "éduquer". En effet, lorsqu'on tente de faire faire à l'ordi-
nateur les tâches "intelligentes" du concepteur, on se heurte à un problème de traduction 
(ou de formulation) d'instructions claires et suffisantes pour la réalisation de cette tâche. 
Le concepteur doit donc choisir entre deux manières (incomplètes) d’utiliser la machine: 
soit il l’utilise pour optimiser un ensemble de paramètres qu’il a préalablement explicités 
(ce qui revient à un travail laborieux voir impossible selon le problème posé), soit il l’utilise 
pour générer des formes abstraites, ne résolvant que quelques paramètres géométriques 
du problème, qu’il doit ensuite «adapter» à la réalité du problème en terme d’usages et 
d’aménagements (ce qui revient à résoudre un problème dans le problème, avec de nou-
velles contraintes géométriques).

10.	 M. Carpo, The second digital turn design beyond intelligence. Cambridge, MA: The MIT Press, 2017, p.55
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1.2.2 Des théories pour formaliser le processus de conception

	 En parallèle du développement de l’informatique, la quête de l'automatisation a 
poussé de nombreux concepteurs et théoriciens de la conception à un auto-analyse pous-
sée, afin de pouvoir formuler une syntaxe communicable à la machine pour décrire les 
opérations du concepteur. Plusieurs écoles de pensée sont alors apparues, se confrontant 
majoritairement autour de deux positions: l'une voulant conserver le mystère de la "boîte 
noire" du concepteur (de peur d'en perturber le bon fonctionnement), et l'autre défendant 
une approche purement rationnelle consistant à  décortiquer de manière exhaustive le pro-
cessus de conception. Dans son ouvrage "Analogie et théorie en architecture"11, J.P. Chupin 
procède à une analyse très documentée de ces différents courants de pensée et évoque 
notamment le cas de C. Alexander et son "Pattern Langage", la première tentative assez 
caricaturale de décomposition exhaustive des choix du concepteur. Si Alexander a fini par lui 
même désavouer sa propre méthode, d'autres tentatives plus élaborées ont été elles même 
confrontées à des limites: c'est le cas de Philippe Boudon12 et sa théorie de "l'architectu-
rologie" qui devait décrire intégralement sous forme "d'échelles architecturologiques" les 
paramètres à déterminer par le concepteur, et dont le nombre ne cesse d'augmenter au gré 
des besoins toujours plus divers de la conception. Pour résumer, cette école du «problem 
solving» qui propose de réduire la question posée en un ensemble de paramètres quantita-
tifs à faire optimiser par la machine, pose la question de la complexité d’une telle résolution 
(paramètres nombreux et parfois contradictoires). Mais sa limite est surtout l’impossibilité 
à expliciter complètement le problème en terme de paramètres explicites (sans compter le 
caractère unique de chaque problème). 

1.2.3 Une troisième voie

	 Dans son livre "Permutation Design: Buildings, Texts ans Contextes", Kostas Terzi-
dis13 tente de proposer une alternative à la guerre de position entre les défenseurs de la 
boîte noire, et les adeptes du "problem-solving" à l'infinité de paramètres. Il souligne d'ail-
leurs l'apport selon lui majeur de C. Alexander passé plutôt inaperçu qui fût de proposer 
une définition de ce qui, dans la conception était "systématisable" et ce qui ne l'était pas, 
ainsi que la théorie selon laquelle une bonne modélisation du processus de conception de-
vait inclure des changements de contraintes (changement d'avis du concepteur). Après une 
analyse similaire à celle présentée ici, Terzidis déduit un type d'usage qui devrait être fait de 
l'ordinateur, dans le but de résoudre aussi bien les limites de formulation explicite des "pro-
blem-solver" que les limites des concepteurs "à la boîte noire", qui ne parviennent pas tou-

11.	 J.-P. Chupin, Analogie et théorie en architecture: de la vie, de la ville et de la conception, même. Gollion: Infolio, 2013.
12.	 P. Boudon, Sur l’espace architectural: essai d’épistémologie de l’architecture. Marseille: Parenthèses, 2003.
13.	 K. Terzidis, Permutation Design: Buildings, Texts, and Contexts. London ; New York: Routledge, 2014.

Schémas présentant les 
"trois types de concepteurs" 
selon J.C.Jones 1969:

1.	 "Designer as Magician" 

2.	 "Designer as computer" 
(traitement systéma-
tique de l'information) 

3.	 "Designer as self-orga-
nizing system" (le rôle 
de la reflexivité dans la 
conception)
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jours à la solution optimale avec leur méthode de tâtonnement. D'après lui, la "conception 
automatique devrait permettre de garantir ces deux résultats: explorer une grande quantité 
d'options, et sélectionner la meilleure. Après avoir rappelé l'efficacité des méthodes d'al-
location spatiale pour les problèmes très fonctionnalistes (comme les hôpitaux), il évoque 
même la nécessité de développer une méthode plus adaptative (proche du processus de tâ-
tonnement), au cours duquel la machine apprendrait par elle même. Finalement le principe 
défendu par Terzidis est ce qu'il appelle les "permutation", dont il donne ici la définition:

«In design, the problems that designers are called upon to solve can be regarded as pro-
blems of permutations. A permutation is an ordered arrangement of elements in a set. In our 
case, the set is design and the elements are design components, such as lines, shapes, forms, 
or spaces.»  Kostas Terzidis

Cette approche n'est pas sans rappeler une théorie moins récente: celle des grammaires 
de formes (ou shape grammars), proposée pour la première fois par G. Stiny14 en 1980, 
mais qui depuis continue à être l'objet de recherches. Si cette approche semble tout aussi 
laborieuse que les précédentes (celles des "problem-solving"), elle présente tout de même 
un intérêt majeur: elle se concentre sur la question spatiale, au lieu de vouloir intégrer tous 
les aspects du problème posé. Une telle approche permet non seulement de tirer parti des 
compétences de l'ordinateur sur une tâche très bien définie, mais elle permet également 
de puiser dans le champs des références déjà réalisées afin d'en extraire des connaissances 
(elle ne consiste donc pas à partir de rien). Pour illustrer ces considération, nous citerons 
un travail faisant désormais autorité dans cette branche de recherche : L'étude des mai-
sons de Malagueira de l'architecte Alvaro Siza, par José Pinto Duarte15.Dans Cette étude, le 
chercheur s'appuie sur un corpus de plans réels et sur les conseils de l'architecte lui même, 
afin de formuler une grammaire permettant non seulement de décrire les plans existants, 
mais encore d'en générer de nouveaux. Cet exemple bien qu'on ne peut plus unique, nous 
donne une piste d'exploration: les grammaires de forme comme moyen d'apprendre à partir 
d'exemples existants.

1.3 L'apprentissage machine, un piste de résolution?

	 Dans cette section, on produira quelques hypothèses sur la manière dont l’appren-
tissage machine semble pouvoir répondre aux besoins spécifiques du concepteur évoqués 
précédemment, et ce d'après ce qu'on comprend "intuitivement" des possibilités d'usages 
de ces systèmes. Ces hypothèses se basent sur une caractéristique récurrente des réseaux 
de neurones: la reconnaissance de motifs. Ces hypothèses nous guideront ensuite pour na-
viguer dans l'état de l'art, qui est vaste et touche à des champs disciplinaires très variés. 
Si l'expérimentation présentée en partie 3 ne permettra que partiellement d'en évaluer la 
validité, il est intéressant de les exposer ici, afin de donner à voir le cheminement vers notre 
problématique et les ambitions de départ, forcément trop larges, du travail de recherche.
 
Comme on peut déduire des théories de K. Terzidis notamment, l’apprentissage de l’archi-
tecture se fait en intégrant un vocabulaire de formes qui permettent une certaine abstrac-
tion de la réalité de l’objet à concevoir : la conception consiste en effet à manipuler ces abs-
tractions pour les agencer et ensuite les retranscrire en une réalité constructible. L'une des 
fonctions que sont capables d'apprendre certains réseaux de neurones (les réseaux convo-

14.	 G. Stiny, « Introduction to shape and shape grammars », Environment and Planning B: Planning and Design, vol. 7, nᵒ 3, p. 343‑351, 1980.
15.	 J. P. Duarte, « Towards the Mass Customization of Housing: The Grammar of Siza’s Houses at Malagueira », Environment and Planning B: 

Planning and Design, vol. 32, nᵒ 3, p. 347‑380, juin 2005.
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Diagramme d'arborescence exposant les règles de composition des différents types de plans, conformément à 
la "grammaire de forme" mise au point à l'aide d'un corpus de références, et des avis de l'architecte.
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lutifs en particulier), est justement la reconnaissances de motifs (ou patterns). On pourrait 
alors imaginer "enseigner" à un réseau des connaissances architecturales sous la forme de 
motifs. Deux possibilités s'offrent alors: l'apprentissage supervisé de motifs identifiés au 
préalable, ou bien l'apprentissage de motifs non supervisé sur des plans réels non étiquetés. 
Chacune des deux options peut avoir un intérêt, même si la deuxième option semble la plus 
prometteuse, et la première la plus réaliste. Pour illustrer qualitativement la capacité des 
réseaux de neurones à apprendre à reconnaître de motifs de manière non-supervisée, on 
citera encore une fois l'ouvrage de A.Géron, à propos de la capacité de ceux-ci à produire en 
interne une représentation efficace des données d’entraînement:

« Prenons une série de nombres à mémoriser : une série plus longue mais obéissant à 
quelques règles simples est beaucoup plus simple à mémoriser (ex : suite de Syracuse). Si 
nous avions la capacité de mémoriser rapidement et facilement de très longues séries, nous 
n’aurions pas besoin de nous préoccuper de l’existence d’un motif dans la seconde suite et 
nous pourrions simplement apprendre chaque nombre par cœur. C’est cette difficulté de 
mémorisation des longues suites qui donne tout son intérêt à la reconnaissance de motifs. 
Comme le cerveau humain, si on contraint l'entraînement d'un réseau de neurones artificiel 
on le pousse à découvrir et à exploiter les motifs présents dans les données. »

«La relation entre mémoire, perception et correspondance de motifs a été étudiée sur les 
joueurs d’échec par William Chase et Herbert Simon dès le début des années 1970. Ils ont 
étudié comment les joueurs pouvaient mémoriser en très peu de temps la configuration de 
l’échiquier. Ils ont montré que les joueurs n’avaient pas une mémoire exceptionnelle, mais 
que c’était bien leur expérience du jeu qui leur permettait de reconnaître plus facilement des 
motifs de placement. A l’instar des joueurs d’échecs, un réseau de neurones artificiel examine 
les entrées, les convertit en une représentation interne efficace et produit en sortie quelque 
chose qui ressemble énormément à l’entrée.»16

A partir d'un entraînement sur des plans réels, on pourrait donc imaginer de produire un 
corpus de motifs, décrivant d'une certaine manière ces plans. Pourrait-on alors mettre en 
évidence un aspect "diagrammatique" de ces motifs? Seraient-ils intelligibles si on arrivait 
à les lire? Comment pourrait-on les utiliser? Le "mandala" de Sou Fujimoto17 représenté ci-
contre illustre une manière manuelle "d'encoder" des motifs, afin de les réinterpréter lors 
de la conception. Cette pratique permet à l'architecte de saisir l'essentiel d'une référence 
avant de la réinterpréter. Ce genre de mode de représentation pourrait-il devenir le langage 
de communication directe avec la machine si recherché par les architectes? 

16.	 A. Géron, Deep Learning avec TensorFlow - Mise en œuvre et cas concrets. Dunod, 2017, p.50
17.	 J. Lucan, Précisions sur un état présent de l’architecture. Lausanne: Presses Polytechniques et Universitaires Romandes, 2015. 
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Diagrammes de l'architecte Sou Fujimoto, qu'il appelle ses "Madala" et qui sont pour lui un outil de conception.17
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PROBLÉMATIQUE
État de l’art quand à l’automatisation de la conception 
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2| PROBLÉMATIQUE

	 Dans cette partie, il s'agit d'énoncer notre problématique, en s'appuyant sur une 
analyse (succincte) de l'état de l'art. Précédemment, on a donc évoqué les objectifs de 
cette recherche: extraire des "connaissances architecturales" à partir de plans, en tentant 
d'exploiter les capacités de "reconnaissance de motifs" propres aux réseaux de neurones 
(convolutifs en particulier). Afin de préciser nos objectifs, en terme de faisabilité mais aussi 
de méthode, nous allons donc rassembler les éléments qui pourraient nous orienter.

2.1 Structure de l’état de l’art

	 Tout d'abord, il s'agit d'avoir une vision claire de la structure de notre état de l'art. 
En effet, les domaines de recherche qui touchent à notre sujet sont variés et peuvent être 
répartis en cinq grandes familles thématiques:

1.	 Les grammaires de formes et autres algorithmes génératifs 
 
Ces recherches1 ont déjà été évoquées, mais elles ont servi ici plus spécifiquement à 
nous aiguiller pour la réalisation de notre générateur de plans. Ceci dit, celui-ci reste 
très sommaire, et un intérêt de la recherche serait justement de pouvoir se dispenser 
de l'usage laborieux de ces grammaires de formes. 

2.	 Le machine learning pour l’architecture 
 
Bien qu'assez éloignées de l'application spécifique de lecture des plan, ces recherches 
nous ont donné des pistes sur le type de données dont dispose d'architecte pour 
entraîner un réseau de neurones, mais aussi sur différentes applications possibles. 
On a par exemple pu voir des réseaux entraînés sur des "décisions implicites" d"un 
concepteur2 (ce qui pose un gros problème de proportion entre la quantité d'opéra-
tions nécessaires à l'apprentissage, et la quantité d'opérations effectivement automa-
tisées). Cette recherche présentait par contre une méthode intéressante, qui consistait 
à utiliser le réseau de neurone comme fonction d'évaluation d'un algorithme géné-
tique, ce qui permettait de l'intégrer directement dans le processus de conception. On 
a également pu voir l'usage de données générées grâce à une maquette numérique, 
permettant un apprentissage supervisé de reconnaissance de types d'espaces à partir 
d'images perspectives 3. Une autre étude proposait quand à elle de produire des 
"rêves architecturaux", en utilisant un réseau déjà entraîné sur une banque d'images 
d'animaux, afin de tester l'adaptabilité d'un tel réseau pour un usage à petite échelle4. 
Ces recherches donnent des pistes d'exploration intéressantes, et sont surtout la 
preuve d'un intérêt grandissant des architectes pour ces technologies, bien que les 
applications soient encore loin d'être opérationnelles. 
 

Problématique

1.	 M. Barros, J. P. Duarte, et B. M. Chaparro, « A Grammar-Based Model for the Mass Customisation of Chairs: Modelling the Optimisation 
Part », Nexus Netw J Nexus Network Journal : Architecture and Mathematics, vol. 17, nᵒ 3, p. 875‑898, 2015.

2.	 C. Sjoberg, C. Beorkrem, et J. Ellinger, « Emergent Syntax: Machine Learning for the Curation of Design Solution Space », in ACADIA 2017: 
DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACA-
DIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 552- 561, 2017.

3.	 W. Peng, F. Zhang, et T. Nagakura, « Machines’ Perception of Space: Employing 3D Isovist Methods and a Convolutional Neural Network in 
Architectural Space Classification », in ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Asso-
ciation for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 474- 481, 
2017.

4.	 J. Silvestre et Y. Ikeda, « ARTIFICIAL IMAGINATION OF ARCHITECTURE WITH DEEP CONVOLUTIONAL NEURAL NETWORK », p. 10.« Image-to
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3.	 Le machine learning pour la création en général 
 
La créativité ou le design sont traités essentiellement de deux points de vue par la re-
cherche en apprentissage automatique: l'application de motifs (ou de textures) 5, et la 
suggestion temporelle de séquence de croquis 6. Il est intéressant de constater que ces 
application moins contraintes que celles en architecture, semblent permettre d'élabo-
rer des solutions transposables à l'avenir à l'architecture. Il y a aussi des applications 
très proches de ce qu'on souhaite faire ici, comme l'apprentissage de motifs pour 
classer des peintures d'archives 7. 

4.	 Le machine learning pour d’autres applications (techniques intéressantes) 
 
Cette partie de l'état de l'art est plutôt technique. En effet, pour comprendre ce qui 
est faisable et dans quelles conditions pour répondre à un problème donné, on peut 
être amené à consulter ce qui se fait dans des domaines annexes où les recherches ont 
de l'avance pour des raisons souvent d'enjeux économiques ou de meilleures condi-
tions (comme des donnée abondantes par exemple). Dans notre cas, on a pu s'inspirer 
de recherches allant de la détection d'objets en 3D à l'aide d'objets modélisés syn-
thétiquement8, jusqu'à la classification de façade, qui se fait à partir de photos mais 
consiste aussi en la détection de motifs9. 

5.	 La lecture automatique des plans 
 
Enfin, une branche de l'état de l'art sur laquelle on ne pouvait pas faire l'impasse était 
celle qui concernait précisément notre sujet. Étonnamment, les applications propo-
sées se focalisaient essentiellement sur la reconstitution de maquettes en 3D à partir 
de la détection des murs10,11,12. Cette approche conduit à occulter tout autre para-
mètre qu'on pourrait tenter de lire dans les plans, et procède souvent d'une définition 
très précise de ce qu'est un mur. On remarque aussi que ce sont essentiellement des 
méthodes d'apprentissage supervisé qui sont mises en œuvre, sur la base de bases de 
données de plans de promoteurs accessibles en ligne. 

5.	 Image Translation with Conditional Adversarial Networks ». [En ligne]. Disponible sur: https://phillipi.github.io/pix2pix/. 
6.	 D. Ha et D. Eck, « A Neural Representation of Sketch Drawings », arXiv:1704.03477 [cs, stat], avr. 2017.
7.	 B. L. A. Seguin, « Making large art historical photo archives searchable », p. 169.
8.	 P. S. Rajpura, H. Bojinov, et R. S. Hegde, « Object Detection Using Deep CNNs Trained on Synthetic Images », arXiv:1706.06782 [cs], juin 

2017.
9.	 A. Martinović, M. Mathias, J. Weissenberg, et L. Van Gool, « A Three-Layered Approach to Facade Parsing », in Computer Vision – ECCV 

2012, vol. 7578, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, et C. Schmid, Éd. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, p. 
416‑429.

10.	 S. Ahmed, M. Weber, M. Liwicki, C. Langenhan, A. Dengel, et F. Petzold, « Automatic analysis and sketch-based retrieval of architectural floor 
plans », Pattern Recognition Letters, vol. 35, p. 91‑100, janv. 2014.

11.	 L.-P. de las Heras, S. Ahmed, M. Liwicki, E. Valveny, et G. Sánchez, « Statistical segmentation and structural recognition for floor plan interpre-
tation », IJDAR, vol. 17, nᵒ 3, p. 221‑237, sept. 2014.

12.	 S. Or, K.-H. Wong, Y. Yu, et M. M. Chang, « Highly Automatic Approach to Architectural Floorplan Image Understanding & Model Genera-
tion », p. 9. 
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2.2 Positionnement vis à vis de l’état de l’art
	
	 Si l'état de l'art spécifique sur la lecture automatique de plans nous a renseigné sur 
l'avancée des méthodes spécifiques pour la détection des murs, nous sommes obligés de 
nous en distancer un peu, étant donné que notre sujet est plus élargi. En effet, on cherche à 
mettre au point, non pas un système de détection de murs, mais d'un système qui pourrait 
potentiellement détecter d'autres "caractéristiques architecturales", telles que les propor-
tions, les trames ou autres. Il nous fallait bien un prétexte pour démarrer, mais nous ne 
perdrons pas de vue nos objectifs. On aura donc un positionnement plus élargi sur l'état 
de l'art, afin de pouvoir envisager les perspectives plus larges de notre travail, quand à ses 
applications possibles pour assister la conception.

2.3 Définition des objectifs d’expérimentation

	 Au cours de cette expérience, nous chercherons donc  à nous approcher le plus 
possible d'un résultat consistant à faire déchiffrer à un modèle entraîné, une "caractéris-
tique architecturale" contenue dans des plans réels. Dans les limites de l'expérience, on 
travaillera avec des plans étiquetés qui seront générés par nos soins, mais toujours dans le 
but de comprendre comment on pourrait atteindre notre objectif, sans passer par une étape 
trop laborieuse (c'est à dire ni en étiquetant des centaines de plans, ni en ayant besoin de 
produire un générateur sans cesse plus complexe). Il s'agit donc de réaliser un entraînement 
supervisé pour une tâche de classification de plans d'appartement, qui prédise le nombre 
de pièces dans celui-ci.



Le Machine Learning au service de la conception architecturale24

EXPÉRIMENTATION
Construire un système d’apprentissage destiné à la lecture de plans 
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3| EXPÉRIMENTATION

	 Dans cette partie, on exposera en détail les étapes de l’expérimentation mise en 
place pour répondre à la problématique élaborée dans la partie précédente. Pour résumer, 
cette expérimentation consiste à produire un réseau de neurone et à l’entraîner sur un jeu 
de données, afin qu’il soit utilisable pour extraire un paramètre à partir d’un plan: le nombre 
de pièces. Il s’agit donc de réaliser une tâche de classification, où chaque classe correspond 
à un nombre de pièces possible. Le réseau utilisé est un réseau de neurone profond (c’est 
à dire avec plusieurs couches cachées), et convolutif (qui comprend une couche dite de 
convolution). Les données sur lesquelles est entraîné le réseau de neurone sont des plans 
générés, ce qui permet  d’en produire en quantité illimitée sans avoir à les labelliser manuel-
lement. La recherche consistera donc à évaluer l’influence sur la performance du réseau de 
quelques paramètres: la taille de l’échantillon d’entraînement, la proportion entre l’échantil-
lon d’entraînement et l’échantillon de test (ou de validation), ou encore la diversité (ou com-
plexité) des échantillons. Finalement, on analysera les limites de l’expérience, notamment 
quand à la possibilité d’utiliser le réseau pour lire de vrais plans.

3.1 Choisir l’outil de programmation 
	
	 Pour réaliser cette expérience, il fallait tout d’abord choisir le support et le langage 
de programmation à utiliser. En effet, si certains logiciels permettent déjà d’utiliser des ré-
seaux de neurone de manière intégrée, comme le plugin LunchBoxML1, il reste néanmoins 
plus simple d’utiliser un outils plus commun pour le Machine Learning: la librairie Tensor-
Flow du langage python. Cet outil a plusieurs avantages: 

•	 Le langage python 
 
Outre le fait qu’il soit très majoritairement utilisé dans les applications de Machine 
Learning, les internautes sont généralement unanimes pour vanter les qualités synthé-
tiques de ce langage. Aujourd’hui il est d’ailleurs devenu le premier langage enseigné 
dans les écoles d’ingénieur, et est compatible avec de nombreux logiciels ayant une 
interface de programmation comme Grasshopper ou Dynamo. La citation ci-dessous 
résume bien les arguments en faveur de cet outil: 
 
«Pourquoi préférer Python aux autres langages? Python est un langage facile à ap-
prendre et son code est plus lisible, il est donc plus facile à maintenir. Il est parfois 
jusqu’à 5 fois plus concis que le langage Java par exemple, ce qui augmente la produc-
tivité du développeur et réduit mécaniquement le nombre de bugs. L’environnement 
python est riche en librairies. Vous trouverez toujours des projets open source qui vous 
faciliteront la vie.»2 

•	 Les bibliothèques python, dont TensorFlow 
 
Les nombreuses bibliothèques qui enrichissent le langage python, permettent de réali-
ser avec le même langage des tâches spécialisées de manière compacte et modulable. 
Pour notre expérience, on utilise par exemple les librairies matplotlib (pour le tracé 

Expérimentation

1.	 Plugin développé par le développeur Proving Ground, compatible avec les logiciels Rhino ou Revit à travers leur interface de programma-
tion respectives Grasshopper et Dynamo. Cet outils développé pour les concepteurs, pourrait faire l’objet d’une recherche plus approfondie. 
Source: https://provingground.io/tools/lunchbox/

2.	 Source: http://apprendre-python.com/ A. Géron, Deep Learning avec TensorFlow - Mise en œuvre et cas concrets. Dunod, 2017.

Logo de python, langage 
de programmation

Logo de matplotlib, une 
bibliothèque spécialisée 
pour les tracés 2D, utili-
sée par exemple en info-
graphie.

Logo de TensorFlow, une 
bibliothèque spécialisée 
pour le calcul numé-
rique.

Logo de Keras, une bi-
bliothèque intégrée à 
Tensorflow permettant 
une mise en oeuvre 
simplifiée de réseaux de 
neurones.



Le Machine Learning au service de la conception architecturale26

géométrique des plans), numpy (pour les manipulations matricielles) ou encore os 
(pour les imports et exports de documents). La librairie spécifiquement utilisée pour 
mettre en place le réseau de neurone s’appelle TensorFlow. 
 
«Tensorflow est une bibliothèque logicielle open source puissante destinée au calcul 
numérique. Elle est particulièrement bien adaptée et optimisée pour l’apprentissage 
automatique à grande échelle. Conçue pour être flexible, utilisable à toutes les échelles 
et prête à l’emploi en production.»3 

•	 La communauté python et TensoFlow sur GitHub 
 
Le choix d’un langage de programmation se fait aussi par rapport à la dimension de la 
communauté qui participe à l’enrichir et qui garantit notamment les mises à jour né-
cessaires. De ce point de vue, python semblait également être un choix judicieux. Sur 
la plateforme de partage GitHub, on trouve notamment beaucoup d’extraits de codes 
sur des problèmes très similaires à celui qui nous concerne. On y trouve par exemple 
le code du projet Pix2Pix4, une application open source qui permet de convertir une 
image d’entrée en une autre image (par exemple une façade dessinée en imitation de 
photographie). 

•	 La bibliothèque Keras 
 
Keras est une interface de programmation applicative (API) de haut niveau, permettant 
une implémentation rapide de réseaux de neurones, grâce à une optimisation intégrée 
des hyperparamètres. Pour une recherche plus fine, ce type d’outil peut être limité 
car optimisé de manière automatique. Toutefois, dans le cadre de notre expérimenta-
tion, il s’est avérée largement suffisant et a permit d’obtenir rapidement des résultats 
encourageants, sans nécessiter une grande expérience. 

La configuration choisie pour réaliser l’expérience est donc une configuration tout à fait 
accessible et gratuite, qui permet de se familiariser avec les problématiques propres à la 
conception d’un système d’apprentissage automatique. Cette expérience de mise en pra-
tique nous a tout particulièrement permit de constater qu’au delà des résultats «tech-
niques» limités obtenus, la mise en place d’une méthode est en réalité la difficulté majeure 
de l’exercice (et non pas l’apprentissage du langage de programmation, qui fait souvent peur 
aux non initiés).

3.2 Constituer un jeu de données d’entraînement
 
	 La question des données d’entraînement est cruciale pour l’apprentissage machine. 
Comme précisé précédemment, les réseaux de neurones ne sont devenus une technologie 
intéressante que très récemment, et ce en grande partie au regard de la quantité de don-
nées exponentielle partagée sur le web. On observe d’ailleurs que les domaines dans les-
quels l’utilisation de cette technologie s’est le plus développée correspondent aux domaines 
possédant le plus de données disponibles: la classification de photos ou de vidéos, la traduc-
tion  de textes, la reconnaissance vocale... La recherche dans ces domaines bénéficie d’ail-
leurs de nombreuses contributions, dont la mise en place de bases de données étiquetées. 
Pour notre expérience, plusieurs stratégies s’offraient à nous: rechercher une base de don-
née accessible déjà étiquetée (il en existe déjà quelques unes pour les plans d’architecture), 

3.	 A. Géron, Deep Learning avec TensorFlow - Mise en œuvre et cas concrets. Dunod, 2017, p.47
4.	 https://phillipi.github.io/pix2pix/ 
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Exemple type d’un élément 
issu de la base de donnée 
«Basique» : chaque élé-
ment est constitué par un 
plan, et une étiquette qui 
se trouve encodée dans le 
nom de fichier. Ici, il s’agit 
du 234ème plan généré 
dont la classe est la classe 
3 (pour 3 chambres). 

plan234_3.png

produire notre propre base de donnée manuellement (ce qui implique de sélectionner, puis 
labelliser chaque plan), ou enfin de générer directement une base de donnée correspon-
dant à nos besoins. L’avantage majeur de cette dernière option, est de pouvoir attribuer 
automatiquement une étiquette à chaque élément généré, puisqu’il suffit d’extraire l’un 
des paramètres génératif qui est alors connu. Un autre avantage est de pouvoir à moindre 
coût obtenir un très large échantillon, et ainsi ne pas être limité par la quantité. Enfin, le fait 
de générer permet de choisir les paramètres pertinents à faire varier. Par exemple, il n’est 
pas nécessaire de se préoccuper de la pertinence architecturale des plans, tant qu’on veut 
apprendre à lire des paramètres géométrique comme le nombre de pièces. 

Pour notre expérience, nous avons donc choisi de générer nos données d’entraînement 
selon un modèle simple. Afin de tester l’effet de différents paramètres sur la performance 
du réseau, nous avons d’ailleurs généré plusieurs versions de l’échantillon d’entraînement :

•	 Une version «Basique», 
qui nous a permit de rapidement tester le réseau, mais dont la faible variété des para-
mètres implique des biais d’apprentissages importants (distribution des angles discrète 
limitée, orientation unique des pièces, textes aléatoires). 

•	 Une version «Évoluée», 
 qui nous permet de corriger quelques biais d’apprentissages immédiatement observés 
avec la version basique, mais qui ne permet toujours pas d’atteindre des résultats sur 
des plans réels ou trop détaillés (avec des portes, des meubles ou d’autres épaisseurs 
de trait). 

•	 Une version «Mixte»,  
qui tente d’influencer à la marge le réseau par l’ajout d’un mélange de quelques plans 
complexifiés manuellement (par un traitement sur Photoshop) et de quelques plans 
réels, étiquetés manuellement. Si cette dernière base de donnée ne permet pas en-
core d’obtenir des résultats probants, on verra néanmoins dans quelles conditions elle 
permettrait de s’en approcher.

3.2.1 La version «Basique» de la base de données (version B)

	 Pour générer rapidement des figures géométriques ayant les caractéristiques de 
base d’un plan, on utilise des règles très simples (une sorte de grammaire de forme5), qui 
consistent à fixer certaines valeurs aléatoires (inclinaison, distance la plus grande, nombre 
de pièces) puis à déduire par des opérations simples (division, addition, transformation) les 
sous-paramètres permettant de construire la figure. Ainsi, chacun des plans générés est 
une version du plan de base (illustré ci-contre), qui lui même est réalisé selon les étapes 
suivantes:

1.	 Détermination aléatoire du couple (h0,w0), qui seront les coordonnées du point 
P0 le plus éloigné. Ce paramètre délimite l’enveloppe dans laquelle se situe le plan. 

2.	 Détermination par déduction d’une liste de point P1, P2, ... P11 qui permettent de 
tracer le plan «maximal» (un plan qui aurait 3 chambres). Ce découpage se fait avec 
un degré d’aléa dans les proportions entre les distances, mais selon certains para-
mètres fixes (qui assurent par exemples que toutes les pièces sont des rectangles).  

5.	 Cette notion fait l’objet d’une autre partie plus détaillée, et nous a permit d’avoir une méthode de base pour arriver rapidement à un résultat.  
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3.	 Détermination aléatoire des paramètres c1, c2 et c3 qui indiquent l’existence ou non 
de chacune des 3 chambres selon qu’ils prennent la valeur 1 ou 0. On attribuent en-
suite aux chambres qui sont effectivement présentes un nom allant de «Ch.1» à «Ch.3».  

4.	 Enfin, détermination aléatoire d’un angle de rotation parmi une liste d’angles possibles, 
et rotation du plan autour du point de base (0,0).

A partir de ces 4 règles ou étapes, on génère donc un nombre souhaité d’éléments, qu’on 
exporte chacun dans un fichier au format PNG de taille 300x300 pixels et dont le nom com-
prend l’indice de génération (qui permet de localiser le plan dans la base de donnée) et la 
valeur du paramètre de classe qui nous intéresse (de valeur 1,2 ou 3).

3.2.2 La version «Évoluée» de la base de données (version E)

	 Après les premiers essais d’entraînement (qui seront détaillés plus loin), on a rapi-
dement constaté des failles dans la robustesse du système dues à la trop grande homogé-
néité des données d’entraînement. Par exemple, le réseau de neurones était incapable de 
reconnaître un plan sur lequel il avait été entraîné avec un taux d’erreur de 0% si celui-ci 
subissait une simple rotation d’un angle non compris dans la liste des angles possibles. Entre 
la version basique et la version évoluée, ce sont donc quelques modifications simples qui 
ont été opérées, permettant d’augmenter la diversité des plans à soumettre au réseau. On 
a notamment rajouté un degré de symétrie aléatoire, ainsi qu’un intervalle continu d’angles 

Exemple d’un élément issu 
de la base de donnée «Ba-
sique» : Ce cas particulier 
ne se retrouvera pas dans 
la version «Évoluée», dans 
laquelle on s’assurera de 
nommer les chambres 
selon le nombre total de 
chambres présentes. Ici la 
chambre appelée «Ch.3» 
devra s’appeler «Ch.2».

Extrait de version «Évo-
luée» de la base de donnée: 
on peut le remarquer par 
les symétries, les degrés 
de rotation ou encore les 
noms des pièces correspon-
dant au nombre réellement 
présent. On peut égale-
ment visualiser la logique 
d’étiquetage via les noms 
des fichiers d’export sous 
chacun des plans.
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Exemple d’un élément 
ajouté manuellement à la 
base de donnée «Mixte»: 
il s’agit d’un plan trouvé 
sur internet6 et sélection-
né pour sa simplicité et sa 
proximité avec les plans 
générés. On notera que la 
salle de bain est ici consi-
dérée comme une chambre 
pour simplifier. 

plan501_3.png

possibles. Enfin, afin de pousser le réseau à baser sa lecture sur les paramètres textuels, on 
a fait en sorte que les noms des chambres attribués correspondent bien au nombre réelle-
ment présent (c’est-à-dire que le nom «Ch.3» ne soit pas utilisé pour nommer une chambre 
si il n’y en a que deux par exemple).

3.2.3 La version «Mixte» de la base de données (version M)

	 Après d’autres tests d’entraînements sur la version «Évoluée» de la base de don-
nées, on a pu constater d’autres limites (qui seront détaillées plus loin), mais on a surtout pu 
mesurer la distance à parcourir dans le perfectionnement des plans à générer si on voulait 
avoir une chance de pouvoir lire des plans réels. Finalement, le problème ainsi posé re-
viendrait à décrire très précisément par une grammaire de forme très aboutie, une grande 
diversité de plans, ce qui remettrait en cause tout l’intérêt supposé de l’utilisation de l’ap-
prentissage profond, décrit dans les parties précédentes. Cette dernière tentative est donc 
le début de ce qui mériterait un réel travail de recherche: combiner un apprentissage sur 
des données générées et sur des données réelles. En effet, le temps imparti pour ce travail 
de mémoire ne permettait pas le long travail de sélection et d’étiquetage de plans réels en 
quantités suffisantes. On verra par la suite que l’objectif ne serait d’ailleurs pas plus atteint 
de cette manière, qui ne fait décaler le problème, et qu’il existe des méthodes alternatives 
pour traiter le problème des données non étiquetées (reposant sur une combinaison entre 
l’apprentissage supervisé et l’apprentissage non supervisé). En attendant on a donc «bri-
colé» cette troisième base de données en ajoutant des éléments manuellement, dans une 
proportion peu signifiante malheureusement. 

	 Finalement, une fois la base de donnée à utiliser constituée, il reste à formater 
les données pour l’entraînement: en d’autres termes, il faut les convertir dans un format 
qui soit lisible par le réseau de neurones. Cet aspect sera détaillé dans la partie suivante, 
puisqu’elle est conditionnée par la forme même du réseau utilisé. 

3.3 Créer et entraîner un modèle
	
	 Une fois qu’on dispose d’une base de données exploitable, il faut donc y prélever 
un échantillon de données d’entraînement ainsi qu’un échantillon de test. En effet, le ré-
seau de neurone utilisera les données d’entraînement pour modifier ses poids (processus 
dit de rétro-propagation), et les données de test serviront à offrir une visualisation de la 
performance du réseau au cours de l’entraînement, ce qui est surtout utile pour connaître le 
nombre d’époques nécessaires pour avoir un entraînement satisfaisant. On comprend que 
seul l’échantillon d’entraînement a un impact sur l’apprentissage du réseau.  

3.3.1 Formater les données d’entrée 

	 Comme énoncé précédemment, les données brutes de la base de données doivent 
tout d’abord être importées puis formatées pour pouvoir être lues par le réseau. Plus spéci-
fiquement, c’est la première couche du réseau qui détermine le format nécessaire (ou inver-
sement, on peut être amené à choisir le type de la première couche adapté au format des 
données à traiter). Nos plans étant générés, ils sont déjà dans un format homogène (format, 
dimension et profil colorimétrique identiques), ce qui nous épargne une étape d’harmoni-
sation qui serait nécessaire pour des plans réels. Toutefois il est nécessaire de les conver-
tir en tableaux de valeurs numériques (ou matrice), pour qu’ils puissent être exploités par 

6.	 « 6º Prêmio Pré-Fabricados para Estudantes – 1° Lugar – Parque Guaianazes / Jhonny Rezende », ArchDaily Brasil, 02-janv-2012. Disponible 
sur: http://www.archdaily.com.br/br/01-18871/6o-premio-pre-fabricados-para-estudantes-1-graus-lugar-parque-guaianazes-jhonny-
rezende.
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le réseau qui fonctionne par opérations matricielles. Enfin, il est également nécessaire de 
mettre sous forme matricielle les étiquettes (ou labels) décrivant les plans. On produit donc 
deux matrices d’entraînement X_train et Y_train comprenant respectivement l’ensemble 
des plans et les valeurs de classe correspondantes (le nombre de pièces, allant de 0 à 4), 
dans un ordre identique qui permettra au réseau de les associer. On procède de même pour 
les matrices de test X_test et Y_test. Parmi les paramètres que l’on fait varier pour l’expé-
rience, celui de la taille de l’échantillon d’entraînement (on entraîne le réseau avec 300 puis 
avec 3000 plans) nous permet d’évaluer la bonne proportion à adopter entre la complexité 
des objets à classer, le nombre de classes possible et la taille de l’échantillon à soumettre au 
réseau pour obtenir un degré de reconnaissance satisfaisant.

3.3.2 Choisir la structure du réseau

	 Pour choisir la structure du réseau adaptée à nos besoins, une façon simple était de 
partir d’un exemple de base disponible sur le site web de TensorFlow7, puis de l’adapter en 
modifiant simplement la nature et le nombre de couches. La seule contrainte est de s’assurer 
que chaque couche est compatible avec le format de sortie de la couche précédente, et que 
la dernière sortie est de dimension scalaire (numéro de la classe). On ajoutera par exemple 
une couche de convolution, dont l’utilisation dans de nombreux exemples (par exemple 
dans le réseau utilisé par Pix2Pix8) semble indiquer l’efficacité. Il est d’ailleurs reconnu que 
les réseaux de neurones dits convolutifs (ayant au moins un couche de convolution), sont 
très efficaces pour les tâches de classification d’image mais aussi pour la reconnaissance 
du langage naturel9. Mais pour avoir un aperçu général du principe de fonctionnement de 
notre réseau (pourquoi il fonctionne autrement dit), expliquons le principe et l’utilité de 
chacune des couches qui le composent:

•	 La couche d’entrée 
Cette couche est indispensable puisqu’elle a pour fonction de distribuer les entrées sur 
la couche suivante. Toutefois elle ne subit pas d’ajustement, et ne sert à rien d’autre 
qu’à permettre au système de lire la matrice des données. Elle ne fait pas partie des 
couches dites cachées du modèle. 

Représentation schéma-
tique du réseau utilisé pour 
l’expérience: en «entrée», 
on lui donne en réalité une 
matrice de valeurs d’en-
trées associée à une ma-
trice de valeurs de sorties, 
grâce auxquelles il pourra 
réaliser son entraînement 
(on dit que le modèle 
s’ajuste aux données d’en-
traînement). On voit aussi 
les différentes couches qui 
composent ce réseau (re-
présentation simplifiée), 
ainsi que le format des en-
trées et sorties de chacune 
d’elle.

7.	 https://www.tensorflow.org/tutorials/
8.	 https://phillipi.github.io/pix2pix/
9.	 A. Géron, Deep Learning avec TensorFlow - Mise en œuvre et cas concrets. Dunod, 2017, p.179
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Extrait du code qui suffit à
définir, entraîner et évaluer
le réseau de neurone utili-
sé dans notre expérience: 
quelques lignes suffisent 
pour définir l’ensemble des 
couches de neurones (sur-
lignées en jaune), et les 
nombreux paramètres tels 
que le type de fonction de 
coût, la fonction d’activa-
tion, la méthode d’optimi-
sation ou encore le nombre 
d’époques d’entraînement. 
En sortie on peut lire la 
valeur du coût (loss) et de 
la précision (accuracy) à 
chaque étape de l’entraî-
nement (epochs). Ici, on a 
entraîné le réseau sur les 
données «Mixtes».

•	 La couche de convolution 
C’est le bloc de construction le plus important d’un RNC (Réseau de Neurones Convo-
lutif). Dans la première couche de convolution, les neurones ne sont pas connectés à 
chaque pixel de l’image d’entrée mais uniquement aux pixels dans leur champs récep-
teurs (c’est à dire une matrice de dimension réduite appliquant un filtre sur toutes les 
sous-parties de même dimension de l’image, par balayage). Cette architecture, inven-
tée en imitant le fonctionnement du cortex visuel humain10, permet au réseau de se 
focaliser sur des caractéristiques de bas niveau dans les premières couches cachées, 
puis de les assembler en caractéristiques de plus haut niveau dans les couches supé-
rieures. Ici, les motifs à reconnaître étant assez simples, un seul niveau de convolution 
suffit à obtenir des résultats satisfaisants. Si toutefois on souhaiter améliorer notre sys-

10.	 Ibid, p.181
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Visualisation de la structure 
de notre réseau de neurone 
(appelé «graphe»), grâce 
à TensorBoard, un outil in-
clus dans TensorFlow qui 
offre une interface web de 
visualisation pour visualiser 
aussi bien la composition 
du réseau, que les courbes 
d’apprentissage (voir ci-
après). On peut constater la 
complexité des connexions, 
pour notre réseau qui est 
pourtant très basique par 
rapport à l’état de l’art des 
CNN (moins de 10 couches 
cachées). A noter, on ne 
visualise ici le modèle qu’à 
un niveau très peu détaillé 
(absolument pas à l’échelle 
d’un «neurone» unitaire).

Schéma de principe10 d’une 
opération de convolution: 
ici la dimension de ba-
layage est 3x3 pour une 
image de 7x7.

tème (cf. Considérations de la partie 4), on gagnerait à multiplier ce type de couches 
dans la mesure du niveau de diversité de «motifs» à reconnaître. La dimension de 
balayage est également un paramètre important à adapter suivant le type de motifs à 
repérer par chaque couche. 

•	 La couche de pooling 
Cette couche a pour objectif de réduire la charge de calcul, l’utilisation de la mémoire 
et le nombre de paramètres (limitant ainsi le risque de sur ajustement). Son fonction-
nement est très similaire aux couches de convolution, mais les neurones de pooling 
ne possèdent aucun poids. Elle se contente donc d’agréger les entrées en utilisant une 
fonction d’agrégation, comme la valeur maximale ou la moyenne. Les autres entrées 
sont ignorées. Cette couche est très destructrice, à utiliser avec parcimonie dans un 
réseau plus complexe. 

•	 La couche d’aplatissement (ou flatten) 
Cette couche a uniquement pour fonction de convertir la sortie de la couche précé-
dente dans un format lisible par la couche d’activation suivante. 

•	 La couche dense 
Cette couche est indispensable pour réaliser la tâche de classification. En effet c’est 
elle qui permet d’appliquer la fonction d’activation, dont le rôle et de déterminer la 
classe de sortie. Ici, on utilise une fonction d’activation «softmax», ce qui est la solu-
tion standard si on ne veut pas spécialement s’y intéresser (fonctionne dans beaucoup 
de cas). 

•	 La couche de sortie 
De même que la couche d’entrée, celle-ci sert à distribuer les valeurs de sortie. Elle 
permet notamment de lancer la rétro-propagation dans l’autre sens, après une éva-
luation de la réponse donnée à chaque tour par le réseau, par comparaison de celle-ci 
avec le résultat connu (étiquette donnée par la matrice d’entraînement).

Ainsi on dispose d’un réseau de neurones (ou modèle) assez simple, qui donne des résul-
tats satisfaisants pour la tâche qui lui est demandée. On verra dans la partie 3.5 pourquoi 
un paramétrage plus fin du réseau n’a pas été nécessaire, dans la mesure où le facteur 
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limitant est surtout la question des données d’entraînement et du type de système mis en 
place (système simple de classification supervisé) pour arriver à nos objectifs les plus am-
bitieux (lire des plans réels, sans avoir à en étiqueter un grande quantité manuellement).  
 
Remarque: la représentation du graphe de notre modèle, visible ci-dessous, ressemble va-
guement à un «canvas Grasshopper» d’une certaine complexité. Or le très faible  nombre 
de lignes de code qui en est à l’origine (cf. Illustration) nous évoque l’intérêt que pourraient 
avoir les réseaux de neurones pour les concepteurs du point de vue de la compacité de la 
programmation. On peut s’intéresser en la matière à la thèse de Daniel Davis11 qui étudie le 
manque de flexibilité de la «programmation visuelle» pour les concepteurs.

3.3.3 Visualiser l’entraînement

	 Afin d’apprendre à réaliser la tâche de classification des plans, le modèle réalise un 
certain nombre «d’époques» d’entraînement. A chaque époque, il s’ajuste pour minimiser 
son erreur sur un certain nombre de plans, grâce au mécanisme dit de rétro-propagation, 
dont voici une courte définition12:

« L’algorithme de rétro-propagation : 
Pendant de nombreuses années, les chercheurs se sont efforcés de trouver une manière d’en-
traîner les RNA (réseaux de neurones artificiels), sans succès. En 1986, D.Rumlhart et al. ont 
publié un article révolutionnaire dans lequel ils introduisent un algorithme d’entraînement 
à rétro-propagation (Learning International Representation by Error Propagation, D.Rumel-
hart, G.Hinton et R.Williams, 1986). Pour l’exprimer de façon concise : pour chaque instance 
d’entraînement, l’algorithme de rétro-propagation commence par effectuer une prédic-
tion (passe vers l’avant), mesure l’erreur, traverse chaque couche en arrière pour mesurer 
la contribution à l’erreur de chaque connexion (passe vers l’arrière) et termine en ajustant 
légèrement les poids des connexions de manière à réduire l’erreur (étape de descente du 
gradient).»

11.	 Davis, Daniel. 2013. “Modelled on Software Engineering: Flexible Parametric Models in the Practice of 
Architecture.” PhD dissertation, RMIT University.

12.	 A. Géron, Deep Learning avec TensorFlow - Mise en œuvre et cas concrets. Dunod, 2017, p.81
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Si il n’y a rien à faire pendant l’apprentissage (d’où l’appellation «apprentissage automa-
tique»), il est tout de même indispensable d’avoir une certaine visibilité sur la façon dont le 
système apprend. En effet, dans la phase de conception du modèle (ou du réseau de neu-
rone), on doit choisir un certain nombre de paramètres afin qu’il puisse apprendre de ma-
nière satisfaisante. Pour avoir des indications sur les défauts à corriger, on peut notamment 
observer la courbe d’apprentissage, qui donne l’évolution de la mesure de l’erreur au cours 
du temps. Cette courbe nous permet par exemple de savoir si l’apprentissage converge ou 
diverge, mais encore au bout de combien de temps l’erreur est suffisamment faible (pour 
utiliser le temps d’entraînement optimal). Dans notre cas, la courbe d’apprentissage est as-
sez basique et converge plus ou moins rapidement selon la quantité de donnée, ou se-
lon la base de donnée utilisée. Nous n’avons pas observé de grande différence suivant les 
modalités d’expérience. D’autres indications nous renseignent aussi sur l’optimisation de 
l’apprentissage, comme la durée d’entraînement de chaque époque (cf. Extrait de code pré-
cédemment). Enfin, il reste important de vérifier qu’on ne se situe pas dans une situation 
trompeuse, comme un sur-ajustement ou une convergence vers un mauvais optimum.

Représentation schématique du réseau utilisé pour l’expérience, pendant la phase d’apprentissage.

Courbe d’apprentissage d’un des entraînements réalisés, visualisée via l’outil TensorBoard.

10 2 3 4 5 6 7 8 9
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Représentation schématique du réseau utilisé pour l’expérience, pendant la phase d’utilisation.

3.4 Utiliser le modèle

	 Une fois entraîné, le modèle a surtout été conçu pour être utilisé. Si nous n’avons 
pas pu faire une analyse très poussée des biais d’apprentissage du réseau dans le cadre de 
ce mémoire, nous avons utilisé la phase d’implémentation du réseau pour tester sa réaction 
à différents types de plans plus ou moins éloignés de ce pour quoi il a été entraîné. Ainsi 
les caractéristiques des plans testés, comparées à la capacité du réseau à les identifier nous 
a permis de déduire certains paramètres sensibles et d’autres moins sensibles au change-
ment. Les tests étant menés dans l’optique de se rapprocher de la capacité à lire (ou classer)  
des plans réels, ils consistent essentiellement à des ajouts de détails sur des plans ayant 
servi à l’entraînement (qui sont donc reconnus avec une incertitude minime par le réseau). 
Le résultat donné par le modèle, se présente sous la forme des probabilités d’attribution de 
chacune de 4 classes, dont la plus haute est retenue comme le classement du plan analysé. 
Pour chaque test, on observera donc non seulement la réponse donnée par le réseau, mais 
surtout les variations dans les probabilités des différentes classes (voir partir 3.5). Comme 
on le verra dans la synthèse des résultats, on utilisera les résultats de ces différents tests 
pour faire évoluer l’expérience. On utilisera notamment les plans modifiés pour tenter d’in-
fluencer l’apprentissage, en les intégrant dans une base de donnée mixte (évoquée précé-
demment) qui servira à son tour à entraîner le réseau.

3.4.1 Utiliser le modèle sur des plans modifiés

	 Afin d’introduire une synthèse des résultats des différentes expériences menées , 
commençons donc par détailler les types de transformations testées. Ici, il s’agit donc de 
modifications réalisées «manuellement» (avec un logiciel de dessin) sur des plans issus de 
notre base de donnée générée Cela permet notamment de conserver le même format, ce 
qui facilite l’opération de formatage afin de les soumettre à l’évaluation du réseau (même 
conversion matricielle). On distinguera une première «vague» de modifications, dont le test 
nous a conduit à réaliser la base de donnée «Évoluée», puis quelques modifications supplé-
mentaires destinées à tester plus spécifiquement cette deuxième base de donnée. Si ces 
nuances seront détaillée lors de la synthèse des résultats, on se contentera ici d’illustrer par 
catégories l’ensemble des modifications testées dans l’expérience. On a représenté ici côte à 
côte ces modifications réalisées sur un même plan de départ (voir page suivante), qui a servi 
d’échantillon témoins pour chacune de nos expériences. 
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Plan d’origine
Plan sur lequel on applique les modifica-
tions décrites ci-contre. Ce plan issu de 
la base de donnée «Basique», pourrait 
aussi bien avoir été généré par la deu-
xième version «Évoluée» de l’algorithme 
génératif (mêmes caractéristiques).

Plan modifié 1
Plan sur lequel on a appliqué la suppres-
sion des textes (réduction du nombre 
d’indices)

Plan modifié 4
Plan sur lequel on a appliqué l’ajout de 
portes (complexification du plan).

Plan modifié 2
Plan sur lequel on a appliqué le change-
ment de style de trait, en appliquant un 
filtre «effet photocopie» (modification 
de l’apparence des indices).

Plan modifié 5
Plan sur lequel on a appliqué l’ajout de 
mobilier, d’épaisseur de trait identique 
aux murs (complexification du plan).

Plan modifié 3
Plan sur lequel on a appliqué le change-
ment d’échelle, ou de cadrage (modifi-
cation de l’apparence des indices).

Plan modifié 6
Plan sur lequel on a appliqué l’ajout de 
mobilier, d’épaisseur de trait différente 
de celle des murs (complexification du 
plan).



37Expérimentation

1.	 Supprimer le texte (réduire le nombre d’indices) 
 
Les textes qui indiquent le nom des pièces ont été intégré dès la base de donnée «Ba-
sique», avec l’idée d’identifier si le réseau préfèrerait s’appuyer sur ces petits éléments 
plutôt que sur les «motifs» constitués par les murs pour identifier le nombre de pièces. 
Un premier test intéressant consiste donc à supprimer ces textes, afin de répondre 
à cette question. Cette opération revient donc à réduire le nombre d’indices (ou de 
propriétés) sur lesquels le modèle peut se baser pour évaluer le plan. 

2.	 Changer le type de traits (modifier l’apparence des indices) 
 
Un autre paramètre qui varie d’un plan à un autre malgré les conventions, est le type 
de traits. Ces variations peuvent être dues à des résolutions différentes, mais aussi à 
des modes (ou styles) de représentation différents (du fait d’outils de dessins différents 
par exemple). Il est donc important de tester l’effet la modification des styles de traits. 
Il existe bien sûr de multiples manières d’obtenir un style de ligne différent, ici on a 
choisi d’appliquer un filtre «effet photocopie». 

3.	 Changer l’échelle (modifier l’apparence des indices) 
 
Dans l’optique de traiter des plans réels issus d’internet par exemple, on peut envi-
sager que le cadrage des plans récoltés varie beaucoup. Dans l’idée d’automatiser la 
récolte d’un grand nombre de plans, on doit pouvoir maîtriser ce paramètre: soit en 
automatisant un cadrage optimal des plans récoltés, soit en entraînant le réseau de 
sorte qu’il soit insensible à un changement d’échelle. Comme on le verra dans les ré-
sultats, cette deuxième option n’est pas si évidente. Elle pose aussi la question encore 
plus complexe de l’échelle des plans, qu’il serait intéressant d’apprendre à reconnaître 
de manière automatique... 

4.	 Ajouter des portes (complexifier le plan) 
 
Dans la perspective de pouvoir évaluer des plans réels, on va ensuite procéder à des 
transformations consistant à complexifier (ou enrichir) le plan, afin de le rendre plus 
réaliste. On testera ainsi la «robustesse» du réseau à diversité des modes de représen-
tation, mais surtout sa capacité à extraire des «motifs» importants, sur lesquels il aura 
été spécifiquement entraîné. Cette première complexification qui consiste à ajouter 
des portes n’est pas anodine, puisqu’elle implique d’interrompre les lignes des murs 
tout en ajoutant des «motifs» perturbateurs (de forme arrondie). 

5.	 Ajouter des meubles (complexifier le plan) 
 
Dans la même logique que pour l’ajout des portes, on ajoute ensuite un degré de 
complexité supplémentaire en dessinant des éléments de mobilier (à une échelle ap-
proximative, mais visuellement réaliste). On distinguera ici deux versions de la trans-
formation: l’une en conservant le même type de trait (épaisseur et couleur identique), 
et l’autre avec des traits distinctifs (couleur atténuée). En effet, dans l’hypothèse ou 
le réseau s’appuie sur les motifs constitués par les lignes de mur, on peut craindre 
que les éléments de mobilier d’une échelle comparable (les lits par exemple), soient 
interprétés comme des murs. D’ailleurs, toujours dans la perspective de la lecture de 
plans réels, on notera que les conventions de représentation, quel qu’elles soient, 
impliquent toujours une distinction assez nette entre les murs et le mobilier.
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Série de plans réels N°1
Source: « 6º Prêmio Pré-Fabricados para Estudantes – 1° Lugar – Parque Guaianazes / Jhonny Rezende », ArchDaily Brasil, 
02-janv-2012. Disponible sur: http://www.archdaily.com.br/br/01-18871/6o-premio-pre-fabricados-para-estudantes-1-
graus-lugar-parque-guaianazes-jhonny-rezende.

Série de plans réels N°2
Source: « Menção honrosa no concurso CODHAB Sol Nascente – trecho 2, por Metamoorfose Studio, Eduardo Martorelli e 
Bianca de Cillo », ArchDaily Brasil, 24-mars-2017. Disponible sur: http://www.archdaily.com.br/br/805831/mencao-honro-
sa-no-concurso-codhab-sol-nascente-nil-trecho-2-por-metamoorfose-studio-eduardo-martorelli-e-bianca-de-cillo.

Série de plans réels N°3
Source: « Primeiro Lugar no concurso da Operação Urbana Consorciada Água Branca / Estúdio 41 », ArchDaily Brasil, 
22-juin-2015. Disponible sur: http://www.archdaily.com.br/br/768842/primeiro-lugar-no-concurso-da-operacao-urba-
na-consorciada-agua-branca-estudio-41.
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3.4.2 Utiliser le modèle sur des plans réels

	 Bien qu’il soit très peu probable que le réseau puisse miraculeusement déchiffrer 
des plans réels, après n’avoir appris que sur nos simili de plans générés (ce serait bien trop 
beau), on a tout de même tenté de lui faire lire certains plans réels, autant pour combler 
une certaine frustration due aux limites de notre expérience, que pour en déduire des pistes 
d’amélioration possibles. Afin de ne pas non plus jeter des «pavés dans la marre», on a soi-
gneusement choisi les plans réels à tester, afin qu’ils remplissent au moins quelques critères 
propres aux conditions de notre expérience. Les plans choisis sont donc des plans rectangu-
laires à murs orthogonaux, dont le nombre de pièces ne dépasse pas 5 (dans la mesure du 
possible). Concernant le nombre de pièces, on notera d’ailleurs que les salles de bain sont 
souvent des pièces à part entière, alors que les cuisines sont rarement des pièces fermées, 
ce qui nous éclaire déjà sur une des limites de l’exercice (dont l’ambiguité de la définition 
de ce qu’est une pièce). Pour simplifier l’expérience, on considérera donc comme «pièce» 
tout espace rectangulaire délimité par quatre murs, et le nombre de chambre sera déduit 
du nombre total de pièces, auquel sera soustrait le nombre de 2 (équivalent à l’ensemble 
séjour+cuisine). Une fois cette convention fixée, on peut évaluer la réponse donnée par le 
réseau comme sa capacité à reconnaître les «motifs» qui correspondent à des murs. On 
notera aussi que les plans sélectionnés sont regroupés par familles, au nombre de trois. 
En effet, nos recherches nous on conduit à trouver des séries de plans similaires et compa-
tibles avec nos critères, ce qui permet de tester des variations d’une série à l’autre, tout en 
multipliant facilement le nombre d’éléments pouvant être ajoutés dans notre dernière base 
de donnée «Mixte». On utilisera également une dernière astuce consistant à modifier ma-
nuellement ces plans pour augmenter encore notre échantillon de plan réels (on appliquera 
par exemple des rotations, des symétries, mais encore des découpages ou collage de pièces 
pour modifier leur nombre). Cette astuce permettra aussi de supprimer les pièces en excès 
si nécessaire (se référer à l’échantillon de plans réels «augmenté» illustré en annexe 3). 

Remarque: Il est important de préciser que les plans utilisés pour «augmenter» la base de 
donnée «Mixte» ne seront pas ceux utilisés pour tester le réseau (on parle ici des tests «ma-
nuels» en mode utilisation, et non des tests qui permettent le suivi du taux d’erreur durant 
l’apprentissage). 

3.5 Synthèse des résultats

	 Pour finir cette partie, on analysera une série de tests réalisés afin de «visualiser» 
les compétences acquises par le modèle, selon qu’il ait été entraîné sur la base de donnée 
«Basique», la base de donnée «Évoluée» ou la base de donnée «Mixte». Bien entendu, ces 
tests ne constituent pas une analyse complète ni exhaustive des capacités et des limites du 
réseau, puisqu’elles sont menées sur un échantillon assez peu représentatif (d’un effectif 
de 16 éléments). On notera aussi un aspect important qui n’est pas visible dans cet «extrait 
de résultat»: les résultats donnés par le modèle changent dès qu’il subit un nouvel entraî-
nement, et ce même si c’est sur le même échantillon. En effet, l’entraînement comprend 
une phase d’initialisation aléatoire qui explique en partie ces différences. Il ne faut donc 
pas prendre les résultats présentés das les tableaux suivants pour une évaluation ferme et 
définitive. Enfin, on comprendra que la mise «au propre» de ces résultats étant un travail 
conséquent, il n’a pas été possible de récolter des données aussi précises sur l’ensemble des 
expériences réalisées durant le processus de recherche. Certains résultats ayant contribué 
à des évolutions importantes de l’expérience, tels que ceux ayant conduit à la constitution 
d’une nouvelle base de donnée plus évoluée n’ont en effet pas été relatés ici. Voici donc une 
présentation partielle des résultats, qui malgré ses limites, a l’avantage d’être structurée afin 
de pouvoir comparer des expériences menées dans des conditions identiques.
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3.5.1 Série de tests sur plans modifiés

	 Les plans testés ici n’ont pas été ajouté dans les bases de données, ils ont sim-
plement été utilisés comme tests de robustesse à différents types de transformations. A 
propos du plan original utilisé pour subir les modifications, il a été choisi pour être le plus 
quelconque possible, et pouvant être trouvé dans chacune des bases de données. Pourtant  
il semble qu’il n’ait pas été correctement identifié par le deuxième réseau, entraîné avec 
la base de donnée E. L’une des hypothèses qu’on peut avancer, (et qui expliquerait aussi 
plus généralement les mauvaises performance de ce réseau sur l’ensemble des tests) est 
que la grande diversité des plans sur lesquels il s’est entraîné nécessitait un effectif plus 
important de données  ou encore un nombre d’époques d’entraînement plus grand que 
10. En effet, un indice qui abonde dans ce sens est le «taux de réussite à l’entraînement» 
donné par le réseau (et son processus de suivi interne de l’entraînement, par test sur un 
échantillon dédié): au bout de 10 époques d’entraînement, ce réseau présente un «taux de 
réussite à l’entraînement» de 90%, ce qui est relativement faible en comparaison aux 98% 
du réseau entraîné sur la base de donnée B. Mais à ces considérations s’ajoutent deux ob-
servations: d’une part le réseau entraîné sur la base M ayant de meilleurs résultats, affiche 
pourtant un «taux de réussite à l’entraînement» de 89%, et d’autre part un «taux de réussite 
à l’entraînement» très élevé peut être le signe d’un sur-ajustement et donc paradoxale-
ment d’une mauvaise performance (bien que l’usage d’un échantillon de test d’une taille 
suffisante permet normalement de s’en prémunir). Pour approfondir ces considérations, 
on pourra se référer à l’annexe 7.3 qui rassemble les courbes d’apprentissage, ainsi que le 
valeurs du suivi de l’entraînement de chaque expérience. On peut donc observer beaucoup 
de choses à partir de ces quelques résultats, bien que ça ne reste à cette échelle que des hy-
pothèses. Il est donc intéressant d’établir cette sorte de «test témoin» pour s’en servir dans 
la conception d’un système d’apprentissage, et cette méthode pourrait être approfondie.     

Série test de plans modifiés
Pour se faire une idée des capacités du réseau 
entraîné, et tenter de comprendre un peu sa 
«manière d’apprendre», on l’utilise pour pré-
dire (ou évaluer) le nombre de pièce des plans 
de cet échantillon témoin, issu de la modifica-
tion de plans générés par notre algorithme. 
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Tableau de résultats des tests sur plans modifiés
Pour chaque plan, la réponse du modèle se décompose en quatre valeurs, chaque valeur étant la probabilité  d’ap-
partenir à une classe. La prédiction du modèle, c’est à dire la probabilité la plus haute est soit vraie (couleur verte), 
soit fausse (couleur rouge) par rapport à la valeur attendue.

Original Modifié 1 Modifié 2 Modifié 3 Modifié 4 Modifié 5 Modifié 6

Image

Réponse attendue 2 2 2 2 2 2 2

0 1,38E-05 4,92E-04 3,76E-05 1,55E-07 5,40E-05 4,54E-10 5,22E-10
1 2,44E-05 1,45E-01 4,96E-04 1,00E+00 1,96E-01 2,48E-09 2,90E-09
2 1,00E+00 8,54E-01 9,99E-01 7,70E-08 8,04E-01 9,99E-01 9,99E-01
3 1,64E-04 4,00E-08 1,09E-04 8,36E-16 2,98E-09 8,81E-04 7,74E-04

Histogrammes 
(échelle relative)

0 1,46E-04 9,59E-05 2,09E-05 7,70E-07 7,39E-06 4,97E-15 8,89E-15
1 4,93E-04 9,94E-01 6,08E-04 1,00E+00 9,94E-01 1,19E-10 1,18E-10
2 3,35E-01 5,72E-03 5,99E-01 1,36E-07 6,00E-03 1,41E-02 1,92E-02
3 6,64E-01 4,49E-05 4,00E-01 5,51E-12 1,16E-05 9,86E-01 9,81E-01

Histogrammes 
(échelle relative)

0 1,14E-02 9,35E-05 1,18E-03 1,58E-05 1,78E-06 2,14E-07 2,07E-07
1 2,90E-02 9,99E-01 7,99E-02 1,00E+00 1,00E+00 2,54E-03 1,22E-03
2 7,88E-01 4,37E-04 8,00E-01 4,14E-08 4,67E-04 9,10E-01 9,33E-01
3 1,72E-01 3,35E-07 1,19E-01 9,86E-14 3,69E-08 8,74E-02 6,62E-02

Histogrammes 
(échelle relative)

Réponses du modèle entraîné avec la base de donnée BASIQUE

Réponses du modèle entraîné avec la base de donnée EVOLUEE

Réponses du modèle entraîné avec la base de donnée MIXTE

Plans modifiés manuellement

Taux de réussite= 86%

Taux de réussite= 14%

Taux de réussite= 71%
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3.5.2 Série de tests sur plans réels

	 Dans cette phase de l’expérience on réalise cette fois des test sur des plans réels. 
On notera que l’expérience est réalisée «dans la foulée» de la phase précédente, afin de 
comparer non pas six, mais bien trois réseaux de neurones ne différant que par la base de 
donnée sur laquelle ils sont entraînés (c’est à dire qu’un réseau une fois entraîné est sou-
mis à la suite aux deux séries de test sur plans modifiés, et sur plans réels). Cela permettra 
entre autre de tirer des conclusions sur les «scores totaux» de chacun des réseaux, en plus 
de les comparer sur chacun des tests séparément. Lorsqu’on observe donc plus particuliè-
rement les résultats de cette phase de test, la première chose qu’on peut remarquer est la 
progression dans la capacité à classer les plans réels que permet la base de données M. Cela 
semble confirmer nos hypothèses, et surtout il est intéressant de noter qu’une proportion 
de 36 plans réels sur 2000 plans d’entraînement au total (soit moins de 2%), permet d’in-
fluencer notablement la capacité du réseau. Ce résultat est intéressant, bien qu’il doive être 
nuancé, en tenant compte du fait qu’il a fallu non seulement étiqueter, mais aussi modifier 
«manuellement» ces plans  un à un pour augmenter artificiellement notre échantillon. Ce 
processus est non seulement laborieux, mais il présente aussi quelques biais, notamment  
en ce qu’il limite la diversité des styles de graphisme auquel le réseau est soumis. Un autre 
biais tout aussi problématique est l’ambiguïté qu’on peut avoir pour étiqueter ces plans: 
en effet, notre définition du nombre de pièces basée sur la logique de notre générateur, se 
retrouve vite confrontée à la grande diversité des cloisonnements et des types d’organisa-
tion possibles des pièces. De ce point de vue, si le but est d’apprendre au système à «lire» 
des murs, il faudra un travail beaucoup plus subtil et un générateur bien plus diversifié. On 
comprend donc par cet exemple toute la difficulté qu’il y a à vouloir identifier ne serait-ce 
qu’un paramètre aussi simple qu’un nombre de pièces. On peut donc s’amuser à analyser 
dans le détail les nuances de ces résultats, mais il est surtout intéressant de prendre du recul 
et d’identifier les perspectives d’améliorations possible pour ne pas tomber à nouveau dans 
l’impasse du «problème de la formulation explicite» évoqué en introduction.

Série test de plans réels
Pour chaque famille de plans réels présentée en 
partie 3, on a sélectionné trois configurations 
issues de modifications «manuelles» (chacune 
correspondant aux nombres de pièces 1, 2 et 
3), afin de les utiliser comme échantillon té-
moin. Cet échantillon complétera celui consti-
tué par les plans générés modifiés (page pré-
cédente), pour l’évaluation des performance 
du réseau selon les différents entraînements. 
On notera que ces plans particuliers n’ont pas 
été ajoutés à la base de donnée «Mixte», afin 
d’éviter de biaiser les résultats prédictifs.
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Image

Réponse attendue 1 2 3 1 2 3 1 2 3

0 1,12E-15 9,76E-18 4,96E-19 1,26E-08 9,88E-22 5,58E-24 1,99E-10 1,35E-13 9,05E-19
1 1,43E-20 1,09E-18 2,42E-16 8,96E-06 2,02E-17 6,65E-22 5,21E-03 9,19E-05 4,41E-12
2 5,89E-04 3,46E-02 1,05E-01 9,98E-01 1,87E-04 6,82E-07 9,95E-01 8,20E-01 2,50E-03
3 9,99E-01 9,65E-01 8,95E-01 1,59E-03 1,00E+00 1,00E+00 1,49E-05 1,80E-01 9,98E-01

Histogrammes 
(échelle relative)

0 8,85E-12 1,09E-24 8,62E-27 7,87E-17 1,19E-30 3,25E-32 1,91E-15 7,21E-24 9,25E-27
1 6,89E-13 1,18E-23 3,75E-27 4,30E-12 1,83E-24 1,12E-32 9,02E-10 1,57E-18 4,52E-26
2 1,31E-01 1,22E-06 6,07E-07 2,50E-02 6,82E-07 4,22E-10 5,78E-01 2,21E-02 1,84E-04
3 8,69E-01 1,00E+00 1,00E+00 9,75E-01 1,00E+00 1,00E+00 4,22E-01 9,78E-01 1,00E+00

Histogrammes 
(échelle relative)

0 2,43E-04 3,11E-11 2,11E-15 9,47E-10 6,93E-18 1,17E-14 2,23E-12 9,27E-18 1,63E-14
1 7,75E-02 8,87E-04 9,46E-07 1,00E+00 5,46E-06 7,15E-07 6,15E-03 3,25E-06 1,44E-04
2 9,21E-01 9,55E-01 1,00E+00 1,85E-05 9,99E-01 4,61E-01 9,94E-01 1,00E+00 9,98E-01
3 9,93E-04 4,42E-02 2,35E-04 3,37E-10 7,29E-04 5,39E-01 7,99E-08 3,07E-06 1,59E-03

Histogrammes 
(échelle relative)

Taux de réussite= 44%

Taux de réussite= 33%

Taux de réussite= 56%

Famille 3Famille 2Famille 1
Plans réels

Réponses du modèle entraîné avec la base de donnée BASIQUE

Réponses du modèle entraîné avec la base de donnée EVOLUEE

Réponses du modèle entraîné avec la base de donnée MIXTE

Tableau de résultats des tests sur plans réels
Pour chaque plan, la réponse du modèle se décompose en quatre valeurs, chaque valeur étant la probabilité  d’appartenir à une classe. 
La prédiction du modèle, c’est à dire la probabilité la plus haute est soit vraie (couleur verte), soit fausse (couleur rouge) par rapport à la 
valeur attendue.
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PERSPECTIVES
Vers un apprentissage et une utilisation sur des plans réels
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4| PERSPECTIVES

4.1 Pistes d’amélioration possibles
	
	 Comme on a pu le remarquer à travers la synthèse de notre expérimentation, nous 
sommes encore loin d'atteindre l'objectif qui est de déchiffrer des "caractéristiques archi-
tecturales" sur des plans réels quelconques. Pourtant il existe de nombreuses techniques 
qui permettraient d'améliorer notre système, et en particulier toutes celles qui permettent 
de réaliser un pré-entraînement non supervisé du réseau. En effet, la limite principale de 
notre expérience réside dans la questions des données d'entraînement dont on dispose. 
Si le fait de générer certaines données afin de "diriger" l'apprentissage pour qu'il recon-
naisse les critères souhaités reste intéressante, on ne peut absolument pas envisager d'aller 
dans un détail tel qu'on obtienne des plans quasiment réels (cela reviendrait à encoder 
de manière extrêmement précise un ensemble de plans qu'on souhaite le plus diversifié 
possible). Il n'est pas non plus envisageable d'étiqueter manuellement des centaines de 
plans réels pour "augmenter artificiellement" notre base de donnée (notre but étant d'avoir 
un système généralisable). Une alternative serait donc de pré-entraîner le réseau sur une 
grande quantité de plans réels de manière non supervisée (car on ne disposera jamais de 
plans étiquetés avec exactement le paramètre recherché). Cette solution présente un avan-
tage majeur: une fois pré-entraîné sur une grande quantité de plans, un petit échantillon 
étiqueté suffit à orienter l'apprentissage du réseau qui saura déjà reconnaître des motifs 
communs dans les plans (tels que des murs ou des textes)1. Cette méthode de pré-entraîne-
ment est rendue possible grâce au principe de transfert d'apprentissage: ce principe stipule 
que les couches de bas niveau apprenant spontanément à détecter des caractéristiques 
de bas niveau peuvent être conservées et verrouillées, afin de simplement ré-entraîner les 
couches les plus élevées du réseau. Reste bien-sûr à bien dimensionner tous les éléments, 
et notamment le nombre de couches à conserver entre les deux entraînement. Une autre 
astuce intéressante est le pré-entraînement à partir d'une tâche secondaire, pour laquelle 
on peut aisément obtenir ou générer des données d'entraînement étiquetées. On pourra 
par exemple étiqueter comme "bons" tous les plans réels dont on dispose, puis générer 
des nouvelles instances d'entraînement par altération des bonnes en étiquetant celles-ci 
comme "mauvaises", puis pré-entraîner le modèle à classer cet échantillon. Enfin, un aspect 
qu'il serait intéressant d'explorer, serait la visualisation des caractéristiques apprises, afin 
d'évaluer leur degré d'intelligibilité, et donc leur usage potentiel comme outil d'analyse ou 
de conception. Cela est possible2, et il existe des méthodes pour visualiser pour chaque neu-
rone, les instances qui l'activent le plus. On a d'ailleurs pu piéger des réseaux de neurones3, 
en utilisant ces "marqueurs", afin de les faire identifier des éléments qui n'étaient pas réels.

4.2 Applications pour la conception

	 Si l'objectif de départ de cette recherche vise à instrumenter en particulier le pro-
cessus de conception, il reste encore du chemin à parcourir avant de disposer d'un outil 
opérationnel, avec une application utile à la pratique de l'architecte dans des conditions 
réelles.  Si on peut désormais espérer avoir un modèle qui apprenne à partir de références, 
ce qui permettrait par exemple de dépasser les grammaires de formes "manuelles" à par-
tir d'un corpus, cela pose tout de même la question de la transposition entre des projets 
existants et les paramètres toujours uniques du problème posé. Une autre application inté-

Perspectives

1.	 A. Géron, Deep Learning avec TensorFlow - Mise en œuvre et cas concrets. Dunod, 2017, p.251
2.	 Ibid, p.249
3.	 A. Nguyen, J. Yosinski, et J. Clune, « Deep Neural Networks are Easily Fooled: High Confidence Predictions 

for Unrecognizable Images », arXiv:1412.1897 [cs], déc. 2014.
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ressante serait alors l'apprentissage pendant le processus de conception. Comme vu dans 
certains papiers de recherche de l'état de l'art4, ce genre de résultat requiert la combinaison 
de notre système, que l'on peut qualifier de "système d'évaluation",  avec un algorithme de 
type génératif (par exemple, un algorithme génétique). Mais dans l'idée d'utiliser ce genre 
de système dans les agences d'architecture, il faudrait alors explorer les conditions néces-
saires à leur déploiement à l’échelle des agences d’architecture. La possibilité de greffer à 
un réseau entraîné de manière «généraliste», un petit réseau entraîné de manière spéci-
fique (sur un ensemble de données plus restreint), pourrait alors permettre de dépasser 
les limites techniques, et notamment offrir des outils personnalisables à petite échelle, cor-
respondant au besoin spécifique du concepteur. Restent les questions autour de la proprié-
té intellectuelle, qui à l'heure de l'open source et de la conception collaborative gagnerait 
peut-être à être réinterrogé.

4.3 Applications pour la recherche 
	
	 Si ça ne constituait pas un objectif de notre recherche, les applications possibles 
pour la recherche en architecture sont pourtant très nombreuses. En effet, on pourrait ima-
giner utiliser des systèmes d'apprentissage dédiés au classement des archives (comme on 
le fait déjà par exemple pour les peintures5), ou encore à l'analyse des types par analyse 
comparative de corpus de plans. Mais ces recherches peuvent aussi être utiles concernant 
la recherche en informatique elle même: en effet, dans le domaine de l'IA, la recherche se 
nourrit de toutes les exigences des domaines intéressés par le fait de s'approprier cette tech-
nologie. Parmi les nombreux domaines touchés par ce développement, l'architecture (ainsi 
que d'autres domaines créatifs) fait figure d'exception en ce qu'elle relève d'une grande 
complexité, qui met au défi les techniques les plus avancées. De plus, les supports de repré-
sentation graphique étudiés ont la caractéristique d'être à haut degré de sémantique (c'est 
à dire, contenant beaucoup de conventions signifiantes), ce qui en fait des cas d'étude in-
termédiaires entre le traitement du langage écrit et le traitement des photos (notons qu'on 
utilise aussi des plans et des schémas dans d'autres domaines comme l'électronique, qui 
pourraient bénéficier de telles recherches).

4.	 C. Sjoberg, C. Beorkrem, et J. Ellinger, « Emergent Syntax: Machine Learning for the Curation of Design Solution Space », in ACADIA 2017: DIS-
CIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) 
ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 552- 561, 2017.

5.	 B. L. A. Seguin, « Making large art historical photo archives searchable », Laboratoire d'humanités digitales, EPFL, 2018
6.	 D. Boudet, Nouveaux logements à Zurich: la renaissance des coopératives d’habitat. 2017. 
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Plan illustrant  la couverture du mémoire
Ce plan d'étage de l'opération suisse Hunziker Areal6 illustre les li-
mites rencontrées lors de cette recherche, comme un rappel que la 
subtilité du langage architectural ne se laisse pas dompter facile-
ment. En effet, ce plan possède des caractéristiques d'adaptabilités 
très riches, qu'il serait extrêmement difficile de pouvoir repérer par 
un système de lecture automatique (on peut par exemple aussi bien 
aménager l'étage en deux grandes collocations, que le cloisonner 
pour avoir quatre logements indépendants). Et pourtant cette sub-
tilité est à l'origine même de toute la conception de ce bâtiment, ce 
qui en fait un caractère fondamental à interpréter.
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CONCLUSION
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5| CONCLUSION

	 Dans ce mémoire, on a donc pris le parti de l'expérimentation, afin de pouvoir 
aborder ce sujet par la pratique, sans quoi il aurait été trop abstrait à traiter. Pour finir sur 
une note qualitative, ce travail fût très enthousiasmant, bien que les résultats ne soient 
pas vraiment au rendez-vous, car il balaye beaucoup de questions autour de la nature de 
la conception architecturale, ainsi que de l'interface homme-machine dans l'activité de 
conception. Malheureusement, les aspects plus théoriques, notamment sur les typologies, 
les diagrammes ou encore les grammaires de forme n'ont pu être abordés que brièvement, 
alors qu'ils constituent avec les objectifs expérimentaux un tout indissociable. De même, on 
aura pas pris le temps de développer les questions philosophiques et éthiques que soulève 
ce sujet, car ce n'était pas l'enjeu du présent travail. Toutefois, fort de cette expérience 
pratique, on peut aujourd'hui relativiser à propos des nombreux fantasmes sur la toute puis-
sance de l'IA. En effet, les tâches créatives restent encore assez difficile à automatiser, et ce 
pour de multiples raisons qui n'ont pas toutes à voir avec leur "complexité" inhérente. En 
effet, il semble que la limite principale en terme d'apprentissage machine soit la question 
des données, tant du point de vue de leur quantité que de leur degré d'étiquetage (sans 
parler du problème de l'accès et de la propriété intellectuelle). 

Conclusion
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7| ANNEXE

7.1 Code du générateur de plans

Annexe

In [ ]: # Génération des plans

nombre_de_plans = 5000

i=0

for i in range (nombre_de_plans):

# Attribution des indices des pièces

[c1]=random.sample([0,1], k=1)
[c2]=random.sample([0,1], k=1)
[c3]=random.sample([0,1], k=1)
C=[c1,c2,c3]
[ch1,ch2,ch3]=[str(),str(),str()] 
Ch=[ch1,ch2,ch3]
T=['Ch.1','Ch.2','Ch.3']
N=random.sample([0,1,2], k=3)
j=0
for k in range(3):

if C[N[k]]>0:
Ch[N[k]]=T[j] j=j+1

else:
Ch[N[k]]=str()

# Attribution des variables aléatoires
[angle]=random.sample([0,0,0,0,0,0,0,0,random.uniform(-30,30)], k=1)
[w0,h0]=[random.uniform(8,15),random.uniform(10,20)]

# Composition du nom de fichier
filename="plan"+str(i+1)+"_"+str(c1+c2+c3)+".png"

# Liste des distances
d12=random.uniform(0,w0/7)+w0/2
d23=w0-d12
d34=random.uniform(0,w0/7)+h0/4
d45=d23
d56=random.uniform(0,h0/10)+h0/3
d67=d23
d78=h0-d34-d56
d89=d23 
d9A=d12 
dAB=d78

In [ ]: # Imports des bibliothèques et des raccourcis utiles

In [ ]: # Imports des bibliothèques et des raccourcis utiles

import random
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.path import Path
from matplotlib.patches import PathPatch
import matplotlib.text as mtext
import os
import math

# Chemin d'accès vers les plans
dossier="C:\Users\ProjetMémoire\Data\Plans\SérieEvoluée"

In [ ]: # Définition des fonctions de transformation:

def rotate(P,a):
(x,y)=P
A= math.radians(a)
X = math.cos(A)*x - math.sin(A)*y 
Y = math.sin(A)*x + math.cos(A)*y 
return (X,Y)

def symetrie(P,axeV,axeH):
(x,y)=P
if axeV>0:

P=(axeV-(x-axeV),y) 
if axeH>0:

P=(x,axeH-(y-axeH)) 
return P
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# Axes de symétrie
[axeV]=random.sample([0,(d12+d23)/2], k=1)
[axeH]=random.sample([0,h0/2], k=1)

# Liste des points
P1=(0,0)
P2=(d12,0)
P3=(d12+d23,0)
P4=(d12+d23,d34)
P5=(d12,d34)
P6=(d12,d34+d56)
P7=(d12+d23,d34+d56)
P8=(d12+d23,d34+d56+d78)
P9=(d12,d34+d56+d78)
P10=(0,d34+d56+d78)
P11=(0,d34+d56)
P12=(d12,d34+d56)

# Coordonnées des points
(x1,y1)=P1
(x2,y2)=P2
(x3,y3)=P3
(x4,y4)=P4
(x5,y5)=P5
(x6,y6)=P6
(x7,y7)=P7
(x8,y8)=P8
(x9,y9)=P9
(x10,y10)=P10
(x11,y11)=P11
(x12,y12)=P12

# Positions des textes au centre des pièces

PA=(0.5*(x1+x2), 0.5*(y1+y11))
PA=rotate(PA,angle)
PA=symetrie(PA,axeV,axeH)
(xA,yA)=PA

PB=(0.5*(x1+x2), 0.5*(y11+y10))
PB=rotate(PB,angle)
PB=symetrie(PB,axeV,axeH)
(xB,yB)=PB

PC1=(0.5*(x2+x3), 0.5*(y3+y4))
PC1=rotate(PC1,angle)
PC1=symetrie(PC1,axeV,axeH)
(xC1,yC1)=PC1

PC2=(0.5*(x5+x4), 0.5*(y5+y6)) 
PC2=rotate(PC2,angle)
PC2=symetrie(PC2,axeV,axeH)
(xC2,yC2)=PC2

PC3=(0.5*(x6+x7), 0.5*(y7+y8)) 
PC3=rotate(PC3,angle)
PC3=symetrie(PC3,axeV,axeH)
(xC3,yC3)=PC3

# Rotation des points 
P1=rotate(P1,angle)
P2=rotate(P2,angle)
P3=rotate(P3,angle)
P4=rotate(P4,angle)
P5=rotate(P5,angle)
P6=rotate(P6,angle)
P7=rotate(P7,angle)
P8=rotate(P8,angle)
P9=rotate(P9,angle)
P10=rotate(P10,angle)
P11=rotate(P11,angle)
P12=rotate(P12,angle)

# Symétrie des points
P1=symetrie(P1,axeV,axeH)
P2=symetrie(P2,axeV,axeH)
P3=symetrie(P3,axeV,axeH)
P4=symetrie(P4,axeV,axeH)
P5=symetrie(P5,axeV,axeH)
P6=symetrie(P6,axeV,axeH)
P7=symetrie(P7,axeV,axeH)
P8=symetrie(P8,axeV,axeH)
P9=symetrie(P9,axeV,axeH) 
P10=symetrie(P10,axeV,axeH) 
P11=symetrie(P11,axeV,axeH) 
P12=symetrie(P12,axeV,axeH)

# Coordonnées des points

(x1,y1)=P1
(x2,y2)=P2
(x3,y3)=P3
(x4,y4)=P4
(x5,y5)=P5
(x6,y6)=P6
(x7,y7)=P7
(x8,y8)=P8
(x9,y9)=P9
(x10,y10)=P10 
(x11,y11)=P11 
(x12,y12)=P12
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# Tracé du plan pièce par pièce

vertices = []
codes = []

# Sejour-cuisine
codes = [Path.MOVETO] + [Path.LINETO]*3 + [Path.CLOSEPOLY]
vertices = [P1,P2,P9,P10,P1]
codes += [Path.MOVETO] + [Path.LINETO]*1
vertices += [P11,P12]

# Chambre 1
if c1>0:

codes += [Path.MOVETO] + [Path.LINETO]*3 + [Path.CLOSEPOLY]
vertices += [P2,P3,P4,P5,P2]

# Chambre 2
if c2>0:

codes += [Path.MOVETO] + [Path.LINETO]*3 + [Path.CLOSEPOLY]
vertices += [P4,P5,P6,P7,P4]

# Chambre 3
if c3>0:

codes += [Path.MOVETO] + [Path.LINETO]*3 + [Path.CLOSEPOLY]
vertices += [P6,P7,P8,P9,P6]

vertices = np.array(vertices, float)
path = Path(vertices, codes)
pathpatch = PathPatch(path, facecolor='None', edgecolor='black')
fig = plt.figure(1, figsize=(300, 300))
fig, ax = plt.subplots()
ax.add_patch(pathpatch)

# Texte séjour
T1=ax.text(xA, yA, 'Séjour', horizontalalignment='center', verticalalignment='center',fontsize=10, color='black')
# Texte cuisine
T2=ax.text(xB, yB, 'Cuis', horizontalalignment='center', verticalalignment='center',fontsize=10, color='black')
# Texte ch1
if c1>0:

T3=ax.text(xC1, yC1, Ch[0], horizontalalignment='center', verticalalignment='center',fontsize=10, color='black')
# Texte ch2
if c2>0:

T4=ax.text(xC2, yC2, Ch[1], horizontalalignment='center', verticalalignment='center',fontsize=10, color='black')
# Texte ch3
if c3>0:

T5=ax.text(xC3, yC3, Ch[2], horizontalalignment='center', verticalalignment='center',fontsize=10, color='black')

ax.set_axis_off()
ax.autoscale_view(tight=True, scalex=True, scaley=True)
ax.autoscale()
plt.axis('equal')

# Export de l'image dans le dossier nommé selon ses paramètres
fig.savefig(os.path.join(dossier,filename),bbox_inches='tight',format='png')

print('ok')



Le Machine Learning au service de la conception architecturale58

In [ ]: # Importation des bibliothèques et raccourcis utiles

import os
import matplotlib.pyplot as plt
import numpy as np
import skimage
from skimage import io
from skimage.transform import resize
import tensorflow as tf
import tensorflow.keras as k

# Chemin d'accès aux données
path_Basique="C:\Users\ProjetMémoire\Data\Plans\SérieBasique"
path_Evolué="C:\Users\ProjetMémoire\Data\Plans\SérieEvoluée"
path_Mixte="C:\Users\ProjetMémoire\Data\Plans\SérieMixte"

In [2]: path_train=path_Evolué

# Fonction pour extraire les noms dans l'ordre alphanumérique : 

import re

def sorted_aphanumeric(data):

convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key: 
[ convert(c) for c in re.split('([0-9]+)', key) ] 
return sorted(data, key=alphanum_key)

# Liste des noms de fichier dans l'ordre alphanumérique 
ListePlans0=sorted_aphanumeric(os.listdir(path_train)) 
ListePlans = []
for names in ListePlans0:

if names.endswith(".png"):
ListePlans.append(names) 

nbfiles=len(ListePlans)

# Fonction pour importer le plan(k) 
def plan(k):

rp')

img = io.imread(os.path.join(path_train,ListePlans[k]),as_gray=True,mode='wa

arr = np.array(resize(img, (300, 300)),dtype='uint8')
return arr

# Fonction pour lire le tag(k) 
def tag(k):

nom=ListePlans[k] #nom du fichier du plan k
sep=nom.find('_',4) #position du séparateur dans la chaîne 
[ccc]=nom[sep+1] #extraire une sous-chaîne
return ccc#somme des elements convertis en entiers

print('ok') 

ok

In [3]: # Boucle pour créer la table des datasets d'entraînement

n_train=2000
n_test=200

X_train=np.zeros((n_train,300,300,1))
X_train0=np.stack(([plan(k) for k in range(n_train)]))
X_train[:,:,:,0]=X_train0

y_train=np.array([tag(k) for k in range(n_train)])

X_test=np.zeros((n_test,300,300,1))
X_test0=np.stack(([plan(k) for k in range(n_train,n_train+n_test)])) X_test[:,:,:,0]=X_test0

y_test=np.array([tag(k) for k in range(n_train,n_train+n_test)])

print ('ok')

ok

Annexe

7.2 Code de formatage des données, d’entraînement et d’utilisation du réseau
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In [4]: # Import des bibliothèques spécifiques pour entraîner le réseau

import tensorflow as tf
import tensorflow.keras as k

# Marqueur à envoyer à TensorBoard pour le suivi de l'entraînement

root_logdir="C:\Users\ProjetMémoire\Data\Exports\Tensorboard.\\tflogs_E_2000"
tbCallBack = tf.keras.callbacks.TensorBoard(log_dir=root_logdir, histogram_freq= 0, batch_size=32, 
write_graph=True,write_grads=False, write_images=True)

# Définition et entraînement du modèle

model = k.models.Sequential([

k.layers.Conv2D(16, (3, 3), strides=3, input_shape=(300,300,1),activation='rel u'),
k.layers.MaxPooling2D(pool_size=(2, 2)),
k.layers.Flatten(),
k.layers.Dense(4,activation=tf.nn.softmax)

]) 

model.compile(loss='sparse_categorical_crossentropy',

optimizer='adam', 
metrics=['accuracy'])

model.fit(X_train, y_train, epochs=10,batch_size=8,callbacks=[tbCallBack]) 

model.evaluate(X_test, y_test)

Epoch 1/10
2000/2000 [==============================] - 11s 5ms/step - loss: 1.0064 - acc : 0.5560 
Epoch 2/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.4872 - acc: 0.8250 
Epoch 3/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.3221 - acc: 0.8975 
Epoch 4/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.2275 - acc: 0.9305 
Epoch 5/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.1653 - acc: 0.9505 
Epoch 6/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.1099 - acc: 0.9760 
Epoch 7/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.0796 - acc: 0.9880 
Epoch 8/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.0601 - acc: 0.9920 
Epoch 9/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.0433 - acc: 0.9970 
Epoch 10/10
2000/2000 [==============================] - 9s 5ms/step - loss: 0.0295 - acc: 0.9970 200/200 
[==============================] - 1s 4ms/step

Out[4]: [0.3476581168174744, 0.9]

In [9]: # Utiliser le réseau entraîné :

path_transformations="C:\Users\ProjetMémoire\Data\Plans\Modifiés\Série_transformations" 
path_réels="C:\\Users\ProjetMémoire\Data\Plans\Modifiés\Série_réels"
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In [10]: # Redéfinir les fonctions d'import les plans (fichier spécifique)

path_pred=path_réels

ListePlans1=sorted_aphanumeric(os.listdir(path_pred))

ListePlans_pred = []
for names in ListePlans1:

if names.endswith(".png"):
ListePlans_pred.append(names)

def plan_pred(k):
img = io.imread(os.path.join(path_pred,ListePlans_pred[k]),as_gray=True,mode ='warp')
arr = np.array(resize(img, (300, 300)),dtype='uint8')
return arr

In [11]: # Formater les plans à évaluer

n=9

In [12]:  # Prédictions: 

# Prédiction :

print('ok') 

ok

dep=0
arr=dep+n

X_pred0=np.zeros((n,300,300))
X_pred=np.zeros((n,300,300,1))
X_pred0=np.stack(([plan_pred(k) for k in range(dep,arr)])) 
X_pred[:,:,:,0]=X_pred0

print('ok')

ok

classes = model.predict_classes(X_pred, batch_size=32) proba = 
model.predict_proba(X_pred, batch_size=32)
print(classes)
print(proba)

[3 3 3 3 3 3 2 3 3]

[
[8.8510258e-12  6.8902252e-13  1.3057047e-01   8.6942953e-01]
[1.0912837e-24 1.1756238e-23 1.2221698e-06 9.9999881e-01]  
[8.6232805e-27 3.7461236e-27 6.0699949e-07 9.9999940e-01]  
[7.8679249e-17 4.2974604e-12 2.4954138e-02 9.7504586e-01]  
[1.1916853e-30 1.8311998e-24 6.8162279e-07 9.9999928e-01]  
[3.2501784e-32 1.1239174e-32 4.2158974e-10 1.0000000e+00]  
[1.9060183e-15 9.0173580e-10 5.7813150e-01 4.2186847e-01]  
[7.2068439e-24 1.5667010e-18 2.2114610e-02 9.7788543e-01]  
[9.2460338e-27 4.5249524e-26 1.8356898e-04 9.9981648e-01] 
]

nbfiles_pred=len(ListePlans_pred)
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7.3 Suivi de l’apprentissage des 3 configurations étudiées  

In [4]: # Import des bibliothèques spécifiques pour entraîner le réseau
import tensorflow as tf
import tensorflow.keras as k

# Marqueur à envoyer à TensorBoard pour le suivi de l'entraînement
root_logdir="C:\\Users\sooro\Dropbox (Phoventure)\Projets SOPAPS\Data\\2_Exports
\Tensorboard.\\tflogs_B_2000"
tbCallBack = tf.keras.callbacks.TensorBoard(log_dir=root_logdir, histogram_freq=
0, batch_size=32, write_graph=True,write_grads=False, write_images=True)

# Définition et entraînement du modèle
model = k.models.Sequential([
  

k.layers.Conv2D(16, (3, 3), strides=3, input_shape=(300,300,1),activation='rel
u'),

k.layers.MaxPooling2D(pool_size=(2, 2)),
k.layers.Flatten(),
k.layers.Dense(4,activation=tf.nn.softmax) 

]) 

model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])

model.fit(X_train, y_train, epochs=10,batch_size=8,callbacks=[tbCallBack])
model.evaluate(X_test, y_test)

In [6]: # Utiliser le réseau entraîné :

path_transformations="C:\\Users\sooro\Dropbox (Phoventure)\Projets SOPAPS\Data\\
1_Plans\\2_Modifiés\Série1_6 transformations sur 1 plan"
path_réels="C:\\Users\sooro\Dropbox (Phoventure)\Projets SOPAPS\Data\\1_Plans\\S
érie3_Vrais plans à tester"

Epoch 1/10
2000/2000 [==============================] - 13s 7ms/step - loss: 1.1132 - acc
: 0.5770
Epoch 2/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.3510 - acc: 
0.9005A: 0s - loss: 0.3633 - ac - ETA: 0s - loss: 0.3568 - acc:
Epoch 3/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.1898 - acc: 
0.9590
Epoch 4/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.1203 - acc: 
0.9770
Epoch 5/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.0701 - acc: 
0.9955
Epoch 6/10
2000/2000 [==============================] - 9s 4ms/step - loss: 0.0421 - acc: 
0.9985
Epoch 7/10
2000/2000 [==============================] - 9s 4ms/step - loss: 0.0297 - acc: 
0.9990
Epoch 8/10
2000/2000 [==============================] - 9s 4ms/step - loss: 0.0199 - acc: 
1.0000
Epoch 9/10
2000/2000 [==============================] - 9s 4ms/step - loss: 0.0149 - acc: 
1.0000
Epoch 10/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.0104 - acc: 
1.0000
200/200 [==============================] - 1s 4ms/step

Out[4]: [0.06463677272200584, 0.98]

3_Entraînement réseau_nettoyé http://localhost:8888/nbconvert/html/Dropbox (Phoventure)/Projets S...

3 sur 4 06/01/2019 à 15:21

Courbes d’apprentissage
Superposition des trois entraînements avec chacune des bases de données B, E et M (seules les lignes brisées sont à prendre en compte). Ces courbes 
représentent les valeurs de la précision ou taux de réussite (courbe du haut) et du coût ou taux d’échec (courbe du bas), mesurés sur l’échantillon 
de test fourni au réseau (proportion utilisée: 1 plan de test pour 10 plans d’entraînement, comparativement à ce qu’il se fait dans l’état de l’art).

Scores d’apprentissage à chaque 
époque d’entraînement sur la 
base de donnée B.
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In [4]: # Import des bibliothèques spécifiques pour entraîner le réseau
import tensorflow as tf
import tensorflow.keras as k

# Marqueur à envoyer à TensorBoard pour le suivi de l'entraînement
root_logdir="C:\\Users\sooro\Dropbox (Phoventure)\Projets SOPAPS\Data\\2_Exports
\Tensorboard.\\tflogs_E_2000"
tbCallBack = tf.keras.callbacks.TensorBoard(log_dir=root_logdir, histogram_freq=
0, batch_size=32, write_graph=True,write_grads=False, write_images=True)

# Définition et entraînement du modèle
model = k.models.Sequential([
  

k.layers.Conv2D(16, (3, 3), strides=3, input_shape=(300,300,1),activation='rel
u'),

k.layers.MaxPooling2D(pool_size=(2, 2)),
k.layers.Flatten(),
k.layers.Dense(4,activation=tf.nn.softmax) 

]) 

model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])

model.fit(X_train, y_train, epochs=10,batch_size=8,callbacks=[tbCallBack])
model.evaluate(X_test, y_test)

In [9]: # Utiliser le réseau entraîné :

path_transformations="C:\\Users\sooro\Dropbox (Phoventure)\Projets SOPAPS\Data\\
1_Plans\\2_Modifiés\Série1_6 transformations sur 1 plan"
path_réels="C:\\Users\sooro\Dropbox (Phoventure)\Projets SOPAPS\Data\\1_Plans\\2
_Modifiés\\Série3_Vrais plans à tester"

Epoch 1/10
2000/2000 [==============================] - 11s 5ms/step - loss: 1.0064 - acc
: 0.5560
Epoch 2/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.4872 - acc: 
0.8250
Epoch 3/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.3221 - acc: 
0.8975
Epoch 4/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.2275 - acc: 
0.9305
Epoch 5/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.1653 - acc: 
0.9505A: 1s - loss: 
Epoch 6/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.1099 - acc: 
0.9760A: 1s - loss: 0.1095 - acc:  - ETA: 0s - loss: 0.1118 - 
Epoch 7/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.0796 - acc: 
0.9880
Epoch 8/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.0601 - acc: 
0.9920A: 0s - loss: 0.0603 
Epoch 9/10
2000/2000 [==============================] - 8s 4ms/step - loss: 0.0433 - acc: 
0.9970
Epoch 10/10
2000/2000 [==============================] - 9s 5ms/step - loss: 0.0295 - acc: 
0.9970
200/200 [==============================] - 1s 4ms/step

Out[4]: [0.3476581168174744, 0.9]

3_Entraînement réseau_nettoyé http://localhost:8888/nbconvert/html/Dropbox (Phoventure)/Projets S...

3 sur 4 06/01/2019 à 16:02

In [4]: # Import des bibliothèques spécifiques pour entraîner le réseau
import tensorflow as tf
import tensorflow.keras as k

# Marqueur à envoyer à TensorBoard pour le suivi de l'entraînement
root_logdir="C:\\Users\sooro\Dropbox (Phoventure)\Projets SOPAPS\Data\\2_Exports
\Tensorboard.\\tflogs_M_2000"
tbCallBack = tf.keras.callbacks.TensorBoard(log_dir=root_logdir, histogram_freq=
0, batch_size=32, write_graph=True,write_grads=False, write_images=True)

# Définition et entraînement du modèle
model = k.models.Sequential([
  

k.layers.Conv2D(16, (3, 3), strides=3, input_shape=(300,300,1),activation='rel
u'),

k.layers.MaxPooling2D(pool_size=(2, 2)),
k.layers.Flatten(),
k.layers.Dense(4,activation=tf.nn.softmax) 

]) 

model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])

model.fit(X_train, y_train, epochs=10,batch_size=8,callbacks=[tbCallBack])
model.evaluate(X_test, y_test)

In [5]: # Utiliser le réseau entraîné :

path_transformations="C:\\Users\sooro\Dropbox (Phoventure)\Projets SOPAPS\Data\\
1_Plans\\2_Modifiés\Série1_6 transformations sur 1 plan"
path_réels="C:\\Users\sooro\Dropbox (Phoventure)\Projets SOPAPS\Data\\1_Plans\\2
_Modifiés\\Série3_Vrais plans à tester"

Epoch 1/10
2000/2000 [==============================] - 6s 3ms/step - loss: 1.2290 - acc: 
0.5060
Epoch 2/10
2000/2000 [==============================] - 4s 2ms/step - loss: 0.5972 - acc: 
0.7760A: 0s - loss: 0.6027 - 
Epoch 3/10
2000/2000 [==============================] - 4s 2ms/step - loss: 0.3953 - acc: 
0.8665
Epoch 4/10
2000/2000 [==============================] - 4s 2ms/step - loss: 0.2623 - acc: 
0.9240
Epoch 5/10
2000/2000 [==============================] - 4s 2ms/step - loss: 0.1813 - acc: 
0.9575
Epoch 6/10
2000/2000 [==============================] - 5s 2ms/step - loss: 0.1442 - acc: 
0.9655A: 0s - loss: 0.1393 
Epoch 7/10
2000/2000 [==============================] - 4s 2ms/step - loss: 0.1010 - acc: 
0.9835
Epoch 8/10
2000/2000 [==============================] - 4s 2ms/step - loss: 0.0736 - acc: 
0.9875A: 1s 
Epoch 9/10
2000/2000 [==============================] - 5s 2ms/step - loss: 0.0532 - acc: 
0.9945A: 0s - loss: 0.055
Epoch 10/10
2000/2000 [==============================] - 4s 2ms/step - loss: 0.0344 - acc: 
0.9980
200/200 [==============================] - 0s 2ms/step

Out[4]: [0.31143479168415067, 0.89]

3_Entraînement réseau_nettoyé http://localhost:8888/nbconvert/html/Dropbox (Phoventure)/Projets S...

3 sur 4 06/01/2019 à 16:31

Scores d’apprentissage à chaque 
époque d’entraînement sur la 
base de donnée E.

Scores d’apprentissage à chaque 
époque d’entraînement sur la 
base de donnée M.
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7.4 Extrait de la base de donnée «Mixte»: échantillon «augmenté» de plans réels




