
1

Exploration des types de solutions en

conception architecturale à l'aide des

algorithmes génétiques

Savoirs des Activités de Projet Instrumentées

Encadré par Anne TÜSCHER, Joaquim SILVESTRE, et François GUENA

Etienne LAGET – Etudiant ENSAPLV – Mémoire 2024

2

3

Résumé

À l'ère de l'intelligence artificielle, où les pratiques architecturales évoluent rapidement, cette

recherche explore l'utilisation des algorithmes génétiques comme outil d'assistance aux

architectes dans la phase initiale de conception. En se concentrant sur le processus de

conception paramétrique, cette étude évalue les capacités des algorithmes génétiques mono-

objectif (Galapagos) et multi-objectifs (Octopus) à enrichir l'exploration des types de solutions.

La méthodologie repose sur une approche expérimentale, utilisant un modèle paramétrique

simplifié d’un parc pour enfants afin de tester les performances de ces algorithmes. L’étude

examine leur capacité à générer et évaluer des solutions variées en fonction d’objectifs et de

contraintes prédéfinis. Les résultats montrent que, bien que les algorithmes mono-objectif

optimisent efficacement un paramètre unique, les algorithmes multi-objectifs offrent un éventail

plus large de solutions, favorisant l'exploration des types de solutions.

Cette recherche démontre que les algorithmes multi-objectifs sont plus adaptés que les

algorithmes mono-objectif à l'exploration des types de solutions en architecture, rendant le

processus de conception plus riche et stimulant.

Mots-clés

Processus de conception, Outils paramétriques, Paramètres, objectifs de performance, Phase

de conception, Expériences, Plug In Grasshopper, Solveur Algorithmique, algorithmes

évolutionnaire, algorithmes génétiques, Mono-objectif, Multi-objectif.

4

Abstract

In the era of artificial intelligence, where architectural practices are rapidly evolving, this research

explores the use of genetic algorithms as a tool to assist architects in the early stages of design.

Focusing on the parametric design process, this study evaluates the capabilities of mono-

objective (Galapagos) and multi-objective (Octopus) genetic algorithms to enhance the

exploration of solution types.

The methodology is based on an experimental approach, using a simplified parametric model of

a children’s park to test the performance of these algorithms. The study examines their ability to

generate and evaluate diverse solutions based on predefined objectives and constraints. Results

show that while mono-objective algorithms efficiently optimize a single parameter, multi-

objective algorithms provide a broader range of solutions, fostering the exploration of solution

types.

This research demonstrates that multi-objective algorithms are better suited than mono-

objective algorithms for exploring solution types in architecture, making the design process richer

and more stimulating.

Keywords

Design process, Parametric tools, Parameters, Performance objectives, Design phase,

Experiments, Grasshopper plugin, Algorithmic solver, Evolutionary algorithms, Genetic

algorithms, Single-objective, Multi-objective.

5

Remerciements

Je tiens à remercier, tout d’abord, Mamoun LAHLOU, qui a réalisé la même année son mémoire

sur l’architecture paramétrique de façades moucharabiées, avec qui j’ai pu échanger sur les

sujets complexes liés aux logiciels d’architecture paramétrique.

Je souhaite également exprimer ma gratitude à toutes les personnes qui ont pris le temps de

relire ce mémoire et de me faire des critiques constructives. J’ai tenu compte de chacune de

leurs remarques pour améliorer ce document. Je pense notamment à Olivia HACQUET, mais

aussi à Émilie LANDAIS et bien d’autres, dont le soutien et les conseils m’ont été précieux.

Enfin, je tiens à remercier mes professeurs, sans qui rien de tout cela n’aurait été possible. Je

pense bien sûr à Anne TÜSCHER, Joaquim SILVESTRE, et François GUENA. Ils ont su

m’accompagner dès le début sur ce sujet assez complexe et me permettre de développer ce qui

m’intéresse depuis le départ, à savoir l’aide à la conception en architecture par les algorithmes.

6

Table des matières

I. Introduction .. 9

Contexte .. 9

Problématique ... 10

Objectif .. 10

Hypothèse ... 10

Manque de recherche ... 11

II. Etat de l’art ... 12

A. Introduction à la conception paramétrique .. 13

Les logiciels d’algorithmes visuels 3D ... 14

Outils à la simulation : Les algorithmes génétiques ... 15

B. La conception algorithmique ... 18

La théorie du design ... 18

Automatique design process .. 21

C. Les algorithmes génétiques .. 23

Le processus génétique .. 23

La créativité algorithmique ... 24

Les algorithmes génétiques en architecture .. 25

Exploration et exploitation .. 28

III. Méthodologie ... 31

A. Approche expérimentale ... 32

Introdution ... 32

Naissance de l’idée .. 33

La phase d’apprentissage ... 33

B. Le choix des paramètres ... 35

7

Les objectifs... 36

Les contraintes .. 38

Les paramètres d’entrée ... 39

IV. Les expériences .. 40

A. Ecriture du modèle du parc pour enfants ... 41

La phase de recherche et d’apprentissage préalable et nécessaire pour l’écriture finale du

modèle .. 42

Choix des paramètres du modèle ... 48

L’importance de l’optimisation dans l’écriture .. 49

Explication du modèle final ... 50

B. Analyse des résultats ... 52

Le tableau des résultats ... 54

C. Pour aller plus loin en multicritères : La grille du jeu d’échec 60

Objectifs .. 60

Configuration du modèle .. 60

Analyse des résultats ... 64

V. Conclusion ... 67

Conclusion sur cette méthode d’exploration ... 67

Pistes pour le futur ... 67

Bibliographie .. 68

Table des figures .. 70

8

9

I. Introduction

Contexte

À l’ère de l’intelligence artificielle, le rôle de l’architecte est en pleine évolution. Les outils

numériques occupent une place de plus en plus importante dans la réalisation d’un projet

d’architecture. Aujourd’hui, ils sont principalement utilisés comme moyen de représentation du

projet, mais d’autres formes de conception sont envisageables. L’une d’entre elles s’appelle la

conception paramétrique.

La conception paramétrique est une méthode de conception assistée par ordinateur où les

dimensions et les relations géométriques d'un objet sont définies par des paramètres variables.

Ces paramètres peuvent être ajustés pour modifier la conception de manière flexible et

dynamique, sans nécessiter de redessiner manuellement chaque élément.

L'émergence de la conception paramétrique est étroitement liée au développement de logiciels

comme Rhinoceros et Revit. Rhinoceros, est un outil de modélisation 3D qui offre une grande

flexibilité dans la création de formes complexes. Il est compatible avec le plugin Grasshopper qui

permet de développer des algorithmes visuels pour la conception paramétrique. Grâce à lui, les

architectes peuvent définir des paramètres et des relations géométriques qui adaptent

automatiquement le modèle en fonction des changements apportés aux paramètres d'entrée.

D’après une étude de secteur réalisée en 2022 « La profession d’architecte en Europe », la

majorité des praticiens de la conception paramétrique travaillent sur le logiciel Grasshopper.

C'est dans ce cadre que des solveurs algorithmiques1 ont été développés. Parmi eux, il y a les

algorithmes génétiques qui permettent d'explorer et optimiser les solutions conceptuelles à

partir de la paramétrisation du modèle. Ces derniers sont divisés en deux familles, les

algorithmes génétiques mono-objectif qui ne prennent en compte qu’un seul paramètre objectif

et les algorithmes génétiques multi-objectifs qui en considèrent plusieurs.

1 Un solveur algorithmique est un programme informatique conçu pour résoudre automatiquement des problèmes
complexes en utilisant des algorithmes, notamment dans les domaines de l'optimisation et de la modélisation
mathématique.

10

Problématique

Ce mémoire s’intéresse à la phase de conception du projet d'architecture, où le travail de

l’architecte progresse par divers essais, que nous appellerons « essai-erreur » par corrélation

avec le vocabulaire paramétrique. L’architecte, en quête du design idéal, explore un maximum

de possibilités conceptuelles (géométries, formes) pour choisir celle qui correspond le mieux aux

critères d’évaluation qu’il s’est fixés. Habituellement, ce processus est effectué manuellement,

ce qui peut prendre beaucoup de temps. Cela oblige l’architecte à limiter ses recherches et à se

contenter de la solution la plus intéressante trouvée, sans savoir s’il existe une meilleure

alternative. Si l’architecte pouvait commencer ce travail avec un éventail de types de solutions à

sa disposition, cela pourrait stimuler sa créativité et accélérer le processus de conception.

Comment utiliser les algorithmes génétiques dans le processus de conception

architecturale pour explorer différentes options de solutions ? Et parmi eux, quelle

approche est la plus efficace : les algorithmes à objectif unique ou les algorithmes multi-

objectifs ?

Objectif

L'objectif est d'utiliser les algorithmes génétiques de Grasshopper pour proposer un grand

nombre de types de solutions au début de la phase de conception du projet, enrichissant et

facilitant ainsi le processus de décision de l'architecte.

Hypothèse

L’hypothèse de ce mémoire est que les algorithmes génétiques multi-objectifs sont plus adaptés

pour explorer les différentes options de solutions dans le processus de conception que les

algorithmes mono-objectifs. C’est à travers l’étude d’expériences que le mémoire apportera des

éléments de réponses afin de vérifier la véracité de ce postulat.

11

Manque de recherche

L’architecte Hoda Esmaeilian, qui travaille au département d'architecture de l'université NEU

situé à Chypre, a publié un article qui recense et classifie tous les articles d'architecture entre

2014 et 2020 s'intéressant aux méthodes d'exploration architecturale s'appuyant sur les

algorithmes évolutionnaires1. Elle y relève un manque de recherche sur l’usage des algorithmes

multi-objectifs au service de l’exploration des solutions conceptuelles.

Voici un extrait de l’article :

« La plupart des études dans cette catégorie manquent d'une vision holistique des divers

problèmes de conception impliqués, examinant principalement l'algorithme évolutionnaire dans

des processus d'optimisation basés sur la performance avec peu de variables. Il existe une

divergence de points de vue concernant l'efficacité des algorithmes génétiques (GA) dans la

résolution des problèmes de conception multi-objectifs. »

Le manque de recherches sur l'utilisation des algorithmes multi-objectifs pour l'exploration des

solutions conceptuelles est l'une des raisons qui m'ont amené à travailler sur ce sujet.

1 Les algorithmes évolutionnaires, qui englobent notamment les algorithmes génétiques, sont des techniques
d'optimisation basées sur les principes de l'évolution naturelle. Ces concepts seront expliqués plus loin.

12

II. Etat de l’art

Depuis plusieurs années, les architectes s'intéressent au design computationnel1. Notamment,

Kostas Terzidis, architecte et professeur d’architecture à l’université d’Harvard, explore dans son

travail les méthodes algorithmiques, les types de solutions conceptuelles par le principe de

permutation. Dans son ouvrage, « Permutation Design », il explique comment l’architecte peut se

servir de la puissance de calcul des ordinateurs à travers des algorithmes simples pour explorer

le champ des possibilités de composition spatiale en plan.

1 Le design computationnel en architecture, apparu dans les années 1960, utilise des outils informatiques pour générer et
optimiser des solutions de conception, permettant aux architectes d'explorer rapidement des options en réponse à des
contraintes complexes.

13

A. Introduction à la conception paramétrique

Il est important de définir le terme paramétrique dans le concept de « conception paramétrique »

pour comprendre la différence entre les logiciels de 3D comme Revit et les logiciels de

conception paramétrique comme Grasshopper sur l’interface Rhinoceros. Aujourd'hui, quand on

veut parler de conception paramétrique, la plupart des gens utilisent le terme d’architecture

paramétrique, qui en réalité n’a pas de sens. Le résultat architectural n’est pas paramétrique

mais c’est sa conception qui est réalisée au travers d’une approche paramétrique. Quand on

parle de conception paramétrique, on fait référence à la programmation visuelle, comme le

propose le plug-in Grasshopper. Les logiciels comme Revit et Archicad utilisent une approche

différente dans la construction du modèle. Cette approche est basée sur la paramétrisation de

familles d’éléments que l’on assemble ensuite dans le modèle 3D. L’ensemble du modèle ne

possède pas cette capacité de transformation qu’offre le modèle paramétrique. Il existe sur Revit

un plug In nommé Dynamo qui permet de faire de la conception, d’une façon similaire à celle de

Grasshopper sur Rhinoceros.

Cette méthode de paramétrisation permet une grande flexibilité du modèle 3D en offrant la

possibilité de faire varier chacun des paramètres à tout instant. Elle permet aussi de tirer parti de

la puissance de calcul de l’ordinateur pour alimenter cette recherche, notamment par la

simulation et l’optimisation algorithmique, qui fera plus particulièrement l’objet de ce mémoire.

Mario Carpo, théoricien de l'architecture, s'intéressant aux nouveaux outils numériques et à leur

impact sur l'architecture a écrit dans son livre, « The Alphabet and the Algorithm » :

« L’un des principaux avantages des modèles paramétriques est qu’ils peuvent être facilement

transformés, produisant ainsi des variations de différentes configurations avec les mêmes

éléments géométriques. »

Philippe Marin, architecte français, explique le processus de conception paramétrique, dans sa

thèse sur l’exploration des mécanismes évolutionnaires appliqués à la conception

architecturale:

« Le processus paramétrique s'intéresse à la définition d'un ensemble de paramètres qui

influencent la forme. La forme finale n'est pas au centre de la recherche, elle est induite. La

modification de la valeur des paramètres engendre non pas un objet, mais un ensemble de

variations. Le processus n'est pas simplement fondé sur des valeurs métriques, mais plutôt sur

14

l'ensemble des relations entre les objets qui composent la forme. Une modification d'un élément

entraîne une transformation du système dans son intégralité. »

Les logiciels d’algorithmes visuels 3D

Aujourd’hui, les deux méthodes de conception paramétrique les plus utilisées sont le plug-in

Grasshopper, disponible sur le logiciel 3D Rhinoceros, et le plug-in Dynamo, disponible sur le

logiciel Revit. Ces deux outils fonctionnent de manière similaire. Dans ce mémoire, nous allons

nous concentrer sur Grasshopper, qui est le plus répandu et qui offre un large choix de plug-ins

additionnels, comme Octopus, un solveur algorithmique génétique multi-objectifs qui

constituera en partie l’objet de ce mémoire. Pour ceux qui ne connaissent pas cet outil, je vais

ensuite expliquer son fonctionnement ainsi que celui de ses algorithmes.

La conception paramétrique s’appuie sur un environnement de programmation visuelle qui

diffère dans la forme à la programmation scriptée traditionnelle. Elle utilise des fonctions

représentées par des nœuds : chaque nœud reçoit des données en entrée et produit une sortie.

Ces nœuds, semblables à des blocs sont connectés entre eux par des fils. Cet ensemble de

nœuds interconnectés s’appelle un modèle. Cet environnement est connecté à une interface 3D

où les éléments géométriques sont dessinés. Le modèle 3D est l’image du modèle paramétrique.

Les composants initiaux, points, lignes ou surfaces, constituent par leurs assemblages et leurs

mises en relation les hypothèses du projet. La modification de l’un des paramètres entraîne la

modification du système dans son ensemble.

15

Figure 1 : Exemple de programmation d’une ligne sur Grasshopper

Dans l’exemple de la figure 1, on peut voir comment réaliser un segment dans Grasshopper. Pour

créer un segment dans l’espace, on a besoin de connaître seulement les coordonnées spatiales

des deux extrémités. Pour cela, on crée deux points à l’aide des blocs « Construct Point », que

l’on positionne dans l’espace grâce aux coordonnées (X, Y, Z) qui proviennent des « sliders »

(curseurs définissant les valeurs des paramètres d’entrée) et que l’on peut faire varier à tout

moment. Ensuite, on connecte les deux points au bloc « Line », qui permet d’obtenir le segment.

De cette manière on créer petit à petit le modèle 3D. L’avantage est qu’il est très facile de modifier

des paramètres qui régissent le modèle à tout instant. Le modèle n’est pas juste la succession

de trait ou de mur mais bien une structure interconnectée, flexible et homogène.

Outils à la simulation : Les algorithmes génétiques

En conception paramétrique, les modèles sont créés sous forme de scripts visuels, ce qui offre

un environnement propice aux développements de logiciels complémentaires (plug-ins) qui

peuvent facilement venir se greffer. En effet, la conception paramétrique permet de créer un

modèle basé sur des règles mathématiques, ce qui en fait une structure organisée et cohérente.

Grâce à ce modèle programmatique, les éléments suivent des relations définies qui favorise

l’utilisation de plug-in. En effet les relations mathématiques sous-jacentes au modèle

garantissent que chaque modification apportée dans une partie du script se répercute de

manière logique et automatisée sur l’ensemble du modèle.

16

De cette manière, on ne se contente plus simplement de dessiner le modèle, on utilise le logiciel

pour concevoir. En effet, pour aller plus loin dans la conception, il est possible d’utiliser des outils

algorithmiques qui manipulent les paramètres du modèle, afin d’optimiser un ou plusieurs

critères définis par l’utilisateur dans le cadre de la simulation. Il existe un grand nombre d’outils

disponibles avec différentes approches techniques. Nous allons nous intéresser en particulier à

une méthode très utilisée : les algorithmes génétiques.

Pour mieux comprendre l’imbrication de tous les outils dont je viens de parler, voici ci-dessous,
sur la figure 2, un schéma qui résume le cheminement jusqu’à l’utilisation d’algorithmes
génétiques.

Figure 2 : Schéma d’imbrication des différents outils

Les algorithmes génétiques aident les architectes à explorer et améliorer différentes options de

conception. Leur fonctionnement imite le processus de la sélection naturelle : ils génèrent de

nombreuses versions d'un design et évaluent leur performance selon des critères définis et

conservent les meilleurs résultats. Cela permet d'explorer rapidement un large éventail de

possibilités et d'identifier des solutions innovantes et optimisées que les méthodes

traditionnelles pourraient manquer.

17

Cette approche, inspirée des principes de la sélection naturelle et de la génétique est

particulièrement efficace pour résoudre des problèmes complexes de conception où plusieurs

objectifs doivent être prise en compte. Aujourd’hui, en architecture, ces algorithmes sont

principalement utilisés pour optimiser des critères tels que l'efficacité énergétique,

l’ensoleillement et la performance structurelle mais on peut imaginer d’autres usages comme on

le verra dans la suite de ce mémoire.

Les deux solveurs algorithmiques les plus connus et les plus utilisés en conception paramétrique

sont Galapagos et Octopus. Les solveurs algorithmiques sont des applications qui utilisent des

algorithmes pour fonctionner ; ils constituent l’interface entre le logiciel et l’algorithme. Pour

simplifier, j’utiliserai de la même manière dans le reste de ce mémoire les termes solveur

algorithmique et algorithme génétique. Galapagos, est un solveur d'optimisation mono-objectif.

Octopus, est un solveur d'optimisation multi-objectifs qui permet de considérer plusieurs

objectifs. Galapagos est intégré à Grasshopper tandis que Octopus est un plug-in à télécharger

puis à installer sur Grasshopper. Ce sont ces deux outils algorithmiques qui seront utilisés dans

les expériences.

18

B. La conception algorithmique

La théorie du design

John Maeda, auteur américain, connu pour son travail à l'intersection de l'art, du design et de la

technologie a dit lors d’une interview :

« Le design est une solution à un problème ; l'art est une question à un problème. »

Le processus de conception des humains semble être un enchaînement de phases où l'esprit

humain reçoit, analyse et évalue les informations pour générer des réponses. Ce cheminement,

illustré ci-dessous, sur la figure 3, par l'image d'un cerveau qui traite les données, montre

comment les informations perçues sont transformées en solutions par notre cerveau.

Figure 3 : Illustration du processus de conception, source : InfAR (Bauhaus-Universität)

19

En architecture ou en design, la distinction entre fonction et forme est cruciale dans le processus

de conception : la fonction définit ce que l'objet doit accomplir et les qualités qu'il doit posséder,

tandis que la forme exprime sa géométrie et sa matérialité. Ce processus implique de générer

une forme à partir de la fonction définie et d'évaluer cette forme pour vérifier si elle répond aux

critères établis. Cependant, ce parcours n'est pas linéaire ; il repose sur un système itératif

d'essais et d'erreurs. Les multiples fonctions à satisfaire sont souvent ambiguës et sujettes à des

changements, tandis que certains critères sont difficiles à quantifier et peuvent même être

contradictoires.

Durant cette phase de recherche, l’éventail des possibilités formelles est très large, il est presque

impossible de trouver la solution qui puisse satisfaire pleinement la fonction du premier coup.

Pour illustrer ce problème, Reinhard König et Sven Schneider, deux professeurs à l'université

Bauhaus de Weimar en Allemagne, ont imaginé une expérience pour démontrer l'immensité de

l'espace des possibilités qu'offre l'exploration des solutions. Ils ont utilisé une photo aérienne

d'une ville composée de 6 400 pixels, chaque pixel pouvant prendre 256 x 256 x 256, soit 16 777

216 couleurs possibles. L'objectif était de retrouver l'image de la ville en modifiant aléatoirement

les pixels. Cette expérience est illustrée sur la figure 4.

Figure 4 : Illustration de l’expérience de Reinhard König et Sven Schneider

Il existe ainsi 16 777 2166400 images différentes réalisables en modifiant les couleurs de chaque

pixel. Autrement dit, il est pratiquement impossible de retrouver l'image d'origine de cette

manière, car le nombre de possibilités est bien trop grand. Cette expérience montre que, pour

certains processus de conception, il est nécessaire d'adopter une forme de raisonnement afin

de réduire l'ensemble des possibilités.

https://otp.uni-weimar.de/lecturers/
https://otp.uni-weimar.de/lecturers/

20

L’ensemble des possibilités, appelé "set of all possibilities", est immense. Il englobe à la fois

l’ensemble des solutions intéressantes, désigné par "performance space" et l’ensemble des

possibilités que le designer va étudier, désigné par "design space". Ces deux sous-ensembles

partagent l’ensemble des solutions, nommé "solution space". Pour passer de l’ensemble des

possibilités au "design space", les concepteurs utilisent la méthode de l'élimination. Cela

consiste à réduire drastiquement le champ des possibilités en formulant des hypothèses de

travail. Ce travail initial, qui consiste à établir le problème conceptuel, est crucial. La figure 5, ci-

dessous permet de comprendre les relations entre ces espaces.

Figure 5 : Illustration des espaces de solutions, source InfAR (Bauhaus-Universität)

21

Automatique design process

Figure 6 : « Distance between buildings based on lighting » de Gropius en 1931

En 1931, Walter Gropius propose une théorie sur la relation entre la distance qui sépare les

bâtiments et leur hauteur pour un ensoleillement optimal, qui est illustrée sur la figure 6.

Cette théorie utilise une règle mathématique simple qui lie la hauteur d’un bâtiment à la distance

avec son voisin par un coefficient. Cette relation géométrique pourrait facilement être traduite à

un algorithme pour trouver les solutions.

Cet exemple peut nous amener à penser qu’une partie du processus de conception des

architectes pourrait se traduire mathématiquement par l'utilisation d'une structure

conditionnelle if/else (si/sinon), en fonction du respect des critères d'évaluation, dans ce cas, la

distance entre les bâtiments.

En pratique, cela est plus complexe, car l’ensemble du processus conceptuel n’est pas

explicitement interprétable sous la forme de critères d'évaluation et donc de structures

conditionnelles if/else. De plus, pour représenter l'ensemble de ce processus, il faudrait mettre

à la suite un très grand nombre de blocs if/else au sein de l'algorithme. Il semble donc très difficile

de résoudre un problème conceptuel de cette manière.

Pour améliorer la performance du modèle, on peut utiliser une approche un peu différente qui

consiste à renvoyer l'élément évalué au bloc précédent tant qu'il n'est pas satisfaisant. On passe

alors d’une méthode itérative à une méthode récursive qui s’apparente à une boucle. Dans ce

cas, un bloc est dit génératif car il est capable de créer des solutions en fonction des réponses

du modèle d'évaluation et un bloc évalue les solutions jusqu’à validation des critères d’arrêts.

22

Figure 7 : Source InfAR (Bauhaus-Universität)

Dans la figure 7, le "design space" correspond aux modèles générés par le "generative algorithm"

et le "performance space" correspond à tous les modèles acceptés par le "evaluation model".

Pour créer le "generative algorithm" il existe plusieurs stratégies.

Parmi elles, la stratégie la plus connue et plus largement utilisée est celle des algorithmes

génétiques (AG), comme Galapagos et Octopus, qui permettent d'optimiser des solutions en

explorant un large éventail de possibilités, c’est celle-là qui fera l’objet de cette recherche. Il en

existe d’autres moins utilisées comme les réseaux de neurones artificiels (ANN), utilisés pour

prédire et modéliser des performances complexes ou encore les algorithmes inspirés des

colonies de fourmis (ACO), qui offrent des approches spécifiques pour l'optimisation énergétique

et les circulations dans les bâtiments et bien d’autres.

23

C. Les algorithmes génétiques

Le processus génétique

L'évolution génétique est un processus d'optimisation inspiré par la théorie de l'évolution

naturelle de Charles Darwin. De nombreux chercheurs se sont intéressés à appliquer ce

processus à des logiciels pour recréer la théorie de l’évolution dans un univers numérique,

comme l'a montré Karl Sims en 1994 avec son travail "Evolving Creatures".

Le principe est que les meilleurs éléments d’une population permettent de générer la prochaine

génération. Une première population d’individus est créée de manière aléatoire pour former la

population parentale de la première génération. Ensuite, la qualité de chaque individu est

évaluée face aux critères objectifs. Si l'une des solutions satisfait un critère d'arrêt, l’algorithme

se termine. Sinon, les principes évolutifs de sélection, reproduction et mutation sont appliqués.

Voici les différentes phases du fonctionnement d’un algorithme génétique :

Initialisation : Une population initiale de solutions est générée aléatoirement.

Évaluation : Chaque solution est évaluée en fonction des critères.

Sélection : Les solutions les plus adaptées sont sélectionnées pour se reproduire.

Croisement : Les solutions sélectionnées échangent une partie de leur ADN (paramètres

d’entrés) pour créer de nouvelles solutions (enfants).

Mutation : Des modifications aléatoires sont apportées aux nouvelles solutions pour maintenir

la diversité génétique.

Nouvelle Génération : Les nouvelles solutions remplacent les anciennes et le processus se

répète jusqu'à ce qu'un critère d'arrêt soit atteint ou que l’utilisateur décide d’arrêter la

simulation (comme un nombre maximal de générations ou une convergence vers une solution

optimale).

Les algorithmes génétiques font partie de la famille des algorithmes évolutionnaires, qui

appliquent le principe de la loi de l’évolution, avec la particularité d’utiliser un système génétique

dans le processus. Les algorithmes génétiques sont utilisés dans de nombreux domaines,

notamment en architecture. Ils sont très polyvalents, simples à mettre en place et très efficaces.

24

Leur utilisation dans le domaine de l’optimisation est ancienne, par exemple, John Holland1, en

1975, dans son ouvrage « Adaptation in Natural and Artificial Systems » décrit les bases

théoriques et les premières applications des algorithmes génétiques.

Les méthodes analytiques classiques ne sont pas très adaptées aux problèmes non linéaires,

discontinus, voire chaotiques, que l'on peut rencontrer en architecture. Les méthodes

évolutionnaires sont beaucoup plus performantes dans ce contexte.

La créativité algorithmique

L’utilisation de ces algorithmes sur des problèmes complexes (non linéaire), comme c’est le cas

en architecture, soulève la question de la créativité algorithmique et de son importance. Le

résultat obtenu par l’algorithme peut être considéré comme créatif ou innovant, Il est donc

important de définir et de développer le concept de « créativité algorithmique ».

Parmi les chercheurs qui ont travaillé sur ce sujet il y a notamment, Philippe Marin, dans son

article sur Exploration des mécanismes évolutionnaires appliqués à la conception architecturale

qui distingue trois formes (niveaux) de créativité : d’une part, l’algorithme et l’ordinateur qui

peuvent avoir une capacité créative, d’autre part la solution produite qui peut être considérée

comme créative et enfin le dispositif qui peut assister l’activité créative du concepteur.

D’un autre côté, Gero J. S., architecte et chercheur spécialiste sur les outils numériques en

architecture, considère que l’ordinateur conçoit de manière créative, s’il est capable de faire

évoluer à la fois la solution dans l’univers des possibles et l’espace des solutions lui-même,

c’est-à-dire l’espace de recherche. Pour lui, si la solution générée présente un caractère de

nouveauté ou d’innovation alors le produit du processus peut être qualifié de créatif.

Beaucoup de chercheurs ont réalisé des travaux sur le sujet, mais ce n'est pas l'objectif de mon

mémoire, donc je ne vais pas le développer davantage. Néanmoins, j'aimerais donner mon

opinion : il me semble que l'algorithme ne peut fournir des résultats intéressants que si le

concepteur l'a mis dans les bonnes conditions. Autrement dit, le rôle du concepteur dans la mise

en place des conditions de l’algorithme compte au moins tout autant que le travail de

l’algorithme sur la notion de « créativité » des solutions.

1 John Holland, chercheur américain, spécialisé dans les algorithmes génétiques.

25

Les algorithmes génétiques en architecture

John Frazer (1995) a été parmi les premiers chercheurs à utiliser les méthodes évolutives dans le

design, notamment en architecture et en conception structurelle et à étudier l'aspect génératif

des algorithmes évolutifs.

Il existe deux familles d'algorithmes génétiques, les mono-objectif et les multi-objectifs. Les

algorithmes mono-objectifs cherchent à optimiser un critère d’évaluation, ce qui peut limiter la

diversité des solutions générées mais offrir des résultats performants en optimisation avec un

seul critère. En revanche, les algorithmes multi-objectifs, comme Octopus, permettent d'évaluer

simultanément plusieurs critères, offrant ainsi une exploration plus riche et une capacité accrue

à générer des solutions variées, ce qui les rend particulièrement pertinents pour la conception

architecturale.

Nous allons étudier les deux algorithmes génétiques les plus connues et utilisés dans leur famille

respective, Galapagos et Octopus.

Mono-objectif

L'un des algorithmes génétiques les plus utilisés en architecture paramétrique est Galapagos. Il

est intégré à Grasshopper sur le logiciel Rhinoceros. C’est un algorithme très simple d’utilisation

qui permet d’optimiser des solutions en fonction d’un seul objectif, en ajustant les paramètres

d’entrée d’un modèle pour atteindre une solution optimale.

Dans le cadre de la prise en main de cet outil pour réaliser ce mémoire, j’ai configuré un modèle

paramétrique permettant de tester son efficacité à la résolution d’un problème conceptuel

n’ayant qu’une seule solution non évidente.

L’objectif de cet exercice est de trouver le plus grand rectangle dans une surface plane

quelconque. J’ai donc transposé ce problème sur la toile de Grasshopper en réalisant un modèle

paramétrique et en configurant Galapagos pour maximiser la surface du rectangle. Il est

important de préciser que la qualité de la réponse algorithmique dépend de la bonne

configuration du modèle paramétrique et qu’il existe plusieurs façons de réaliser le modèle. Si

l’algorithme est rapide pour tester chaque génération du modèle dans son calcul et qu’il semble

converger vers un groupe solution, alors la configuration est satisfaisante.

26

Sur l’illustration ci-dessous, figure 8, on peut voir à droite, l’interface de Galapagos et à gauche

la meilleure solution proposée par l’algorithme.

Figure 8 : L’interface Galapagos avec sa solution

Le résultat semble très satisfaisant, car l'algorithme génétique Galapagos converge bien vers la

solution idéale. De plus, il l'a fait très rapidement, en seulement quelques secondes, car c'est

pour ce type de problème qu'il a été conçu. En effet, les algorithmes génétiques mono-objectif

sont idéaux pour converger vers une solution unique.

Multi-objectifs

D’un autre coté il y a la famille des algorithmes génétiques multi-objectifs, comme Octopus, qui

permettent de considérer plusieurs objectifs simultanément. Ils sont particulièrement efficaces

pour explorer les types de solutions, car ils permettent de naviguer dans un espace de solution

qui trie chacune des solutions selon leur qualité grâce aux critères d’évaluation.

Il est plus intéressant que les critères soient contradictoires car cela permet d’obtenir un

ensemble de solutions pertinentes qui correspond aux meilleurs compromis entre les différents

objectifs. Cet ensemble de solutions optimales est appelé solutions de Pareto.

Ces conflits, entre critères contradictoires, permettent à Octopus de diversifier les solutions,

ainsi le concepteur parcourt un éventail de propositions équilibrées, chacune répondant

différemment aux objectifs fixés. Plus les critères sont contradictoires, plus l'algorithme explore

27

des solutions variées, ce qui permet à l’architecte de naviguer entre ces choix alternatifs. Cela

stimule la créativité de l’architecte et peut l’amener à rencontrer des solutions inattendues.

Une des expériences que j’ai réalisé dans la suite de ce mémoire, est illustrée en-dessous. Pour

expliquer brièvement, car une partie de mon mémoire est dédiée à cette expérience, l’objectif est

d’explorer les types de solutions possibles d’un parc carré et composé de trois jeux circulaires.

Dans cet exemple, figure 9, on peut voir le diagramme d’affichage des solutions présent sur

l’interface d’Octopus. Dans cet exemple, les solutions (carrés rouges), forme le front de Pareto,

ce qui signifie que chacune des solutions affichées correspondent aux meilleurs compromis

entre les deux objectifs présents sur l’axe horizontal et vertical.

Figure 9 : Graphique d’Octopus avec un zoom sur deux solutions

Nous verrons après, dans la partie expérience le contexte dans lequel s’inscrit cet exemple. Pour

l’instant, ce que l’on peut remarquer c’est l’étendue des solutions que l’on obtient à partir de

deux objectifs contradictoires que sont : un, contenir les jeux à l’intérieur du parc et deux, avoir

le plus de distance entre les jeux. Les algorithmes génétiques multi-objectifs semblent donc

particulièrement intéressants pour explorer le champ des solutions conceptuelles.

28

Exploration et exploitation

On distingue deux types approches dans l’usage des algorithmes génétiques en architecture,

l’exploitation et l’exploration.

L’exploitation se focalise sur un seul type de solution et tente de la rendre la meilleur possible. Il

s'agit alors d’une recherche locale poussée, c’est-à-dire un zoom sur une partie du paysage des

solutions. Dans le but de trouver la meilleure solution dans cette zone correspondant à un

optimum local1 du paysage de solution.

D’un autre côté, l’exploration est une approche qui a pour objectif de parcourir un maximum de

types de solutions, permettant de proposer un éventail de solutions possibles pour le projet.

Cette exploration permet à l’architecte de nourrir sa créativité, car il peut rapidement parcourir

un ensemble de types de solutions et choisir celle qu’il juge intéressante.

Il semble que la majorité des recherches actuelles se concentrent sur un seul de ces deux

aspects, l’exploitation. Pourtant les algorithmes génétiques permettent aussi l'exploration

créative. Sans chercher à atteindre une solution idéale, mais plutôt à offrir aux concepteurs une

meilleure compréhension de l’espace des solutions disponibles comme le développe Stouffs en

2015 dans son article « Types of Parametric Modelling ».

L'optimisation présente des limites lorsqu'il s'agit de problèmes conceptuels impliquant des

aspects qualitatifs et subjectifs. En effet il semble compliqué pour l’algorithme d’avoir des

critères d’évaluation sur des notions subjectives et/ou non quantifiables. C’est pourquoi

l’exploration est intéressante car elle permet aux concepteurs de naviguer parmi les solutions

proposées par l’algorithme et de choisir celle qui lui convient.

Cette phase d’exploration peut être représentée par un paysage de solution en plusieurs

dimensions. Généralement, ce paysage est à deux ou trois dimensions pour être visualisé

facilement. À chaque problème conceptuel correspond une carte de solutions différentes à

appréhender.

1 L'optimum local, dans un paysage de solutions, est une solution meilleure que ses voisines immédiates, mais qui peut
être inférieure à l'optimum global.

29

 Figure 10 : Exemples de paysages de solutions décrits par D.Rutten en 2014

Sur la figure 10, on peut voir quatre types de paysages de solutions a 3 dimensions décrits par

D.Rutten en 2014 qui est un développeur de logiciels et un influenceur majeur dans le domaine

de l'architecture computationnelle, notamment grâce à son travail sur Grasshopper.

Dans ces représentations, l’axe vertical correspond à l’objectif et les deux axes horizontaux sont

des paramètres d’entrée. Le paysage de solutions peut être d’une grande complexité, il important

de bien délimiter la zone d’exploration pour ne pas se perdre dans l’ensemble des possibilités.

Connaitre au mieux le problème architectural pour cibler les zones à fort potentiel de solutions

intéressantes semble être la clé pour tirer profit au maximum des algorithmes génétiques. Nous

ne pouvons pas avoir la puissance de calcul d’un ordinateur et il est donc difficile pour nous

d’explorer autant de possibilité que lui mais nous pouvons imaginer que nous avons une

meilleure intuition pour savoir où chercher à l’inverse de l’ordinateur. Donc une approche hybride

semble parfaite pour rencontrer la meilleure solution.

Soddu, un architecte et chercheur italien reconnu pour ses travaux sur l'architecture générative

et le design basé sur des processus algorithmiques a publié en 1998 des recherches sur le

nouveau rôle des designers. Pour lui, avec l’avènement des technologies numériques dans le

30

champ de la conception, le rôle du designer s’est transformé : « Du concepteur créateur d’une

œuvre, d’une solution unique, on assiste aujourd’hui à l’émergence d’un méta designer créateur

d’un ensemble élargi de solutions répondant aux contraintes du problème. Le concepteur ne

travaille plus à l’élaboration d’un objet exclusif, mais plutôt à la conception d’une famille de

formes, dont la solution retenue représentera un état significatif au sein de cet ensemble de

potentialités. »

Comme l’écrit Pierre Levy (Lévy 1992), le concepteur ne dessine plus un objet mais un système

d’objets possibles, une machine à explorer les virtualités. Il parle alors d’une forme de « lâcher

prise », car le concepteur doit accepter qu’une part des décisions soit prises par l’outil.

L’émergence de nouveautés ou de solutions surprenantes est le résultat du processus. Le

concepteur établit les conditions de génération des solutions et ne cherche plus la

concrétisation d’une solution exclusive, il effectue des choix à partir de l’ensemble des possibles

qui lui est offert.

31

III. Méthodologie

32

A. Approche expérimentale

Introdution

Dès le départ, je savais que ce travail m’amènerait à utiliser des logiciels paramétriques pour

appuyer mes arguments et justifier mes hypothèses. Pour cela, je voulais mettre en place une

expérience permettant d'analyser le processus d’exploration que proposent les algorithmes

génétiques. Au travers de cette expérience, j’ai manipulé les deux types d’algorithmes génétiques

que je souhaitais étudier : les mono-objectif et les multi-objectifs, représentés par Galapagos et

Octopus.

Je rappelle que l’hypothèse principale de ce mémoire est que les algorithmes génétiques multi-

objectifs sont plus adaptés pour explorer les différentes options de solution dans le processus

de conception que les algorithmes mono-objectifs. J’ai donc réalisé une expérience permettant

d’apporter des éléments de comparaison entre ces deux familles d’algorithmes.

Cette phase d’expérimentation qui s’inscrit dans la carde de mon travail sur le parc pour enfant

a constitué pour moi un apprentissage continu, me permettant de découvrir ces outils et

d’apprendre à les manipuler et ainsi de développer une compréhension avancée du mode de

fonctionnement de ces algorithmes.

33

Naissance de l’idée

Mon point de départ pour cette expérience a été le thème du parc pour enfants. Cette idée m'est

venue en raison de la vue depuis la fenêtre de ma chambre, qui, à l'époque où j'ai commencé

mes recherches, donnait sur El Parque de las Heras à Buenos Aires, en Argentine. Situé dans le

quartier de Belgrano, ce parc, très fréquenté, présente une forme carrée et est agrémenté de jeux

pour enfants aux formes circulaires, comme on peut le vois sur la photo, figure 11.

Figure 11: Parque de las Heras, Buenos Aires, Argentina

L’objectif de ce travail est d’assister l’architecte dans la conception d’un parc de jeux pour

enfants en lui proposant différents types de solutions, autrement dit, différentes configurations

du parc avec ces jeux parmi lesquels il peut choisir.

La phase d’apprentissage

Pour l’expérience, le choix de la forme du parc, du nombre de jeux et des objectifs ont été définis

à la suite d’une phase de recherche sur le logiciel, que je qualifierai de phase laboratoire, qui m’a

permis de choir au mieux les paramètres de l’expérience.

Cette recherche a pour but de mettre en lumière les qualités d’exploration des algorithmes

génétiques. J'ai choisi de réaliser une expérience simple afin de pouvoir analyser facilement les

résultats obtenus. Pour représenter le parc, j'ai opté pour un mode de représentation presque

34

abstrait où le parc et les jeux sont symbolisés par des formes géométriques élémentaires (carrés,

cercles, etc.).

Cette exploration des différentes configurations du parc pour enfants inclut l'évaluation des

interactions entre les éléments du design. En manipulant des paramètres tels que la disposition

des jeux et la relation entre les jeux, j’ai pu observer comment ces facteurs influencent les

algorithmes génétiques. Cette approche m'a permis d'appréhender les implications de chaque

décision dans la définition des paramètres. En fin de compte, cette phase d'expérimentation vise

à enrichir la compréhension des processus de conception assistée par les algorithmes

génétiques et à démontrer leur efficacité.

35

B. Le choix des paramètres

Bien construire le modèle paramétrique est essentiel pour tirer le meilleur parti d'un algorithme

génétique. Pour traduire ce processus d'exploration en algorithmes visuels sur Grasshopper, il

est important de bien définir les composants et leur connexion dans le modèle paramétrique

pour mettre l’algorithme dans les bonnes conditions.

Cela se fait en orientant les recherches vers une zone de l'espace des possibilités qui semble

propice à la rencontre de la solution idéale. En effet, l'algorithme manipule les paramètres

d'entrée que l'on a définis et qui contiennent des caractéristiques. Ces caractéristiques peuvent

prendre la forme, par exemple, d’un intervalle de valeurs possibles pour chaque paramètre ou un

pas correspondant à la plus petite variation possible de la variable. Les interactions que

l'algorithme a avec ces valeurs dépendent complètement de la configuration des paramètres

établie par l'utilisateur.

À travers trois éléments — la manière de traduire le sujet architectural, la configuration des

paramètres d’entrée et la mise en place des objectifs avec leur jeu de coefficients — l’architecte

délimite un espace de recherche dans lequel l’algorithme pourra naviguer. Comme mentionné

précédemment, la liberté que l’on donne à l’algorithme traduit les caractéristiques pour

lesquelles le concepteur n’a pas pris de décision, mais également ce qu’il souhaite explorer.

Pour commencer il est préférable d’identifier les objectifs du projet puis de définir les contraintes

(les limitations physiques, matérielles, réglementaires, etc.) et de choisir judicieusement les

variables, autrement dit, les paramètres d’entrée qui vont être modifiées pour satisfaire les

objectifs.

36

Les objectifs

Généralités sur les objectifs

Il existe deux types d’objectifs :

Les objectifs quantifiables : dimensions physiques, coûts, durée des travaux, efficacité

énergétique, quantités de matériaux, propriétés structurelles, performance acoustique,

performance lumineuse, flux, impact environnemental.

Un objectif quantifiable est facilement interprétable par l’ordinateur et donc il peut facilement

l’évaluer au des critères définis par l’architecte et de continuer sa recherche.

Les objectifs non quantifiables : esthétique, symbolique, flexibilité d'usage, relation avec le

contexte.

Les objectifs non quantifiables nécessitent une analyse humaine et ne se prêtent pas aujourd’hui

à la modélisation paramétrique, l’algorithme ne peut pas évaluer ce type de critère. C’est

pourquoi il semble nécessaire que le concepteur intervienne dans le processus pour apporter

son jugement, et donc une approche hybride, intégrant l'optimisation algorithmique avec une

évaluation qualitative humaine, semble être la meilleure méthode.

Les objectifs dans le cadre de mon expérience

Dans mon expérience du parc pour enfants, j’ai configuré des objectifs dans le but de trouver un

assemblage intéressant des jeux dans le parc. Le problème est que la pertinence d’une solution

par rapport à une autre ne semble pas être objective, c’est donc un objectif qui n’est pas

quantifiable. J’ai donc choisi de donner comme mission à l’algorithme des objectifs qui soient

quantifiables, comme maximiser la surface de jeu dans le parc sans qu’elle se chevauche, ou

encore contrôler l’espacement entre les jeux. De cette manière, je peux quantifier ces objectifs

et utiliser les algorithmes pour explorer les solutions.

L’objectif en conception paramétrique, correspond à la mesure d’une grandeur physique ou à la

valeur permettant d’évaluer l’algorithme. Cela permet de se rendre compte des conséquences

de la modification des paramètres d’entrée.

Pour rentrer un peu dans les détails, les objectifs dans les algorithmes génétiques sont conçus

pour maximiser ou minimiser une valeur. C’est pour cela que le concepteur joue un rôle

important dans ce processus, car c’est lui qui doit préciser la valeur qui lui semble intéressant

de maximiser ou de minimiser. Mais il existe des astuces pour demander à l’algorithme de

37

s’approcher d’une valeur précise, par exemple une surface exacte en mètres carrés. Bien sûr,

l’algorithme cherchera toujours à minimiser ou à maximiser une valeur, mais par un jeu de

soustractions ou d’additions en amont, il est possible de faire converger l’algorithme vers le

nombre choisi, comme illustré ci-dessous sur la figure 12 :

Figure 12 : Extrait du modèle paramétrique du parc pour enfant

Dans cette illustration, j’ai défini mon paramètre objectif pour avoir 2000 m2 de surface de jeu

dans le parc : à gauche j’ai la surface en m2 des jeux dans le parc et pour « tromper » l’algorithme,

j’utilise un bloc de soustractions qui vient soustraire en fonction de la valeur souhaitée le

paramètre objectif. Ainsi, l’algorithme Galapagos en cherchant à minimiser le paramètre objectif

c’est-à-dire à faire tendre vers 0 ce dernier, va en réalité me permettre d’obtenir une surface

totale des jeux dans le parc de 2000 m2.

Cette démonstration montre que, malgré les règles simples de fonctionnement des algorithmes,

une multitude de possibilités d’élaboration du modèle s’offrent à nous en tant que concepteurs.

De la même manière, il est possible de pondérer les valeurs de certains critères pour rendre le

paramètre objectif plus intéressant du point de vue de la réponse algorithmique. Par exemple, si

l’on veut absolument éviter que les jeux dans le parc se chevauchent, on peut pondérer les

surfaces en commun des jeux du parc par un coefficient important, sans affecter de coefficient

aux valeurs des surfaces perdues en dehors du parc. Ainsi, on peut regrouper sous un même

objectif de "surface perdue" les surfaces partagées par les jeux et les surfaces qui sortent du

parc, avec des coefficients différents. Si cela n’est pas clair, je reviendrai plus précisément

dessus dans la partie expérience.

38

En conclusion le rôle du concepteur est de choisir, au travers d’intentions et aussi d’une forme

d’intuition, les coefficients qui vont venir pondérer les objectifs, car ils jouent un rôle très

important dans le processus algorithmique. Quand je parle d’intention, je fais référence à

l’intention architecturale, comme par exemple, dans le cas du parc pour enfants, décider si les

jeux peuvent sortir du parc ou dans quelle mesure ils peuvent se chevaucher.

Les contraintes

Dans la conception architecturale, les contraintes jouent un rôle crucial en guidant et en limitant

les choix de conception. Ces contraintes peuvent provenir de diverses sources, telles que les

normes réglementaires, les exigences des clients, les caractéristiques du site, etc. Elles peuvent

aussi provenir d’hypothèses de travail choisies par l’architecte dans la conception du projet. Ce

dernier point est très important car, pour définir un modèle paramétrique performant dans la

recherche des types de solutions, il faut restreindre judicieusement le nombre de possibilités de

solutions que l’on demande aux algorithmes de traiter. Le nombre de possibilités doit être

suffisamment grand pour que l’exploration soit pertinente mais pas trop grand pour éviter de se

noyer dans l’immensité du champ des possibilités.

Dans le cas de mon expérience du parc pour enfants les contraintes se traduisent par la

configuration des paramètres et de la manière dont j’ai créé le modèle du parc. Par exemple, la

taille des jeux si elle est fixe ou encore la forme du parc. Dans l’expérience du parc les contraintes

sur les paramètres d’entrée ont été expliqué dans la partie expérience (Partie IV p. 37).

39

Les paramètres d’entrée

Les paramètres d'entrée jouent un rôle majeur dans la programmation d'un modèle destiné à un

travail algorithmique. L'ensemble des valeurs que ces paramètres peuvent prendre définit

l'ensemble des possibilités du design, également appelé « design space ». Les algorithmes ne

peuvent pas traiter des processus d'exploration offrant un trop grand nombre de possibilités.

Ainsi, le premier travail consiste à déterminer quels sont les paramètres réellement pertinents

pour l’exploration. Voici quelques exemples de paramètres :

- Dimensions et proportions : Largeur, hauteur, longueur, rapport d'aspect, etc.

- Formes géométriques : Types de formes de base à utiliser (carré, cercle, polygone, etc.).

- Relations spatiales : Distances entre les éléments, angles, alignements.

- Matériaux et textures : Type de matériaux, propriétés physiques.

- Fonctions et usages : Usages des espaces, circulation, accès.

- Conditions environnementales : Orientation du soleil, Force du vent

La modélisation d’un paramètre sur Grasshopper est une étape importante dans la définition des

paramètres. Ces derniers peuvent prendre plusieurs formes : sliders, booléens, graph mappers,

etc. Dans le cas le plus courant du slider, il est important de bien définir la "range" (intervalle

d'évolution du paramètre) avec un minimum et un maximum, ainsi que la précision du paramètre

pour déterminer le pas de sa variation (par exemple, 10, 1, 0.1, etc.). Ces choix nécessitent une

anticipation, voir une intuition de l’architecte par rapport au comportement algorithmique, qui

doit définir intelligemment l’ensemble des possibilités, afin d'obtenir une réponse algorithmique

aussi pertinente que possible. Cette nouvelle forme de conception, dans laquelle l'architecte

apprend à concevoir un modèle paramétrique qui sera traité par l’algorithme, est appelée par

Neri Oxman la « conception hybride »1.

1 Neri Oxman, qui a travaillé sur la conception computationnelle et les techniques de fabrication avancée, évoque l’idée
d’une "conception hybride" où l’homme et l'algorithme interagissent pour générer des solutions architecturales
innovantes.

40

IV. Les expériences

41

A. Ecriture du modèle du parc pour enfants

Dans cette première expérience nous allons essayer d’utiliser les algorithmes génétiques

Galapagos et Octopus pour explorer l'espace des solutions dans la conception d’un parc pour

enfants. L’objectif est d’évaluer la performance de ces deux algorithmes l’un mono-objectif et

l’autre multi-objectifs dans l’aide à la rencontre de type de solutions à un stade très précoce du

processus conceptuel. L’analyse et la comparaison des résultats de ces deux algorithmes

permettront d’alimenter les connaissances sur l’intérêt de ces outils en conception

architecturale.

Pour trouver le modèle du parc pour enfants le plus intéressant dans l’analyse des résultats, j’ai

réalisé plusieurs modèles du parc en expérimentant différentes configurations de ce dernier.

Cela m’a permis d’apprendre à manipuler ces outils et à comprendre le fonctionnement des

algorithmes génétiques pour éviter de commettre des erreurs dans l’analyse des résultats.

42

La phase de recherche et d’apprentissage préalable et nécessaire

pour l’écriture finale du modèle

Le premier travail consiste à comprendre comment traduire sur l’interface Grasshopper le

problème conceptuel du parc. Pour cela j’ai réalisé plusieurs essais de modèle du parc pour

enfants.

Sur la figure 13, on peut voir l’interface Grasshopper sur laquelle j’ai modéliser les différentes

versions du modèle du parc, chaque arbre paramétrique correspond à un modèle du parc pour

enfants. J’appelle arbre paramétrique un ensemble de bloc interconnecté par des fils, il y en a 15

sur la photo. Ils correspondent chacun à une configuration différente du modèle. Ils sont

regroupés en quatre catégories, V1 : Modèles sur les surfaces, V2 : Modèles sur les volumes, V3

: Modèles avec variation du nombre de jeu, V4 : Modèles optimisés.

Figure 13 : Interface Grasshopper avec l’ensemble des versions du modèle du parc

43

Première version

Dans la première catégorie du modèle qui correspond à la première colonne à gauche, j’ai

considéré que le parc était carré et que la taille des jeux ne variait pas. Aussi j’ai considéré que la

valeur du paramètre objectif à évaluer par l’algorithme serait les surfaces des jeux du parc en

comparaison avec la surface du parc. J’ai réalisé trois écritures différentes de cette version, avec

soit des jeux carrés, soit des jeux circulaires, comme on peut le voir ci-dessous sur la figure 14.

Figure 14 : Interface Rhinoceros des premières versions du modèle

Dans cette première version, il n’y a qu’un seul objectif, celui de minimiser les surfaces en

commun entre les jeux avec les surfaces des jeux qui sont à l’extérieur du parc, c’est pourquoi

j’ai utilisé Galapagos. Le but étant d’obtenir des types de solutions simples en plans

d’assemblages des jeux dans le parc. Il était néanmoins difficile pour l’algorithme de comparer

des éléments surfaciques, ce qui pouvait amener des erreurs dans les réponses algorithmiques.

En effet, il semble que le traitement du problème par les surfaces ne soit pas adapté au logiciel

Grasshopper. J’ai donc changé d’approche pour la deuxième version du modèle.

44

Deuxième version

Dans la deuxième version qui correspond à la colonne numéro deux sur la première illustration,

j’ai utilisé des éléments volumiques pour représenter les éléments du parc et j’ai pu ainsi

comparer des interactions de solides beaucoup plus facilement que les intersections de

surfaces. En effet il semble que le logiciel Grasshopper soit plus adapté à la comparaison

d’éléments volumiques. Comme mon expérience est un travail en plan, j’ai donné une épaisseur

identique à tous les éléments pour le ramener à un travail à trois dimensions. Cela reste donc un

travail en deux dimensions malgré tout, ce changement permettant seulement à l’algorithme de

mieux comprendre. En effet cela a grandement amélioré la réponse algorithmique car il y a eu

moins d’erreurs d’interprétation sur les interactions entre éléments.

 J’ai donc pu développer plusieurs modèles du parc pour enfants comme on peut le voir ci-

dessous, figure 15, en modifiant les caractéristiques du parc comme sa forme : carré, circulaire

ou quelconque ; la forme des jeux : Carré ou circulaire ; La variation de la taille des jeux ; Lien

entre les jeux ; Choix de la surface total des jeux.

45

Figure 15 : Interface Grasshopper des modèles de la deuxième catégorie basé sur les volumes

46

Une fois que l'objectif de maximiser la surface d’occupation des jeux a été maitrisé, j’ai

commencé à explorer l’approche multi-objectifs en ajoutant un autre objectif qui a pour but de

contrôler la dispersion des jeux. Je reviendrai sur le fonctionnement précis de ces objectifs dans

le détail de l’algorithme final. Cette phase d’exploration des modèles m’a permis de comprendre

comment réaliser l’algorithme final dont on exploitera les résultats. Voici, figure 16, les

représentations géométriques sur Rhinoceros des parcs pour enfants de la deuxième version des

modèles :

Figure 16 : géométries des modèles du parc pour enfant de la deuxième version

47

Troisième version

Afin de terminer ma phase d’exploration, j’ai essayé d’ajouter la possibilité de faire varier le

nombre de jeux dans l’algorithme. Ce nouveau paramètre est difficile à mettre ne place. Voici ci-

dessous, figure 17, une photo de l’algorithme et de sa géométrie sur Rhinoceros.

Figure 17 : Algorithme avec modification du nombre de jeu et sa géométrie

Cette version du modèle permet à l’algorithme de faire apparaitre jusqu’à 7 jeux. Mais dans

l’écriture de mon modèle, le paramètre du nombre de jeux rendait la convergence des

algorithmes génétiques impossible. Autrement dit, il n’y avait pas de correspondance entre le

choix des paramètres et la qualité des solutions donc l’étape de convergence génétique ne

pouvait pas fonctionner. De plus, la possibilité de modifier le nombre de jeux ne semble pas

nécessaire dans le cadre de mon objectif. J’ai donc écarté cette hypothèse.

Quatrième version

Dans la quatrième version du modèle du parc, j’ai mis en place l’algorithme final qui servira à

l’exploitation des résultats. Il correspond à la configuration du modèle qui m’a semblé la plus

intéressante pour mettre en avant la capacité d’exploration des algorithmes génétiques et

pouvoir les comparer. Nous allons commencer par voir le choix des paramètres de ce modèle.

48

Choix des paramètres du modèle

a) Choix de la forme du parc

J’ai choisi d’utiliser un parc carré, car cela permet de simplifier la continuité des positions que

peuvent prendre les jeux dans le parc. Autrement dit, pour l’algorithme, faire varier légèrement la

position (x, y) des jeux entraine un petit déplacement de ces derniers, tandis que si la forme est

complexe, il faut discrétiser la surface et cela rend complexe la modification des positions des

jeux et rend plus difficile pour les algorithmes génétiques de converger vers un type de solution.

Il est sûrement possible de résoudre ce problème pour utiliser les algorithmes génétiques dans

de meilleures conditions, mais ce n’est pas l’objet de mon mémoire.

b) Choix du nombre, de la forme et de la taille des jeux :

 J’ai choisi de manipuler seulement 3 jeux car comme je l’ai dit précédemment, sinon cela

complexifie dans la convergence de l’algorithme. Quant au choix de la forme et de la taille des

jeux, j’ai remarqué en manipulant les modèles du parc que les expériences avec un parc de forme

carré et des jeux circulaires offraient des solutions intéressantes d’emboitement. En effet, si on

positionne 3 jeux circulaires dont les tailles ne permettent pas qu’ils rentrent entièrement dans

la surface du parc, les solutions au problème peuvent se regrouper par type de solution et sont

facilement exploitables pour l’analyse des résultats. C’est pourquoi, j’ai choisi d’utiliser 3 jeux

circulaires, de trois tailles fixes différentes, un petit, un moyen, un grand.

49

L’importance de l’optimisation dans l’écriture

Grasshopper offre une large palette de fonctions ou blocs qui permettent de définir notre modèle

paramétrique. Souvent, plusieurs chemins sont possibles, c’est-à-dire qu’il existe une autre

manière d’écrire le modèle sur le logiciel. Il est donc important de bien connaitre le

fonctionnement du logiciel pour réaliser le modèle le plus optimisé.

Dans le cadre de l’utilisation de solveur algorithmique, si le modèle n’est pas optimisé, il y aura

plus de calcul à chaque itération de la simulation. En conséquence, cela pourrait soit allonger le

temps de réponse algorithmique, soit entraîner l’échec du processus. Autrement dit, s’il existe

un code du modèle moins coûteux en calcul pour l’ordinateur, il est préférable de l’utiliser.

C’est pourquoi dans l’écriture du modèle final, j’ai essayé d’utiliser le moins de blocs possible

pour favoriser la qualité des solutions algorithmiques. Voici ci-dessous, figure 18, le modèle

optimisé.

Figure 18 : Algorithme du modèle final

La lecture du modèle se fait de la gauche vers la droite, des paramètres vers les objectifs. Pour

expliquer le fonctionnement de l’algorithme, je vais le découper en deux parties, la création des

jeux avec leur paramètres et l’évaluation des objectifs.

50

Explication du modèle final

Première partie, mise en place des éléments :

Figure 19 : Première partie de l’algorithme du modèle final

Comme on peut le voir dans la figure 19, j’ai commencé par créer le parc en utilisant le

composant « rectangle » en définissant une taille de 100x100 à l’aide d’un composant « slider ».

J’ai ensuite voulu créer la bordure du parc qui servira par la suite pour évaluer si les jeux sortent

du parc. Pour cela j’ai connecté mon rectangle avec l’élément « scale » qui m’a permis d’avoir

une projection plus grande de ce rectangle ; puis en connectant mon rectangle et sa projection

au composant « boundary surfaces » j’ai pu récupérer sa bordure. J’ai ensuite extrudé la bordure

d’un mètre en utilisant le composant « extrusion ».

D’un autre côté, j’ai créé les jeux en utilisant le composant « contruct point » qui permet de créer

des points en fonction des coordonnées sur X et Y que je lui donne en entrée. Pour les

coordonnées, j’ai utilisé le composant « gene pool » qui permet de configurer plusieurs sliders en

même temps. C’est justement sur ces paramètres que l’algorithme va agir. Comme je souhaitais

avoir trois jeux circulaires, j’ai construit trois points que j’ai utilisé pour être le centre des cercles

des jeux. Pour ça, j’ai connecté ces points aux composants « circle » en indiquant avec un autre

composant « gene pool » la taille des trois jeux que je souhaitais. Ensuite, j’ai extrudé les surfaces

des jeux à l’aide du composant « extrusion » comme dans le cas de la bordure du parc.

51

Deuxième partie, l’évaluation des éléments :

Figure 20 : Deuxième partie de l’algorithme du modèle final

Comme on peut le voir dans la figure 20, pour savoir si les jeux se chevauchent ou s’ils sortent du

parc, j’ai utilisé le composant « solid intersection », qui me permet d’obtenir les volumes

d’intersection entre les jeux. De la même manière, j’ai comparé les volumes des jeux avec la

bordure pour déterminer s’ils sortaient. J’ai ainsi pu récupérer les valeurs, en mètres cubes, du

volume de chevauchement des jeux entre eux et avec l’extérieur du parc. À ce moment-là, j’ai

attribué des coefficients à ces valeurs pour affiner le paramètre objectif, qui, dans ce cas, est la

somme des volumes que je viens de calculer.

Pour évaluer le deuxième objectif, j’ai créé un triangle grâce au composant « polyline » à partir du

composant « construct point », qui m’a servi à créer les centres des trois jeux. J’ai ensuite converti

cette polyline en surface à l’aide du composant « boundary surfaces », puis je l’ai extrudée d’un

mètre. Enfin, j’ai mesuré la surface, en mètres cubes, du triangle extrudé à l’aide du composant

« volume ». De cette manière, j’ai pu utiliser cette valeur en mètres cubes comme paramètre

objectif. Plus cette valeur est importante, plus les jeux sont dispersés.

52

B. Analyse des résultats

Voici ci-dessous les configurations des algorithmes génétiques Galapagos et Octopus dont je me

suis servi pour exploiter les résultats.

Ces paramètres ont été choisis pour favoriser l’exploration de l’espace des solutions. Je donne

tous ces informations sur le réglage des algorithmes génétiques pour que toute l’expérience soit

transparente et reproductible. Je ne développerai pas d’avantage sur le sujet de la configuration

des algorithmes qui ne fais pas l’objet ici de mon mémoire.

Configuration Galapagos

L'étude a été menée sur 25 générations, avec une population initiale de 100 individus et une

population par génération de 50 individus. Les paramètres spécifiques définissant l'évolution des

générations étaient les suivants :

Maintien (5 %) : Ce paramètre assure que 5 % des individus les plus performants d'une

génération sont conservés dans la suivante, ce qui permet de préserver les meilleures solutions

identifiées tout en laissant de la place pour l'exploration de nouvelles solutions.

Taux de consanguinité (70 %) : Ce taux élevé favorise le croisement entre individus ayant des

caractéristiques similaires, renforçant l'exploitation des meilleures solutions en affinant leurs

variantes.

Population initiale (100 individus) : Une taille initiale modérée permet de commencer

l'optimisation avec une diversité raisonnable, offrant un bon équilibre entre performance de

calcul et diversité génétique.

Population par génération (50 individus) : La population à chaque génération.

Configuration Octopus

L'étude a été menée sur 25 générations, avec une population initiale de 250 individus. Voici les

paramètres spécifiques définissant l'évolution des générations :

53

Taux d'élitisme (0,5) : Ce paramètre garantit que 50 % des individus les plus performants d'une

génération sont automatiquement conservés pour la génération suivante, préservant ainsi les

meilleures solutions et évitant leur perte au cours de l'évolution.

Probabilité de mutation (0,8) : Cette valeur indique qu'une mutation est appliquée à 80 % des

individus, permettant d'introduire une diversité génétique importante et de réduire le risque de

convergence prématurée vers une solution sous-optimale.

Taux de mutation (0,9) : Pour les individus sélectionnés pour la mutation, 90 % de leurs gènes

sont modifiés, favorisant une exploration plus large de l'espace des solutions possibles.

Taux de croisement (0,6) : Ce paramètre contrôle le mélange des caractéristiques entre deux

individus lors du croisement, en fixant à 60 % la proportion d'individus créés par recombinaison

des gènes parentaux.

Ces réglages permettent de maintenir un équilibre entre l'exploration de nouvelles solutions et

l'exploitation des meilleures solutions identifiées à chaque itération.

54

Le tableau des résultats

Figure 21 : Tableau des résultats

55

Classification des types de solutions

La configuration du modèle du parc pour enfants offre un nombre suffisamment petit de type de

solutions pour qu’il soit possible de les trouver manuellement. En effet, pour satisfaire le critère

de maximisation de surface de jeux dans le parc, il faut que les deux jeux de plus grande taille se

mettent sur une diagonale et que le petit jeu occupe l’un des deux angles restants. Il existe donc

4 configurations possibles des jeux de grandes tailles sur les diagonales et pour chacune d’entre

elles, il existe deux positions possibles de jeux de petite taille dans les angles restants. Il y a donc

8 solutions évidentes pour satisfaire au mieux l’objectif de maximisation de surface de jeux dans

le parc.

En utilisant ces 8 types de solutions, cela permet de définir un cadre dans l’analyse des résultats

et leur comparaison avec les solutions de l’algorithme mono-objectif Galapagos. Quant au

second critère objectif, qui est de maximiser la distance entre les centres des jeux, il est

représenté en trois catégories dans le tableau : compact, normal, dispersé. Ces catégories je les

ai choisies pour permettre une représentation de ce critère objectif.

56

Galapagos, l’algorithme génétique mono-objectif

Pour l’utilisation de l’algorithme mono objectif Galapagos, j’ai réalisé huit fois l’expérience et j’ai

obtenu à chaque fois un type de solution qui correspondait parfaitement aux attentes du critère

de maximisation de surface de jeux dans le parc mais Galapagos ne m’offrait pas d’autre choix

de type de solution. Après avoir effectué huit itérations de Galapagos, j’ai donc obtenu cinq types

de solutions qui j’ai inscrit dans le tableau des résultats.

Figure 22 : Interface Galapagos après l’arrêt de l’algorithme

La figure 22 représente l’interface d’affichage des résultats de Galapagos. On peut voir la vitesse

de convergence du modèle sur la partie de droite. Mais aussi que le graphique en dents de scie

juste en-dessous qui indique la différence génétique entre les 5 meilleurs solutions ne montre

quasiment aucune différence entre ces solutions. Autrement dit, les meilleures solutions

conservées par l’algorithme au bout d’un certain moment sont presque identiques car elles

correspondent à une valeur élevée du paramètre objectif.

Il est intéressant de noter que Galapagos ne cherche pas de juste milieu entre deux objectifs car

il ne peut contrôler qu’une valeur qui correspond au paramètre objectif. Autrement dit, si l’on a

dissimulé des objectifs en les pondérant derrière ce paramètre objectif, il ne saura pas les

différencier. Cette notion est très importante car pour choisir quel objectif va prendre le dessus

il suffit de l’indiquer dans la pondération des valeurs de deux objectifs. Dans cet exemple,

l’objectif principal est de maximiser les surfaces de jeux dans le parc et le second est d’écarter

le plus possible les centre des jeux entre eux. J’ai choisi de pondérer le critère d’écartement des

57

jeux de telle manière à ce que l’objectif des surfaces reste prioritaire. J’ai expliqué cette stratégie,

Partie III, B), dans la partie sur la définition du paramètre objectif.

Cette notion permet de comprendre le principe fondamental qui sépare ces deux algorithmes.

Galapagos se concentre sur une valeur à optimiser alors que Octopus peut différencier les

objectifs et donc apporter une exploration spécifique à chaque objectif. Ce qui se traduit dans le

graphique par un front de Pareto qui permet une exploration plus large de l’espace des solutions.

Pour trouver un type de solution Galapagos est très performant, cela permet à l’architecte d’avoir

une piste pour commencer ces recherches mais cela ne permet pas d’avoir une vision

d’ensemble sur l’éventail des solutions possibles.

58

Octopus, l’algorithme multi-objectifs

Pour regrouper les résultats dans le tableau par type de solution évidente, je me suis aidé de

l’option Parameter Diversity qui permet de trouver plus simplement les types de solutions décrit

précédemment. Cette option ne sert qu’à organiser différemment le nuage de solutions après le

travail de l’algorithme en offrant une troisième dimension dans le graphique d’affichage des

solutions. Cela permet de regrouper les solutions dont les valeurs des paramètres sont proches.

Pour rappel, les deux autres axes dans le graphique représentent les objectifs de surface des jeux

dans le parc et de dispersion de ces derniers. Après avoir parcouru les solutions du graphique,

j’ai rangé les solutions trouvées dans les 8 types de solutions déterminées précédemment.

Voici ci-dessous le graphique des solutions obtenue avec l’utilisation d’Octopus :

Figure 23 : Graphique de représentation des solutions

Les deux graphiques, figure 23, représentent le même nuage de solutions mais observé sous un

angle différent. Dans le graphique de droite, les axes horizontaux correspondent aux paramètres

objectifs et l’axe vertical à la diversité génétique. Dans le graphique de gauche en revanche, les

deux paramètres objectifs sont sur le plan frontal et cela permet d’observer ce que l’on appelle

un front de Pareto. Pour rappel, cela correspond aux solutions qui sont les meilleurs compromis

entre les objectifs. Toutes les solutions ne sont pas affichées pour ne pas perdre en lisibilité dans

l’utilisation du graphique, dans ce cas, ne sont affichées que les meilleures solutions, celles qui

appartiennent au front de Pareto. Comme le graphique est en 3 dimensions avec le paramètre de

Genetic Diversity, le front de Pareto est un peu particulier car il est n’est plus une simple courbe

mais une nappe à trois dimensions qui considère aussi les diversités génétiques comme un

59

objectif. L’option de diversité génétique permet de simplifier la phase de recherche des types de

solutions qui se fait manuellement. Pour visualiser une solution, il suffit de cliquer sur l’une

d’entre elles dans le graphique et elles s’affichent sur l’interface 3D de Rhinocéros.

Conclusion intermédiaire

Octopus se distingue par sa capacité à explorer un large spectre de solutions grâce à la prise en

compte de multiples objectifs. Cette exploration permet de générer un front de Pareto qui met en

évidence les compromis possibles entre les différents critères. Il semble que son principe de

fonctionnement soit favorable à l’exploration des types de solutions.

En revanche, Galapagos, bien qu’efficace pour optimiser un objectif unique, ne propose pas de

variété significative dans ses solutions. Les cinq itérations effectuées ont produit des résultats

similaires, se concentrant uniquement sur la meilleure valeur pour l’objectif défini. Cela limite la

capacité à explorer différentes alternatives de conception. Il semble que son intérêt dans

l’explorations des types de solutions soit moins pertinent que celui d’Octopus.

Critique de l’expérience du parc

Dans l’expérience du parc, les deux objectifs sont très liés (pour rappel : la surface des jeux dans

le parc et l’écartement des jeux entre eux). Il serait intéressant de faire une expérience avec deux

objectifs qui sont beaucoup moins en relation pour observer la réponse algorithmique, soit les

compromis trouvés.

D’un autre côté, le nombre de types de solutions lié au critère de surface était suffisamment

simple pour être identifiable manuellement donc il n’y pas eu de réel enjeu de recherche sur les

solutions obtenues.

C’est pourquoi, pour finir cette partie expérience, je vais vous présenter une expérience que j’ai

développé dans l’objectif d’aller plus loin dans la compréhension des algorithmes multi-objectif

pour l’exploration des types de solution.

60

C. Pour aller plus loin en multicritères : La grille du

jeu d’échec

Objectifs

L’objectif de cette expérience est d’utiliser l’algorithme génétique multi-objectifs Octopus dans

le cadre d’une exploration en phase de conception architecturale dont on ne connait pas le

nombre de type de solutions. Autrement dit, dans une expérience où l’on ne connait pas d’avance

les types de solutions car il n’y a pas de solution évidente. Cela permettra de compléter mon

analyse sur la capacité d’exploration des algorithmes multi-objectifs.

Pour cela j’ai choisi de configurer une expérience ou les deux critères objectifs sont

contradictoires pour avoir un front de Pareto intéressant mais aussi qu’ils n’aient aucun rapport

entre eux pour que les solutions ne soient pas évidentes.

Configuration du modèle

L’idée de cette expérience est de travailler sur l’implantation de bâtiments en plan masse sur une

grille de huit par huit suivant des règles définis par l’architecte. La surface de bâti correspond à 7

unités qui sont représentées par des carrées blancs dans la grille.

61

Première objectif

Le premier objectif correspond à une règle de voisinage entre les las cases bâties blanches. Pour

conserver une bonne illumination de la façade ainsi qu’une bonne aération, chaque case est

pondérée en fonction de son nombre d’angles partagés avec les voisins. La règle est illustrée ci-

dessous, figure 24.

En fonction du nombre d’angles que la case partage avec les autres cases voisines, un score est

attribué. Moins elle possède d’angles en commun plus son score est élevé comme on peut le voir

dans le tableau de la règle. J’ai créé l’algorithme de tel sorte qu’il soit impossible d’avoir deux

cases blanches qui se superposent.

Figure 24 : Schéma explicatif de la règle de voisinage

Octopus vise à maximiser le score de chaque case en minimisant le nombre d’angles en

commun. Je tiens à préciser qu’une multitude de règles de voisinage sont applicables et que j’ai

choisi celle-ci de manière arbitraire pour tester la réponse algorithmique. On pourrait imaginer

que l’architecte a des attentes plus précises sur les règles de voisinages qu’il souhaite mettre en

place. Par exemple, en favorisant des systèmes d’assemblage entre voisins en leur donnant un

meilleur score.

62

Pour aller plus loin dans cette expérience, on aurait pu imaginer autoriser les superpositions de

cases blanches et considérer que cela correspond à un nombre d’étages. Cela aurait donné une

proposition a trois dimensions qui peut être représentée en volume dans Rhinoceros. A partir de

règles simples comme celle du voisinage que je viens de présenter, on peut obtenir des modèles

complexes.

Il existe un jeu appelé le Jeu de la Vie, créé par John Conway, illustré ci-dessous, figure 25, dont

le principe est de simuler la naissance et la mort des cellules sur une grille à deux dimensions. À

chaque itération, les cellules peuvent naître ou disparaître en fonction de règles simples liées à

leur environnement immédiat. Ce modèle m’a inspiré pour cette seconde expérience, car il

illustre parfaitement comment des systèmes complexes peuvent émerger de conditions initiales

élémentaires. En reprenant cette logique, mon expérience vise à démontrer comment des

solutions variées et pertinentes peuvent naître à partir de règles et de contraintes bien définies,

exprimant ainsi la richesse de l’exploration algorithmique de solutions en architecture.

Figure 25 : L’interface du jeu de la vie

63

Second objectif

Le second objectif correspond à la dispersion des cases blanches. Autrement dit, si les cases

sont contenues dans un cercle de petite taille, elles sont compactes en revanche, si elles sont

contenues dans un cercle de grande taille, elles sont dispersées.

Le but de cet objectif est de rendre le système de cases blanches le plus compacte possible

sachant que cet objectif va en opposition avec celui d’attribuer un score élevé aux blanches qui

ont peu de voisins.

Pour réaliser cet objectif dans le modèle algorithmique j’ai réalisé un cercle qui contient tous les

centres des cases blanches et qui a pour centre la position moyenne de toutes les cases

blanches et pour rayon la plus grande distance entre le ce centre la et le centre de la case le plus

éloigné. Octopus a pour objectif de minimiser la taille de ce cercle.

Présentation de l’algorithme

Voici ci-dessous, figure 26, l’algorithme sur l’interface Grasshopper de l’expérience de la grille.

Figure 26 : Algorithme de l’expérience de la Grille

Je ne vais pas développer l’écriture de l’algorithme, mais j’aimerais montrer que l’on retrouve de

la même manière que pour l’algorithme précédent une configuration en deux parties : la mise en

place des éléments et l’évaluation des critères objectifs.

64

Analyse des résultats

Dans cette expérience Octopus a pour objectif de maximiser le score de la règle de voisinage et

de contenir les cases blanches. Cela se traduit dans le graphique des résultats d’Octopus par en

abscisse l’objectif lié à la règle de voisinage et en ordonnée l’objectif lié à la règle de dispersion

comme présentée ci-dessous.

Les paramètres d’Octopus utilisés sont les mêmes que pour l’expérience précédente. Je rappelle

qu’ils ont été choisis pour favoriser l’exploration des types de solutions.

Figure 27 : Graphique d’Octopus de représentation des résultats

Dans ce graphique, nous pouvons observer le front de Pareto, qui correspond aux meilleurs

compromis entre les deux objectifs. Je n’ai pas utilisé l’option Parameter Diversity dans cette

expérience car l’objectif n’était pas de faire une analyse aussi poussée que dans l’expérience

précédente. En effet pour gagner du temps dans l’analyse, je me suis concentré sur les résultats

obtenus sur le front de Pareto en deux dimensions comme vous pouvez le voir dans le graphique.

Pour aller plus loin, une analyse plus complète de l’ensemble des types de solutions serait

intéressante avec cet outil.

65

A partir des solutions de ce graphique, j’ai récupéré 9 solutions parmi celles proposées qui me

semble pertinentes pour montrer différents types de solutions obtenues par Octopus. Ces

solutions sont rangées dans un ordre précis : de la plus compacte a la plus dispersée qui

correspond à un parcours des solutions en partant d’en haut à gauche à en bas à droite de

l’illustration du graphique, figure 28.

Figure 28 : Extrait des solutions issues du front de Pareto

66

J’ai choisi d’afficher ces solutions car elles sont pour moi représentatives de l’ensemble des

solutions rencontrées. Cette matrice de solutions permet de se rendre compte de la diversité des

solutions obtenues. De la première solution choisie, la plus compacte, à la dernière, la plus

dispersée, une graduation de la dispersion des cases blanches s’effectue, avec le respect de la

règle de voisinage qui vient offrir des assemblages intéressants. La richesse de ces assemblages

intermédiaires représente tout l’intérêt de l’exploration des algorithmes génétiques

multicritères. Ainsi la première solution et la dernière sont les plus évidentes à trouver alors que

celles qui proviennent d’un compromis entre les deux critères ont des assemblages intéressants

à analyser.

Dans cette expérience, il semble exister un très grand nombre de possibilités. En effet, le nombre

de combinaisons possibles pour choisir 7 cases blanches parmi 64 cases possibles est 621

216 192. Ce nombre de possibilités d’assemblages montre bien l’incapacité pour l’architecte de

parcourir toutes les solutions possibles manuellement. De la même manière, Il semble donc

difficile de savoir si l’ensemble des types de solutions a été parcouru par l’algorithme. Malgré

cela, les 17 solutions obtenues sur le front de Pareto dans le graphique précédent donnent une

quantité raisonnable de solutions prometteuses à l’architecte. Même si l’algorithme ne parcourt

pas entièrement l’ensemble des solutions, il peut analyser un grand nombre de solutions

rapidement et les retranscrire simplement pour passer d’une quantité traitable seulement à

l’ordinateur à une quantité traitable par un humain par le biais du front de Pareto.

En effet cet inventaire de solutions offre une source de possibilités à l’architecte dans la réflexion

sur son assemblage d’espace bâti. Cela permet à l’architecte d’utiliser des types d’implantations

qui favorisent la densité et l’éclairement. La variation progressive de l’assemblage des cases

blanches dans l’illustration ci-dessus permet une variété de choix importante pour choisir

exactement ce qui correspond au besoin du projet de l’architecte.

67

V. Conclusion

Conclusion sur cette méthode d’exploration

Pour réussir cette méthode d'exploration, il est essentiel de définir avec précision les paramètres,

les contraintes et les objectifs qui structureront le modèle numérique. La qualité des réponses

générées par l'algorithme dépend directement de ces choix. Il est également crucial de trouver

un équilibre en offrant suffisamment de liberté à l'outil pour explorer des solutions intéressantes,

tout en évitant de le submerger par un éventail excessif de possibilités.

Dans cette phase d'exploration, les algorithmes multi-objectifs se révèlent plus adaptés que les

algorithmes mono-objectif. En effet, ils permettent de générer des compromis pertinents entre

différents objectifs, enrichissant ainsi le processus de conception. De plus, leur représentation

graphique des solutions, souvent sous forme de diagrammes, simplifie le travail de sélection

pour l'architecte, rendant les résultats plus exploitables et visuellement clairs.

Pistes pour le futur

Une des pistes d’amélioration pour le futur est l’intégration de critères subjectifs, comme

l’esthétique ou la symbolique, au sein du processus algorithmique. Ces aspects, difficilement

quantifiables, pourraient être pris en compte grâce aux réseaux de neurones. Ces derniers, en

étant entraînés sur des ensembles de données architecturales incluant des évaluations

humaines, pourraient apprendre à reconnaître et à prioriser des qualités subjectives dans les

solutions générées.

Cette intégration pourrait transformer la manière dont les algorithmes participent au processus

de création en architecture. Par exemple, les réseaux de neurones pourraient identifier des

tendances esthétiques en fonction de contextes culturels ou historiques spécifiques, ou encore

proposer des solutions équilibrant harmonie visuelle et contraintes techniques. En interagissant

de manière itérative avec l’architecte, ces outils offriraient non seulement des solutions

optimisées mais aussi enrichies d’une dimension qualitative, laissant à l’architecte la possibilité

d’affiner ou de réorienter les propositions selon ses intentions. Cela permettrait de dépasser les

limites actuelles des algorithmes génétiques, souvent cantonnés à des critères purement

quantitatifs, pour ouvrir la voie à une conception véritablement hybride.

68

Bibliographie

Esmaeilian Toussi, H. (2020). L'application des approches évolutionnaires, génératives et

hybrides dans l'optimisation du design en architecture. Journal de la Faculté d'Architecture, 2(2),

1-20. Récupéré du Département d'Architecture, Université NEU.

Marin, P. (2010). Exploration des mécanismes évolutionnaires appliqués à la conception

architecturale : mise en œuvre d’un algorithme génétique guidé par les qualités solaires passives

de l’enveloppe. Thèse de doctorat, Institut National Polytechnique de Lorraine, École Nationale

Supérieure d’Architecture de Nancy.

Khabazi, Z. (2012). Generative Algorithms : using Grasshopper. Livre publié pour l'apprentissage

des techniques de conception algorithmique à l'aide de Grasshopper, Morphogenesism.

Terzidis, K. (2006). Algorithmic Architecture. Livre, Architectural Press, Elsevier. Ce livre explore

les aspects théoriques et philosophiques de l'architecture algorithmique, en discutant le rôle des

algorithmes dans le processus de conception et la relation entre l'humain et l'ordinateur dans le

domaine de l'architecture.

Terzidis, K. (2015). Permutation Design : Buildings, Texts, and Contexts. Livre, Routledge. Cet

ouvrage explore les théories, techniques et exemples de la conception par permutation dans le

design, en mettant l'accent sur l'utilisation de la puissance computationnelle pour analyser et

optimiser les solutions architecturales.

Dissaux, T. (2017). Optimisation en conception architecturale : Les alternatives aux algorithmes

génétiques. Travail de fin d’études, Université de Liège, Faculté d’Architecture, sous la direction

de Sylvie Jancart.

Barreto, G. (2018). Generative Design for Building Information Modeling. Résumé étendu,

Instituto Superior Técnico. Ce document explore l'application de la conception générative au

BIM, en utilisant l'environnement Rosetta et ArchiCAD.

Rohrmann, J. (2019). Design Optimization in Early Project Stages : A Generative Design Approach

to Project Development. Thèse de Master, iniversité Technique de Munich, Faculté de Génie Civil,

Géosciences et Ingénierie Environnementale.

Couwenbergh, J.-P., & Gallas, M.-A. (2021). Conception paramétrique avec Rhino et Grasshopper

: Applications en architecture, ingénierie et design. Livre, Éditions Eyrolles. Cet ouvrage présente

les bases de la conception paramétrique, les outils Rhino/Grasshopper, et des études de cas

pour illustrer les applications pratiques.

69

Stals, A., Elsen, C., & Jancart, S. (2016). Ruptures et démesures de l’architecture non standard à

l’ère du numérique : la paramétrisation comme outil de réconciliation. Article scientifique,

Université de Liège.

Ben Abdallah, Y. (2017). Conception architecturale et modélisation paramétrique. Mémoire,

École Nationale Supérieure d'Architecture de Toulouse.

De Beusscher, G., & Rogeau, N. (2017). Conception paramétrique de structures architecturales

en bois drone-compatibles. Mémoire, Université Catholique de Louvain, École Polytechnique de

Louvain.

Hesselgren, L., Kilian, A., Malek, S., Olsson, K.-G., & Sorkine-Hornung, O. (2018). Advances in

Architectural Geometry. Actes de conférence, Klein Publishing GmbH. Cet ouvrage rassemble les

contributions sur les techniques computationnelles et géométriques dans l'architecture,

présentées lors de la conférence AAG 2018.

Fabbri, R., Jiricna, E., Palazetti, C., & Wells, M. (2017). The Miles Stair in Somerset House. Actes

du symposium international sur les BFUP, Montpellier, France. Cet article traite de la conception

et de la réalisation de l'escalier hélicoïdal en BFUP au Somerset House.

70

Table des figures

Figure 1 : Exemple de programmation d’une ligne sur Grasshopper

Figure 2 : Schéma d’imbrication des différents outils

Figure 3 : Illustration du processus de conception, source : InfAR (Bauhaus-Universität)

Figure 4 : Illustration de l’expérience de Reinhard König et Sven Schneider

Figure 5 : Illustration des espaces de solutions, source InfAR (Bauhaus-Universität)

Figure 6 : « Distance between buildings based on lighting » de Gropius en 1931

Figure 7 : Source InfAR (Bauhaus-Universität)

Figure 8 : L’interface Galapagos avec sa solution

Figure 9 : Graphique d’Octopus avec un zoom sur deux solutions

Figure 10 : Exemples de paysages de solutions décrits par D.Rutten en 2014

Figure 11 : Parque de las Heras, Buenos Aires, Argentina

Figure 12 : Extrait du modèle paramétrique du parc pour enfant

Figure 13 : Interface Grasshopper avec l’ensemble des versions du modèle du parc

Figure 14 : Interface Rhinoceros des premières versions du modèle

Figure 15 : Interface Grasshopper des modèles de la deuxième catégorie basé sur les volumes

Figure 16 : Géométries des modèles du parc pour enfant de la deuxième version

Figure 17 : Algorithme avec modification du nombre de jeu et sa géométrie

Figure 18 : Algorithme du modèle final

Figure 19 : Première partie de l’algorithme du modèle final

Figure 20 : Deuxième partie de l’algorithme du modèle final

Figure 21 : Tableau des résultats

Figure 22 : Interface Galapagos après l’arrêt de l’algorithme

Figure 23 : Graphique de représentation des solutions

Figure 24 : Schéma explicatif de la règle de voisinage

Figure 25 : L’interface du jeu de la vie

Figure 26 : Algorithme de l’expérience de la Grille

Figure 27 : Graphique d’Octopus de représentation des résultats

Figure 28 : Extrait des solutions issues du front de Pareto

