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Résumé

A l'ére de lintelligence artificielle, ou les pratiques architecturales évoluent rapidement, cette
recherche explore l'utilisation des algorithmes génétiques comme outil d'assistance aux
architectes dans la phase initiale de conception. En se concentrant sur le processus de
conception paramétrique, cette étude évalue les capacités des algorithmes génétiques mono-

objectif (Galapagos) et multi-objectifs (Octopus) a enrichir 'exploration des types de solutions.

La méthodologie repose sur une approche expérimentale, utilisant un modele paramétrique
simplifié d’un parc pour enfants afin de tester les performances de ces algorithmes. L’étude
examine leur capacité a générer et évaluer des solutions variées en fonction d’objectifs et de
contraintes prédéfinis. Les résultats montrent que, bien que les algorithmes mono-objectif
optimisent efficacement un parametre unique, les algorithmes multi-objectifs offrent un éventail

plus large de solutions, favorisant l'exploration des types de solutions.

Cette recherche démontre que les algorithmes multi-objectifs sont plus adaptés que les
algorithmes mono-objectif a l'exploration des types de solutions en architecture, rendant le

processus de conception plus riche et stimulant.
Mots-clés

Processus de conception, Outils paramétriques, Parametres, objectifs de performance, Phase
de conception, Expériences, Plug In Grasshopper, Solveur Algorithmique, algorithmes

évolutionnaire, algorithmes génétiques, Mono-objectif, Multi-objectif.



Abstract

In the era of artificial intelligence, where architectural practices are rapidly evolving, thisresearch
explores the use of genetic algorithms as a tool to assist architects in the early stages of design.
Focusing on the parametric design process, this study evaluates the capabilities of mono-
objective (Galapagos) and multi-objective (Octopus) genetic algorithms to enhance the

exploration of solution types.

The methodology is based on an experimental approach, using a simplified parametric model of
a children’s park to test the performance of these algorithms. The study examines their ability to
generate and evaluate diverse solutions based on predefined objectives and constraints. Results
show that while mono-objective algorithms efficiently optimize a single parameter, multi-
objective algorithms provide a broader range of solutions, fostering the exploration of solution

types.

This research demonstrates that multi-objective algorithms are better suited than mono-
objective algorithms for exploring solution types in architecture, making the design processricher

and more stimulating.
Keywords

Design process, Parametric tools, Parameters, Performance objectives, Design phase,
Experiments, Grasshopper plugin, Algorithmic solver, Evolutionary algorithms, Genetic

algorithms, Single-objective, Multi-objective.
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|. Introduction

Contexte

A lére de lintelligence artificielle, le role de l'architecte est en pleine évolution. Les outils
numériques occupent une place de plus en plus importante dans la réalisation d’un projet
d’architecture. Aujourd’hui, ils sont principalement utilisés comme moyen de représentation du
projet, mais d’autres formes de conception sont envisageables. L’'une d’entre elles s’appelle la

conception paramétrique.

La conception paramétrique est une méthode de conception assistée par ordinateur ou les
dimensions et les relations géométriques d'un objet sont définies par des parametres variables.
Ces parametres peuvent étre ajustés pour modifier la conception de maniére flexible et

dynamique, sans nécessiter de redessiner manuellement chaque élément.

L'émergence de la conception paramétrique est étroitement liée au développement de logiciels
comme Rhinoceros et Revit. Rhinoceros, est un outil de modélisation 3D qui offre une grande
flexibilité dans la création de formes complexes. Il est compatible avec le plugin Grasshopper qui
permet de développer des algorithmes visuels pour la conception paramétrique. Grace a lui, les
architectes peuvent définir des parametres et des relations géométriques qui adaptent
automatiquement le modele en fonction des changements apportés aux parametres d'entrée.
D’apres une étude de secteur réalisée en 2022 «La profession d’architecte en Europe », la

majorité des praticiens de la conception paramétrique travaillent sur le logiciel Grasshopper.

C'est dans ce cadre que des solveurs algorithmiques® ont été développés. Parmi eux, il y a les
algorithmes génétiques qui permettent d'explorer et optimiser les solutions conceptuelles a
partir de la paramétrisation du modele. Ces derniers sont divisés en deux familles, les
algorithmes génétiques mono-objectif qui ne prennent en compte qu’un seul parametre objectif

et les algorithmes génétiques multi-objectifs qui en considérent plusieurs.

" Un solveur algorithmique est un programme informatique congu pour résoudre automatiquement des problemes
complexes en utilisant des algorithmes, notamment dans les domaines de l'optimisation et de la modélisation
mathématique.



Problématique

Ce mémoire s’intéresse a la phase de conception du projet d'architecture, ou le travail de
l’architecte progresse par divers essais, que nous appellerons « essai-erreur » par corrélation
avec le vocabulaire paramétrique. L’architecte, en quéte du design idéal, explore un maximum
de possibilités conceptuelles (géométries, formes) pour choisir celle qui correspond le mieux aux
criteres d’évaluation qu’il s’est fixés. Habituellement, ce processus est effectué manuellement,
ce qui peut prendre beaucoup de temps. Cela oblige 'architecte a limiter ses recherches et a se
contenter de la solution la plus intéressante trouvée, sans savoir s’il existe une meilleure
alternative. Si Uarchitecte pouvait commencer ce travail avec un éventail de types de solutions a

sa disposition, cela pourrait stimuler sa créativité et accélérer le processus de conception.

Comment utiliser les algorithmes génétiques dans le processus de conception
architecturale pour explorer différentes options de solutions ? Et parmi eux, quelle
approche est la plus efficace : les algorithmes a objectif unique ou les algorithmes multi-

objectifs ?
Objectif

L'objectif est d'utiliser les algorithmes génétiques de Grasshopper pour proposer un grand
nombre de types de solutions au début de la phase de conception du projet, enrichissant et

facilitant ainsi le processus de décision de l'architecte.

Hypothése

L’hypothése de ce mémoire est que les algorithmes génétiques multi-objectifs sont plus adaptés
pour explorer les différentes options de solutions dans le processus de conception que les
algorithmes mono-objectifs. C’est a travers ’étude d’expériences que le mémoire apportera des

éléments de réponses afin de vérifier la véracité de ce postulat.
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Manque de recherche

L’architecte Hoda Esmaeilian, qui travaille au département d'architecture de l'université NEU
situé a Chypre, a publié un article qui recense et classifie tous les articles d'architecture entre
2014 et 2020 s'intéressant aux méthodes d'exploration architecturale s'appuyant sur les
algorithmes évolutionnaires’. Elle y reléve un manque de recherche sur 'usage des algorithmes

multi-objectifs au service de Uexploration des solutions conceptuelles.
Voici un extrait de Uarticle :

«La plupart des études dans cette catégorie manquent d'une vision holistique des divers
problémes de conception impliqués, examinant principalement l'algorithme évolutionnaire dans
des processus d'optimisation basés sur la performance avec peu de variables. Il existe une
divergence de points de vue concernant l'efficacité des algorithmes génétiques (GA) dans la

résolution des problemes de conception multi-objectifs. »

Le manque de recherches sur l'utilisation des algorithmes multi-objectifs pour l'exploration des

solutions conceptuelles est l'une des raisons qui m'ont amené a travailler sur ce sujet.

' Les algorithmes évolutionnaires, qui englobent notamment les algorithmes génétiques, sont des techniques
d'optimisation basées sur les principes de l'évolution naturelle. Ces concepts seront expliqués plus loin.

11



lI. Etatde lart

Depuis plusieurs années, les architectes s'intéressent au design computationnel’. Notamment,
Kostas Terzidis, architecte et professeur d’architecture a Uuniversité d’Harvard, explore dans son
travail les méthodes algorithmiques, les types de solutions conceptuelles par le principe de
permutation. Dans son ouvrage, « Permutation Design », il explique comment Uarchitecte peut se
servir de la puissance de calcul des ordinateurs a travers des algorithmes simples pour explorer

le champ des possibilités de composition spatiale en plan.

' Le design computationnel en architecture, apparu dans les années 1960, utilise des outils informatiques pour générer et
optimiser des solutions de conception, permettant aux architectes d'explorer rapidement des options en réponse a des
contraintes complexes.

12



A. Introduction a la conception paramétrique

Ilest important de définir le terme paramétrique dans le concept de « conception paramétrique »
pour comprendre la différence entre les logiciels de 3D comme Revit et les logiciels de
conception paramétrigue comme Grasshopper sur Uinterface Rhinoceros. Aujourd'hui, guand on
veut parler de conception paramétrique, la plupart des gens utilisent le terme d’architecture
paramétrique, qui en réalité n’a pas de sens. Le résultat architectural n’est pas paramétrique
mais c’est sa conception qui est réalisée au travers d’une approche paramétrique. Quand on
parle de conception paramétrique, on fait référence a la programmation visuelle, comme le
propose le plug-in Grasshopper. Les logiciels comme Revit et Archicad utilisent une approche
différente dans la construction du modeéle. Cette approche est basée sur la paramétrisation de
familles d’éléments que 'on assemble ensuite dans le modele 3D. L’ensemble du modele ne
possede pas cette capacité de transformation qu’offre le modele paramétrique. Il existe sur Revit
un plug In nommé Dynamo qui permet de faire de la conception, d’une fagon similaire a celle de

Grasshopper sur Rhinoceros.

Cette méthode de paramétrisation permet une grande flexibilité du modele 3D en offrant la
possibilité de faire varier chacun des parameétres a tout instant. Elle permet aussi de tirer parti de
la puissance de calcul de Uordinateur pour alimenter cette recherche, notamment par la

simulation et Uoptimisation algorithmique, qui fera plus particulierement 'objet de ce mémoire.

Mario Carpo, théoricien de 'architecture, s'intéressant aux nouveaux outils numériques et a leur

impact sur l'architecture a écrit dans son livre, « The Alphabet and the Algorithm » :

« L’un des principaux avantages des modéles paramétriques est qu’ils peuvent étre facilement
transformés, produisant ainsi des variations de différentes configurations avec les mémes

éléments géométriques. »

Philippe Marin, architecte francais, explique le processus de conception paramétrique, dans sa
thése sur Uexploration des mécanismes évolutionnaires appliqués a la conception

architecturale:

« Le processus paramétrique s'intéresse a la définition d'un ensemble de paramétres qui
influencent la forme. La forme finale n'est pas au centre de la recherche, elle est induite. La
modification de la valeur des parameétres engendre non pas un objet, mais un ensemble de

variations. Le processus n'est pas simplement fondé sur des valeurs métriques, mais plutét sur
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l'ensemble des relations entre les objets qui composent la forme. Une modification d'un élément

entraine une transformation du systéme dans son intégralité. »

Les logiciels d’algorithmes visuels 3D

Aujourd’hui, les deux méthodes de conception paramétrique les plus utilisées sont le plug-in
Grasshopper, disponible sur le logiciel 3D Rhinoceros, et le plug-in Dynamo, disponible sur le
logiciel Revit. Ces deux outils fonctionnent de maniére similaire. Dans ce mémoire, nous allons
nous concentrer sur Grasshopper, qui est le plus répandu et qui offre un large choix de plug-ins
additionnels, comme Octopus, un solveur algorithmique génétique multi-objectifs qui
constituera en partie 'objet de ce mémoire. Pour ceux qui ne connaissent pas cet outil, je vais

ensuite expliquer son fonctionnement ainsi que celui de ses algorithmes.

La conception paramétrique s’appuie sur un environnement de programmation visuelle qui
differe dans la forme a la programmation scriptée traditionnelle. Elle utilise des fonctions
représentées par des nceuds : chaque noeud regoit des données en entrée et produit une sortie.
Ces nceuds, semblables a des blocs sont connectés entre eux par des fils. Cet ensemble de
nceuds interconnectés s’appelle un modele. Cet environnement est connecté a une interface 3D

ou les éléments géométriques sont dessinés. Le modele 3D est 'image du modele paramétrique.

Les composants initiaux, points, lighes ou surfaces, constituent par leurs assemblages et leurs
mises en relation les hypothéses du projet. La modification de 'un des paramétres entraine la

modification du systeme dans son ensemble.
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Figure 1: Exemple de programmation d’une ligne sur Grasshopper

Dans ’exemple de la figure 1, on peut voir comment réaliser un segment dans Grasshopper. Pour
créer un segment dans ’espace, on a besoin de connaitre seulement les coordonnées spatiales
des deux extrémités. Pour cela, on crée deux points a l’aide des blocs « Construct Point », que
l’'on positionne dans 'espace grace aux coordonnées (X, Y, Z) qui proviennent des « sliders »
(curseurs définissant les valeurs des parametres d’entrée) et que 'on peut faire varier a tout

moment. Ensuite, on connecte les deux points au bloc « Line », qui permet d’obtenir le segment.

De cette maniére on créer petit a petit le modele 3D. L’avantage est qu’il est tres facile de modifier
des parametres qui régissent le modeéle a tout instant. Le modele n’est pas juste la succession

de trait ou de mur mais bien une structure interconnectée, flexible et homogene.

Outils a la simulation : Les algorithmes génétiques

En conception paramétrique, les modeles sont créés sous forme de scripts visuels, ce qui offre
un environnement propice aux développements de logiciels complémentaires (plug-ins) qui
peuvent facilement venir se greffer. En effet, la conception paramétrique permet de créer un
modeéle basé sur des regles mathématiques, ce qui en fait une structure organisée et cohérente.
Grace a ce modele programmatique, les éléments suivent des relations définies qui favorise
l'utilisation de plug-in. En effet les relations mathématiques sous-jacentes au modele
garantissent que chaque modification apportée dans une partie du script se répercute de

maniere logique et automatisée sur ’ensemble du modele.
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De cette maniere, on ne se contente plus simplement de dessiner le modele, on utilise le logiciel
pour concevoir. En effet, pour aller plus loin dans la conception, il est possible d’utiliser des outils
algorithmiques qui manipulent les parameétres du modele, afin d’optimiser un ou plusieurs
criteres définis par U'utilisateur dans le cadre de la simulation. Il existe un grand nombre d’outils
disponibles avec différentes approches techniques. Nous allons nous intéresser en particulier a
une méthode tres utilisée : les algorithmes génétiques.

Pour mieux comprendre Uimbrication de tous les outils dont je viens de parler, voici ci-dessous,

sur la figure 2, un schéma qui résume le cheminement jusqu’a Uutilisation d’algorithmes
génétiques.
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{RR)MMOO)
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— :
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Figure 2 : Schéma d’imbrication des différents outils

Les algorithmes génétiques aident les architectes a explorer et améliorer différentes options de
conception. Leur fonctionnement imite le processus de la sélection naturelle : ils génerent de
nombreuses versions d'un design et évaluent leur performance selon des criteres définis et
conservent les meilleurs résultats. Cela permet d'explorer rapidement un large éventail de
possibilités et d'identifier des solutions innovantes et optimisées que les méthodes

traditionnelles pourraient manquer.
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Cette approche, inspirée des principes de la sélection naturelle et de la génétique est
particulierement efficace pour résoudre des problemes complexes de conception ou plusieurs
objectifs doivent étre prise en compte. Aujourd’hui, en architecture, ces algorithmes sont
principalement utilisés pour optimiser des criteres tels que lefficacité énergétique,
I’ensoleillement et la performance structurelle mais on peut imaginer d’autres usages comme on

le verra dans la suite de ce mémoire.

Les deux solveurs algorithmiques les plus connus et les plus utilisés en conception paramétrique
sont Galapagos et Octopus. Les solveurs algorithmiques sont des applications qui utilisent des
algorithmes pour fonctionner ; ils constituent Uinterface entre le logiciel et algorithme. Pour
simplifier, j’utiliserai de la méme maniere dans le reste de ce mémoire les termes solveur
algorithmique et algorithme génétique. Galapagos, est un solveur d'optimisation mono-objectif.
Octopus, est un solveur d'optimisation multi-objectifs qui permet de considérer plusieurs
objectifs. Galapagos est intégré a Grasshopper tandis que Octopus est un plug-in a télécharger
puis a installer sur Grasshopper. Ce sont ces deux outils algorithmiques qui seront utilisés dans

les expériences.

17



B. La conception algorithmique

La théorie du design

John Maeda, auteur américain, connu pour son travail a l'intersection de l'art, du design et de la

technologie a dit lors d’une interview :
« Le design est une solution a un probléme ; l'art est une question a un probléme. »

Le processus de conception des humains semble étre un enchainement de phases ou l'esprit
humain recoit, analyse et évalue les informations pour générer des réponses. Ce cheminement,
illustré ci-dessous, sur la figure 3, par limage d'un cerveau qui traite les données, montre

comment les informations pergues sont transformées en solutions par notre cerveau.

A
g
i
:

Analysic

A Cynthesis

ENMM ) OPT"‘IVM

Figure 3 : lllustration du processus de conception, source : InfAR (Bauhaus-Universitat)
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En architecture ou en design, la distinction entre fonction et forme est cruciale dans le processus
de conception : la fonction définit ce que 'objet doit accomplir et les qualités qu'il doit posséder,
tandis que la forme exprime sa géométrie et sa matérialité. Ce processus implique de générer
une forme a partir de la fonction définie et d'évaluer cette forme pour vérifier si elle répond aux
criteres établis. Cependant, ce parcours n'est pas linéaire ; il repose sur un systéeme itératif
d'essais et d'erreurs. Les multiples fonctions a satisfaire sont souvent ambigués et sujettes a des
changements, tandis que certains critéres sont difficiles a quantifier et peuvent méme étre

contradictoires.

Durant cette phase derecherche, l’éventail des possibilités formelles esttrés large, il est presque

impossible de trouver la solution qui puisse satisfaire pleinement la fonction du premier coup.

Pour illustrer ce probleme, Reinhard Konig et Sven Schneider, deux professeurs a l'université
Bauhaus de Weimar en Allemagne, ont imaginé une expérience pour démontrer l'immensité de
l'espace des possibilités qu'offre l'exploration des solutions. Ils ont utilisé une photo aérienne
d'une ville composée de 6 400 pixels, chaque pixel pouvant prendre 256 x 256 x 256, soit 16 777
216 couleurs possibles. L'objectif était de retrouver l'image de la ville en modifiant aléatoirement

les pixels. Cette expérience est illustrée sur la figure 4.

Figure 4 : Illlustration de l’expérience de Reinhard Kénig et Sven Schneider

Il existe ainsi 16 777 216%% images différentes réalisables en modifiant les couleurs de chaque
pixel. Autrement dit, il est pratiquement impossible de retrouver l'image d'origine de cette
maniére, car le nombre de possibilités est bien trop grand. Cette expérience montre que, pour
certains processus de conception, il est nécessaire d'adopter une forme de raisonnement afin

de réduire l'ensemble des possibilités.
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L’ensemble des possibilités, appelé "set of all possibilities", est immense. Il englobe a la fois

’ensemble des solutions intéressantes, désigné par "performance space" et 'ensemble des

possibilités que le designer va étudier, désigné par "design space". Ces deux sous-ensembles

partagent 'ensemble des solutions, nommeé "solution space". Pour passer de '’ensemble des

possibilités au "design space”, les concepteurs utilisent la méthode de l'élimination. Cela

consiste a réduire drastiguement le champ des possibilités en formulant des hypotheses de

travail. Ce travailinitial, qui consiste a établir le probleme conceptuel, est crucial. La figure 5, ci-

dessous permet de comprendre les relations entre ces espaces.

L ————— - — -

Performance Space
= Set of forms, that exhibit demanded functions*

“0ls0 Yrmed rogquineints / parformances

Solution Space

= Set of generatable forms, that exhibit the
demanded functions

= Set of all forms, that the designer can create*
Design Space *with his sot of generative methods

. ——— < G e T

Figure 5 : lllustration des espaces de solutions, source InfAR (Bauhaus-Universitat)
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Figure 6 : « Distance between buildings based on lighting » de Gropius en 1931

En 1931, Walter Gropius propose une théorie sur la relation entre la distance qui sépare les

batiments et leur hauteur pour un ensoleillement optimal, qui est illustrée sur la figure 6.

Cette théorie utilise une regle mathématique simple qui lie la hauteur d’un batiment a la distance
avec son voisin par un coefficient. Cette relation géométrique pourrait facilement étre traduite a

un algorithme pour trouver les solutions.

Cet exemple peut nous amener a penser qu’une partie du processus de conception des
architectes pourrait se traduire mathématiquement par lutilisation d'une structure
conditionnelle if/else (si/sinon), en fonction du respect des critéres d'évaluation, dans ce cas, la

distance entre les batiments.

En pratique, cela est plus complexe, car '’ensemble du processus conceptuel n’est pas
explicitement interprétable sous la forme de criteres d'évaluation et donc de structures
conditionnelles if/else. De plus, pour représenter 'ensemble de ce processus, il faudrait mettre
alasuite untrés grand nombre de blocs if/else au sein de l'algorithme. Il semble donc tres difficile

de résoudre un probleéme conceptuel de cette maniere.

Pour améliorer la performance du modele, on peut utiliser une approche un peu différente qui
consiste arenvoyer l'élément évalué au bloc précédent tant qu'il n'est pas satisfaisant. On passe
alors d’une méthode itérative a une méthode récursive qui s’apparente a une boucle. Dans ce
cas, un bloc est dit génératif car il est capable de créer des solutions en fonction des réponses

du modele d'évaluation et un bloc évalue les solutions jusqu’a validation des critéres d’arréts.
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Generative Algorithm 2> =
(is ideally able to
produce a large variety)

else

Evaluation Model >
(is ideally able to
evaluate the solution
candidates regarding as
many criteria as possible)

then

Figure 7 : Source InfAR (Bauhaus-Universitét)

Dans la figure 7, le "design space" correspond aux modeles générés par le "generative algorithm"
et le "performance space" correspond a tous les modeles acceptés par le "evaluation model".

Pour créer le "generative algorithm" il existe plusieurs stratégies.

Parmi elles, la stratégie la plus connue et plus largement utilisée est celle des algorithmes
génétiques (AG), comme Galapagos et Octopus, qui permettent d'optimiser des solutions en
explorant un large éventail de possibilités, c’est celle-la qui fera 'objet de cette recherche. Il en
existe d’autres moins utilisées comme les réseaux de neurones artificiels (ANN), utilisés pour
prédire et modéliser des performances complexes ou encore les algorithmes inspirés des
colonies de fourmis (ACO), qui offrent des approches spécifiques pour l'optimisation énergétique

et les circulations dans les batiments et bien d’autres.
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C. Les algorithmes génétiques

Le processus génétique

L'évolution génétique est un processus d'optimisation inspiré par la théorie de l'évolution
naturelle de Charles Darwin. De nombreux chercheurs se sont intéressés a appliquer ce
processus a des logiciels pour recréer la théorie de U’évolution dans un univers numérique,

comme 'a montré Karl Sims en 1994 avec son travail "Evolving Creatures".

Le principe est que les meilleurs éléments d’une population permettent de générer la prochaine
génération. Une premiére population d’individus est créée de maniere aléatoire pour former la
population parentale de la premiére génération. Ensuite, la qualité de chaque individu est
évaluée face aux critéres objectifs. Si l'une des solutions satisfait un critére d'arrét, l’algorithme

se termine. Sinon, les principes évolutifs de sélection, reproduction et mutation sont appliqués.
Voici les différentes phases du fonctionnement d’un algorithme génétique :

Initialisation : Une population initiale de solutions est générée aléatoirement.

Evaluation : Chaque solution est évaluée en fonction des critéres.

Sélection : Les solutions les plus adaptées sont sélectionnées pour se reproduire.

Croisement : Les solutions sélectionnées échangent une partie de leur ADN (paramétres

d’entrés) pour créer de nouvelles solutions (enfants).

Mutation : Des modifications aléatoires sont apportées aux nouvelles solutions pour maintenir

la diversité génétique.

Nouvelle Génération : Les nouvelles solutions remplacent les anciennes et le processus se
répete jusqu'a ce qu'un critére d'arrét soit atteint ou que lUutilisateur décide d’arréter la
simulation (comme un nombre maximal de générations ou une convergence vers une solution

optimale).

Les algorithmes génétiques font partie de la famille des algorithmes évolutionnaires, qui
appliquent le principe de la loi de U'évolution, avec la particularité d’utiliser un systeme génétique
dans le processus. Les algorithmes génétiques sont utilisés dans de nombreux domaines,

notamment en architecture. Ils sont trés polyvalents, simples a mettre en place et tres efficaces.
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Leur utilisation dans le domaine de Uoptimisation est ancienne, par exemple, John Holland’, en
1975, dans son ouvrage «Adaptation in Natural and Artificial Systems » décrit les bases

théoriques et les premiéres applications des algorithmes génétiques.

Les méthodes analytiques classiques ne sont pas tres adaptées aux problemes non linéaires,
discontinus, voire chaotiques, que l'on peut rencontrer en architecture. Les méthodes

évolutionnaires sont beaucoup plus performantes dans ce contexte.

La créativité algorithmique

L’utilisation de ces algorithmes sur des problemes complexes (non linéaire), comme c’est le cas
en architecture, souléve la question de la créativité algorithmique et de son importance. Le
résultat obtenu par Ualgorithme peut étre considéré comme créatif ou innovant, Il est donc

important de définir et de développer le concept de « créativité algorithmique ».

Parmi les chercheurs qui ont travaillé sur ce sujet il y a notamment, Philippe Marin, dans son
article sur Exploration des mécanismes évolutionnaires appliqués a la conception architecturale
qui distingue trois formes (niveaux) de créativité : d’une part, 'algorithme et Uordinateur qui
peuvent avoir une capacité créative, d’autre part la solution produite qui peut étre considérée

comme créative et enfin le dispositif qui peut assister l’activité créative du concepteur.

D’un autre c6té, Gero J. S., architecte et chercheur spécialiste sur les outils numériques en
architecture, considere que U'ordinateur congoit de maniere créative, s’il est capable de faire
évoluer a la fois la solution dans 'univers des possibles et '’espace des solutions lui-méme,
c’est-a-dire Uespace de recherche. Pour lui, si la solution générée présente un caractere de

nouveauté ou d’innovation alors le produit du processus peut étre qualifié de créatif.

Beaucoup de chercheurs ont réalisé des travaux sur le sujet, mais ce n'est pas l'objectif de mon
meémoire, donc je ne vais pas le développer davantage. Néanmoins, j'aimerais donner mon
opinion : il me semble que l'algorithme ne peut fournir des résultats intéressants que si le
concepteur l'a mis dans les bonnes conditions. Autrement dit, le r6le du concepteur dans la mise
en place des conditions de lalgorithme compte au moins tout autant que le travail de

l'algorithme sur la notion de « créativité » des solutions.

"John Holland, chercheur américain, spécialisé dans les algorithmes génétiques.
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Les algorithmes génétiques en architecture

John Frazer (1995) a été parmi les premiers chercheurs a utiliser les méthodes évolutives dans le
design, notamment en architecture et en conception structurelle et a étudier l'aspect génératif

des algorithmes évolutifs.

Il existe deux familles d'algorithmes génétiques, les mono-objectif et les multi-objectifs. Les
algorithmes mono-objectifs cherchent a optimiser un critere d’évaluation, ce qui peut limiter la
diversité des solutions générées mais offrir des résultats performants en optimisation avec un
seul critere. En revanche, les algorithmes multi-objectifs, comme Octopus, permettent d'évaluer
simultanément plusieurs criteres, offrant ainsi une exploration plus riche et une capacité accrue
a générer des solutions variées, ce qui les rend particulierement pertinents pour la conception

architecturale.

Nous allons étudier les deux algorithmes génétiques les plus connues et utilisés dans leur famille

respective, Galapagos et Octopus.

Mono-objectif

L'un des algorithmes génétiques les plus utilisés en architecture paramétrique est Galapagos. Il
estintégré a Grasshopper sur le logiciel Rhinoceros. C’est un algorithme trés simple d’utilisation
qui permet d’optimiser des solutions en fonction d’un seul objectif, en ajustant les paramétres

d’entrée d’un modele pour atteindre une solution optimale.

Dans le cadre de la prise en main de cet outil pour réaliser ce mémoire, j’ai configuré un modele
paramétrique permettant de tester son efficacité a la résolution d’un probléme conceptuel

n’ayant gu’une seule solution non évidente.

L’objectif de cet exercice est de trouver le plus grand rectangle dans une surface plane
quelconque. J’ai donc transposé ce probleme sur la toile de Grasshopper en réalisant un modele
paramétrique et en configurant Galapagos pour maximiser la surface du rectangle. Il est
important de préciser que la qualité de la réponse algorithmique dépend de la bonne
configuration du modele paramétrique et qu’il existe plusieurs fagons de réaliser le modele. Si
l'algorithme est rapide pour tester chaque génération du modeéle dans son calcul et qu’il semble

converger vers un groupe solution, alors la configuration est satisfaisante.
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Sur lillustration ci-dessous, figure 8, on peut voir a droite, U'interface de Galapagos et a gauche

la meilleure solution proposée par l'algorithme.
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Figure 8: L’interface Galapagos avec sa solution

Le résultat semble tres satisfaisant, car l'algorithme génétique Galapagos converge bien vers la
solution idéale. De plus, il l'a fait tres rapidement, en seulement quelques secondes, car c'est
pour ce type de probleme qu'il a été congu. En effet, les algorithmes génétiques mono-objectif

sont idéaux pour converger vers une solution unique.

Multi-objectifs

D’un autre coté ily a la famille des algorithmes génétiques multi-objectifs, comme Octopus, qui
permettent de considérer plusieurs objectifs simultanément. Ils sont particulierement efficaces
pour explorer les types de solutions, car ils permettent de naviguer dans un espace de solution

qui trie chacune des solutions selon leur qualité grace aux critéres d’évaluation.

Il est plus intéressant que les criteres soient contradictoires car cela permet d’obtenir un
ensemble de solutions pertinentes qui correspond aux meilleurs compromis entre les différents

objectifs. Cet ensemble de solutions optimales est appelé solutions de Pareto.

Ces conflits, entre critéres contradictoires, permettent a Octopus de diversifier les solutions,
ainsi le concepteur parcourt un éventail de propositions équilibrées, chacune répondant

différemment aux objectifs fixés. Plus les critéres sont contradictoires, plus l'algorithme explore
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des solutions variées, ce qui permet a Uarchitecte de naviguer entre ces choix alternatifs. Cela

stimule la créativité de l’architecte et peut ’amener a rencontrer des solutions inattendues.

Une des expériences que j’ai réalisé dans la suite de ce mémoire, est illustrée en-dessous. Pour
expliquer brievement, car une partie de mon mémoire est dédiée a cette expérience, 'objectif est

d’explorer les types de solutions possibles d’un parc carré et composé de trois jeux circulaires.

Dans cet exemple, figure 9, on peut voir le diagramme d’affichage des solutions présent sur
Uinterface d’Octopus. Dans cet exemple, les solutions (carrés rouges), forme le front de Pareto,
ce qui signifie que chacune des solutions affichées correspondent aux meilleurs compromis

entre les deux objectifs présents sur ’axe horizontal et vertical.
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Figure 9 : Graphique d’Octopus avec un zoom sur deux solutions

Nous verrons aprés, dans la partie expérience le contexte dans lequel s’inscrit cet exemple. Pour
Uinstant, ce que U'on peut remarquer c’est 'étendue des solutions que l'on obtient a partir de
deux objectifs contradictoires que sont : un, contenir les jeux a Uintérieur du parc et deux, avoir
le plus de distance entre les jeux. Les algorithmes génétiques multi-objectifs semblent donc

particulierement intéressants pour explorer le champ des solutions conceptuelles.
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Exploration et exploitation

On distingue deux types approches dans l'usage des algorithmes génétiques en architecture,

I’exploitation et Uexploration.

L’exploitation se focalise sur un seul type de solution et tente de la rendre la meilleur possible. Il
s'agit alors d’une recherche locale poussée, c’est-a-dire un zoom sur une partie du paysage des
solutions. Dans le but de trouver la meilleure solution dans cette zone correspondant a un

optimum local’ du paysage de solution.

D’un autre c6té, ’exploration est une approche qui a pour objectif de parcourir un maximum de
types de solutions, permettant de proposer un éventail de solutions possibles pour le projet.
Cette exploration permet a Uarchitecte de nourrir sa créativité, car il peut rapidement parcourir

un ensemble de types de solutions et choisir celle qu’il juge intéressante.

Il semble que la majorité des recherches actuelles se concentrent sur un seul de ces deux
aspects, Uexploitation. Pourtant les algorithmes génétiques permettent aussi l'exploration
créative. Sans chercher a atteindre une solution idéale, mais plutdt a offrir aux concepteurs une
meilleure compréhension de 'espace des solutions disponibles comme le développe Stouffs en

2015 dans son article « Types of Parametric Modelling ».

L'optimisation présente des limites lorsqu'il s'agit de problemes conceptuels impliquant des
aspects qualitatifs et subjectifs. En effet il semble compliqué pour Ualgorithme d’avoir des
criteres d’évaluation sur des notions subjectives et/ou non quantifiables. C’est pourquoi
I’exploration est intéressante car elle permet aux concepteurs de naviguer parmi les solutions

proposées par l'algorithme et de choisir celle qui lui convient.

Cette phase d’exploration peut étre représentée par un paysage de solution en plusieurs
dimensions. Généralement, ce paysage est a deux ou trois dimensions pour étre visualisé
facilement. A chaque probléme conceptuel correspond une carte de solutions différentes a

appréhender.

T 'optimum local, dans un paysage de solutions, est une solution meilleure que ses voisines immédiates, mais qui peut
étre inférieure a l'optimum global.
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Figure 10 : Exemples de paysages de solutions décrits par D.Rutten en 2014

Sur la figure 10, on peut voir quatre types de paysages de solutions a 3 dimensions décrits par
D.Rutten en 2014 qui est un développeur de logiciels et un influenceur majeur dans le domaine

de l'architecture computationnelle, notamment grace a son travail sur Grasshopper.

Dans ces représentations, ’axe vertical correspond a U'objectif et les deux axes horizontaux sont
des parametres d’entrée. Le paysage de solutions peut étre d’une grande complexité, ilimportant

de bien délimiter la zone d’exploration pour ne pas se perdre dans 'ensemble des possibilités.

Connaitre au mieux le probleme architectural pour cibler les zones a fort potentiel de solutions
intéressantes semble étre la clé pour tirer profit au maximum des algorithmes génétiques. Nous
ne pouvons pas avoir la puissance de calcul d’un ordinateur et il est donc difficile pour nous
d’explorer autant de possibilité que lui mais nous pouvons imaginer que nous avons une
meilleure intuition pour savoir ou chercher a Uinverse de U'ordinateur. Donc une approche hybride

semble parfaite pour rencontrer la meilleure solution.

Soddu, un architecte et chercheur italien reconnu pour ses travaux sur l'architecture générative
et le design basé sur des processus algorithmiques a publié en 1998 des recherches sur le

nouveau role des designers. Pour lui, avec 'avenement des technologies numériques dans le
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champ de la conception, le réle du designer s’est transformé : « Du concepteur créateur d’une
ceuvre, d’une solution unique, on assiste aujourd’hui a ’émergence d’un méta designer créateur
d’un ensemble élargi de solutions répondant aux contraintes du probléeme. Le concepteur ne
travaille plus a [’élaboration d’un objet exclusif, mais plutét a la conception d’une famille de
formes, dont la solution retenue représentera un état significatif au sein de cet ensemble de

potentialités. »

Comme Uécrit Pierre Levy (Lévy 1992), le concepteur ne dessine plus un objet mais un systeme
d’objets possibles, une machine a explorer les virtualités. Il parle alors d’une forme de « lacher
prise », car le concepteur doit accepter qu’une part des décisions soit prises par Uoutil.
L’émergence de nouveautés ou de solutions surprenantes est le résultat du processus. Le
concepteur établit les conditions de génération des solutions et ne cherche plus la
concrétisation d’une solution exclusive, il effectue des choix a partir de '’ensemble des possibles

qui lui est offert.
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A. Approche expérimentale

Introdution

Deés le départ, je savais que ce travail m’ameénerait a utiliser des logiciels paramétriques pour
appuyer mes arguments et justifier mes hypothéses. Pour cela, je voulais mettre en place une
expérience permettant d'analyser le processus d’exploration que proposent les algorithmes
géneétiques. Autravers de cette expérience, j’ai manipulé les deux types d’algorithmes génétiques
que je souhaitais étudier : les mono-objectif et les multi-objectifs, représentés par Galapagos et

Octopus.

Je rappelle que ’hypothese principale de ce mémoire est que les algorithmes génétiques multi-
objectifs sont plus adaptés pour explorer les différentes options de solution dans le processus
de conception que les algorithmes mono-objectifs. J’ai donc réalisé une expérience permettant

d’apporter des éléments de comparaison entre ces deux familles d’algorithmes.

Cette phase d’expérimentation qui s’inscrit dans la carde de mon travail sur le parc pour enfant
a constitué pour moi un apprentissage continu, me permettant de découvrir ces outils et
d’apprendre a les manipuler et ainsi de développer une compréhension avancée du mode de

fonctionnement de ces algorithmes.
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Naissance de l’idée

Mon point de départ pour cette expérience a été le theme du parc pour enfants. Cette idée m'est
venue en raison de la vue depuis la fenétre de ma chambre, qui, a l'époque ol j'ai commencé
mes recherches, donnait sur El Parque de las Heras a Buenos Aires, en Argentine. Situé dans le

quartier de Belgrano, ce parc, tres fréquenté, présente une forme carrée et est agrémenté de jeux

pour enfants aux formes circulaires, comme on peut le vois sur la photo, figure 11.

Figure 11: Parque de las Heras, Buenos Aires, Argentina

L’objectif de ce travail est d’assister U'architecte dans la conception d’un parc de jeux pour
enfants en lui proposant différents types de solutions, autrement dit, différentes configurations

du parc avec ces jeux parmi lesquels il peut choisir.

La phase d’apprentissage

Pour 'expérience, le choix de la forme du parc, du nombre de jeux et des objectifs ont été définis
a la suite d’une phase de recherche sur le logiciel, que je qualifierai de phase laboratoire, qui m’a

permis de choir au mieux les parametres de ’expérience.

Cette recherche a pour but de mettre en lumiere les qualités d’exploration des algorithmes
génétiques. J'ai choisi de réaliser une expérience simple afin de pouvoir analyser facilement les

résultats obtenus. Pour représenter le parc, j'ai opté pour un mode de représentation presque

33



abstrait ou le parc et les jeux sont symbolisés par des formes géométriques élémentaires (carrés,

cercles, etc.).

Cette exploration des différentes configurations du parc pour enfants inclut l'évaluation des
interactions entre les éléments du design. En manipulant des parametres tels que la disposition
des jeux et la relation entre les jeux, j’ai pu observer comment ces facteurs influencent les
algorithmes génétiques. Cette approche m'a permis d'appréhender les implications de chaque
décision dans la définition des parametres. En fin de compte, cette phase d'expérimentation vise
a enrichir la compréhension des processus de conception assistée par les algorithmes

génétiques et a démontrer leur efficacité.
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B. Le choix des parametres

Bien construire le modele paramétrique est essentiel pour tirer le meilleur parti d'un algorithme
génétique. Pour traduire ce processus d'exploration en algorithmes visuels sur Grasshopper, il
est important de bien définir les composants et leur connexion dans le modele paramétrique

pour mettre Ualgorithme dans les bonnes conditions.

Cela se fait en orientant les recherches vers une zone de l'espace des possibilités qui semble
propice a la rencontre de la solution idéale. En effet, l'algorithme manipule les parameétres
d'entrée que l'on a définis et qui contiennent des caractéristiques. Ces caractéristiques peuvent
prendre la forme, par exemple, d’un intervalle de valeurs possibles pour chaque parameétre ou un
pas correspondant a la plus petite variation possible de la variable. Les interactions que
l'algorithme a avec ces valeurs dépendent complétement de la configuration des parametres

établie par l'utilisateur.

A travers trois éléments — la maniére de traduire le sujet architectural, la configuration des
paramétres d’entrée et la mise en place des objectifs avec leur jeu de coefficients — U'architecte
délimite un espace de recherche dans lequel l’algorithme pourra naviguer. Comme mentionné
précédemment, la liberté que Uon donne a lalgorithme traduit les caractéristiques pour

lesquelles le concepteur n’a pas pris de décision, mais également ce qu’il souhaite explorer.

Pour commencer il est préférable d’identifier les objectifs du projet puis de définir les contraintes
(les limitations physiques, matérielles, réglementaires, etc.) et de choisir judicieusement les
variables, autrement dit, les parameétres d’entrée qui vont étre modifiées pour satisfaire les

objectifs.
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Les objectifs
Généralités sur les objectifs

Il existe deux types d’objectifs :

Les objectifs quantifiables : dimensions physiques, colts, durée des travaux, efficacité
énergétique, quantités de matériaux, propriétés structurelles, performance acoustique,

performance lumineuse, flux, impact environnemental.

Un objectif quantifiable est facilement interprétable par Uordinateur et donc il peut facilement

’évaluer au des criteres définis par Uarchitecte et de continuer sa recherche.

Les objectifs non quantifiables : esthétique, symbolique, flexibilité d'usage, relation avec le

contexte.

Les objectifs non quantifiables nécessitent une analyse humaine et ne se prétent pas aujourd’hui
a la modélisation paramétrique, Ualgorithme ne peut pas évaluer ce type de critere. C’est
pourquoi il semble nécessaire que le concepteur intervienne dans le processus pour apporter
son jugement, et donc une approche hybride, intégrant 'optimisation algorithmique avec une

évaluation qualitative humaine, semble étre la meilleure méthode.

Les objectifs dans le cadre de mon expérience

Dans mon expérience du parc pour enfants, j’ai configuré des objectifs dans le but de trouver un
assemblage intéressant des jeux dans le parc. Le probléme est que la pertinence d’une solution
par rapport a une autre ne semble pas étre objective, c’est donc un objectif qui n’est pas
quantifiable. J’ai donc choisi de donner comme mission a 'algorithme des objectifs qui soient
quantifiables, comme maximiser la surface de jeu dans le parc sans qu’elle se chevauche, ou
encore contrbler 'espacement entre les jeux. De cette maniere, je peux quantifier ces objectifs

et utiliser les algorithmes pour explorer les solutions.

L’objectif en conception paramétrique, correspond a la mesure d’une grandeur physique ou a la
valeur permettant d’évaluer Ualgorithme. Cela permet de se rendre compte des conséquences

de la modification des paramétres d’entrée.

Pour rentrer un peu dans les détails, les objectifs dans les algorithmes génétiques sont congus
pour maximiser ou minimiser une valeur. C’est pour cela que le concepteur joue un réle
important dans ce processus, car c’est lui qui doit préciser la valeur qui lui semble intéressant

de maximiser ou de minimiser. Mais il existe des astuces pour demander a U'algorithme de
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s’approcher d’une valeur précise, par exemple une surface exacte en metres carrés. Bien sdr,
l’algorithme cherchera toujours @ minimiser ou a maximiser une valeur, mais par un jeu de

soustractions ou d’additions en amont, il est possible de faire converger Ualgorithme vers le

nombre choisi, comme illustré ci-dessous sur la figure 12 :

Figure 12 : Extrait du modele paramétrique du parc pour enfant

Dans cette illustration, j’ai défini mon parameétre objectif pour avoir 2000 m? de surface de jeu
dans le parc : & gauche j’ai la surface en m? des jeux dans le parc et pour « tromper » Ualgorithme,
j’utilise un bloc de soustractions qui vient soustraire en fonction de la valeur souhaitée le
parametre objectif. Ainsi, Ualgorithme Galapagos en cherchant a minimiser le parametre objectif
c’est-a-dire a faire tendre vers 0 ce dernier, va en réalité me permettre d’obtenir une surface

totale des jeux dans le parc de 2000 m?2.

Cette démonstration montre que, malgré les régles simples de fonctionnement des algorithmes,

une multitude de possibilités d’élaboration du modele s’offrent a nous en tant que concepteurs.

De la méme maniére, il est possible de pondérer les valeurs de certains criteres pour rendre le
parametre objectif plus intéressant du point de vue de la réponse algorithmique. Par exemple, si
'on veut absolument éviter que les jeux dans le parc se chevauchent, on peut pondérer les
surfaces en commun des jeux du parc par un coefficient important, sans affecter de coefficient
aux valeurs des surfaces perdues en dehors du parc. Ainsi, on peut regrouper sous un méme
objectif de "surface perdue" les surfaces partagées par les jeux et les surfaces qui sortent du
parc, avec des coefficients différents. Si cela n’est pas clair, je reviendrai plus précisément

dessus dans la partie expérience.
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En conclusion le role du concepteur est de choisir, au travers d’intentions et aussi d’une forme
d’intuition, les coefficients qui vont venir pondérer les objectifs, car ils jouent un role trés
important dans le processus algorithmique. Quand je parle d’intention, je fais référence a
Uintention architecturale, comme par exemple, dans le cas du parc pour enfants, décider si les

jeux peuvent sortir du parc ou dans quelle mesure ils peuvent se chevaucher.

Les contraintes

Dans la conception architecturale, les contraintes jouent un role crucial en guidant et en limitant
les choix de conception. Ces contraintes peuvent provenir de diverses sources, telles que les
normes réglementaires, les exigences des clients, les caractéristiques du site, etc. Elles peuvent
aussi provenir d’hypothéses de travail choisies par 'architecte dans la conception du projet. Ce
dernier point est trés important car, pour définir un modele paramétrique performant dans la
recherche des types de solutions, il faut restreindre judicieusement le nombre de possibilités de
solutions que U'on demande aux algorithmes de traiter. Le nombre de possibilités doit étre
suffisamment grand pour que ’exploration soit pertinente mais pas trop grand pour éviter de se

noyer dans limmensité du champ des possibilités.

Dans le cas de mon expérience du parc pour enfants les contraintes se traduisent par la
configuration des parametres et de la maniere dont j’ai créé le modele du parc. Par exemple, la
taille des jeux si elle est fixe ou encore la forme du parc. Dans Uexpérience du parc les contraintes

sur les parametres d’entrée ont été expliqué dans la partie expérience (Partie IV p. 37).
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Les parametres d’entrée

Les parametres d'entrée jouent un réle majeur dans la programmation d'un modele destiné a un
travail algorithmique. L'ensemble des valeurs que ces parametres peuvent prendre définit
l'ensemble des possibilités du design, également appelé « design space ». Les algorithmes ne
peuvent pas traiter des processus d'exploration offrant un trop grand nombre de possibilités.
Ainsi, le premier travail consiste a déterminer quels sont les parametres réellement pertinents

pour Uexploration. Voici quelques exemples de parametres :

- Dimensions et proportions : Largeur, hauteur, longueur, rapport d'aspect, etc.

- Formes géomeétriques : Types de formes de base a utiliser (carré, cercle, polygone, etc.).
- Relations spatiales : Distances entre les éléments, angles, alignements.

- Matériaux et textures : Type de matériaux, propriétés physiques.

- Fonctions et usages : Usages des espaces, circulation, acces.

- Conditions environnementales : Orientation du soleil, Force du vent

La modélisation d’un paramétre sur Grasshopper est une étape importante dans la définition des
parametres. Ces derniers peuvent prendre plusieurs formes : sliders, booléens, graph mappers,
etc. Dans le cas le plus courant du slider, il est important de bien définir la "range" (intervalle
d'évolution du parametre) avec un minimum et un maximum, ainsi que la précision du parametre
pour déterminer le pas de sa variation (par exemple, 10, 1, 0.1, etc.). Ces choix nécessitent une
anticipation, voir une intuition de U'architecte par rapport au comportement algorithmique, qui
doit définir intelligemment 'ensemble des possibilités, afin d'obtenir une réponse algorithmique
aussi pertinente que possible. Cette nouvelle forme de conception, dans laquelle l'architecte
apprend a concevoir un modele paramétrique qui sera traité par U'algorithme, est appelée par

Neri Oxman la « conception hybride »'.

T Neri Oxman, qui a travaillé sur la conception computationnelle et les techniques de fabrication avancée, évoque lidée
d’une "conception hybride" ou 'homme et l'algorithme interagissent pour générer des solutions architecturales
innovantes.
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V. Les expériences
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A. Ecriture du modele du parc pour enfants

Dans cette premiere expérience nous allons essayer d’utiliser les algorithmes génétiques
Galapagos et Octopus pour explorer l'espace des solutions dans la conception d’un parc pour
enfants. L’objectif est d’évaluer la performance de ces deux algorithmes 'un mono-objectif et
I’autre multi-objectifs dans 'aide a la rencontre de type de solutions a un stade trés précoce du
processus conceptuel. L’analyse et la comparaison des résultats de ces deux algorithmes
permettront d’alimenter les connaissances sur lintérét de ces outils en conception

architecturale.

Pour trouver le modele du parc pour enfants le plus intéressant dans ’analyse des résultats, j’ai
réalisé plusieurs modeles du parc en expérimentant différentes configurations de ce dernier.
Cela m’a permis d’apprendre a manipuler ces outils et a comprendre le fonctionnement des

algorithmes génétiques pour éviter de commettre des erreurs dans 'analyse des résultats.
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La phase de recherche et d’apprentissage préalable et nécessaire

pour Uécriture finale du modele

Le premier travail consiste a comprendre comment traduire sur Uinterface Grasshopper le

probleme conceptuel du parc. Pour cela j’ai réalisé plusieurs essais de modele du parc pour

enfants.

Sur la figure 13, on peut voir Uinterface Grasshopper sur laquelle j’ai modéliser les différentes

versions du modele du parc, chaque arbre paramétrique correspond a un modeéle du parc pour

enfants. J’appelle arbre paramétrique un ensemble de bloc interconnecté par des fils,ilyena 15

sur la photo. Ils correspondent chacun a une configuration différente du modele. Ils sont

regroupés en quatre catégories, V1 : Modeles sur les surfaces, V2 : Modeles sur les volumes, V3

: Modeles avec variation du nombre de jeu, V4 : Modeles optimisés.
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Figure 13 : Interface Grasshopper avec [’ensemble des versions du modeéle du parc
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Premiére version

Dans la premiere catégorie du modele qui correspond a la premiere colonne a gauche, j’ai
considéré que le parc était carré et que la taille des jeux ne variait pas. Aussij’ai considéré que la
valeur du parameétre objectif a évaluer par Ualgorithme serait les surfaces des jeux du parc en
comparaison avec la surface du parc. J’ai réalisé trois écritures différentes de cette version, avec

soit des jeux carrés, soit des jeux circulaires, comme on peut le voir ci-dessous sur la figure 14.

Figure 14 : Interface Rhinoceros des premieres versions du modele

Dans cette premiere version, il n’y a qu’un seul objectif, celui de minimiser les surfaces en
commun entre les jeux avec les surfaces des jeux qui sont a Uextérieur du parc, c’est pourquoi
j’ai utilisé Galapagos. Le but étant d’obtenir des types de solutions simples en plans
d’assemblages des jeux dans le parc. Il était néanmoins difficile pour l'algorithme de comparer
des éléments surfaciques, ce qui pouvait amener des erreurs dans les réponses algorithmiques.
En effet, il semble que le traitement du probléme par les surfaces ne soit pas adapté au logiciel

Grasshopper. J’ai donc changé d’approche pour la deuxieme version du modele.
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Deuxiéme version

Dans la deuxieme version qui correspond a la colonne numéro deux sur la premiéere illustration,
j’ai utilisé des éléments volumiques pour représenter les éléments du parc et j’ai pu ainsi
comparer des interactions de solides beaucoup plus facilement que les intersections de
surfaces. En effet il semble que le logiciel Grasshopper soit plus adapté a la comparaison
d’éléments volumiques. Comme mon expérience est un travail en plan, j’ai donné une épaisseur
identique a tous les éléments pour le ramener a un travail a trois dimensions. Cela reste donc un
travail en deux dimensions malgré tout, ce changement permettant seulement a Ualgorithme de
mieux comprendre. En effet cela a grandement amélioré la réponse algorithmique carily a eu

moins d’erreurs d’interprétation sur les interactions entre éléments.

J’ai donc pu développer plusieurs modeles du parc pour enfants comme on peut le voir ci-
dessous, figure 15, en modifiant les caractéristiques du parc comme sa forme : carré, circulaire
ou quelconque ; la forme des jeux : Carré ou circulaire ; La variation de la taille des jeux; Lien

entre les jeux ; Choix de la surface total des jeux.
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Figure 15 : Interface Grasshopper des modeles de la deuxiéme catégorie basé sur les volumes




Une fois que l'objectif de maximiser la surface d’occupation des jeux a été maitrisé, j’ai
commencé a explorer Uapproche multi-objectifs en ajoutant un autre objectif qui a pour but de
contrébler la dispersion des jeux. Je reviendrai sur le fonctionnement précis de ces objectifs dans
le détail de 'algorithme final. Cette phase d’exploration des modeles m’a permis de comprendre
comment réaliser Ualgorithme final dont on exploitera les résultats. Voici, figure 16, les
représentations ggométriques sur Rhinoceros des parcs pour enfants de la deuxieme version des

modeéles :

Figure 16 : géométries des modeéles du parc pour enfant de la deuxieme version
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Troisieéme version

Afin de terminer ma phase d’exploration, j’ai essayé d’ajouter la possibilité de faire varier le
nombre de jeux dans Ualgorithme. Ce nouveau parameétre est difficile a mettre ne place. Voici ci-

dessous, figure 17, une photo de l’algorithme et de sa géométrie sur Rhinoceros.

Figure 17 : Algorithme avec modification du nombre de jeu et sa géométrie

Cette version du modele permet a l'algorithme de faire apparaitre jusqu’a 7 jeux. Mais dans
I’écriture de mon modele, le paraméetre du nombre de jeux rendait la convergence des
algorithmes génétiques impossible. Autrement dit, il n’y avait pas de correspondance entre le
choix des parametres et la qualité des solutions donc U'étape de convergence génétique ne
pouvait pas fonctionner. De plus, la possibilité de modifier le nombre de jeux ne semble pas

nécessaire dans le cadre de mon objectif. J’ai donc écarté cette hypothese.

Quatrieme version

Dans la quatrieme version du modele du parc, j’ai mis en place U'algorithme final qui servira a
I’exploitation des résultats. Il correspond a la configuration du modele qui m’a semblé la plus
intéressante pour mettre en avant la capacité d’exploration des algorithmes génétiques et

pouvoir les comparer. Nous allons commencer par voir le choix des parametres de ce modele.
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Choix des parametres du modele

a) Choix de laforme du parc

J’ai choisi d’utiliser un parc carré, car cela permet de simplifier la continuité des positions que
peuvent prendre les jeux dans le parc. Autrement dit, pour Ualgorithme, faire varier légerement la
position (x, y) des jeux entraine un petit déplacement de ces derniers, tandis que si la forme est
complexe, il faut discrétiser la surface et cela rend complexe la modification des positions des
jeux et rend plus difficile pour les algorithmes génétiques de converger vers un type de solution.
Il est sGrement possible de résoudre ce probleme pour utiliser les algorithmes génétiques dans

de meilleures conditions, mais ce n’est pas l'objet de mon mémoire.

b) Choix du nombre, de la forme et de la taille des jeux :

Jai choisi de manipuler seulement 3 jeux car comme je 'ai dit précédemment, sinon cela
complexifie dans la convergence de l'algorithme. Quant au choix de la forme et de la taille des
jeux, j’ai remarqué en manipulant les modéles du parc que les expériences avec un parc de forme
carré et des jeux circulaires offraient des solutions intéressantes d’emboitement. En effet, si on
positionne 3 jeux circulaires dont les tailles ne permettent pas qu’ils rentrent entierement dans
la surface du parc, les solutions au probleme peuvent se regrouper par type de solution et sont
facilement exploitables pour Uanalyse des résultats. C’est pourquoi, j’ai choisi d’utiliser 3 jeux

circulaires, de trois tailles fixes différentes, un petit, un moyen, un grand.
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L’importance de Uoptimisation dans Uécriture

Grasshopper offre une large palette de fonctions ou blocs qui permettent de définir notre modele
paramétrique. Souvent, plusieurs chemins sont possibles, c’est-a-dire qu’il existe une autre
maniére d’écrire le modele sur le logiciel. Il est donc important de bien connaitre le

fonctionnement du logiciel pour réaliser le modele le plus optimisé.

Dans le cadre de l'utilisation de solveur algorithmique, si le modele n’est pas optimisé, il y aura
plus de calcul a chaque itération de la simulation. En conséquence, cela pourrait soit allonger le
temps de réponse algorithmique, soit entrainer 'échec du processus. Autrement dit, s’il existe

un code du modele moins codteux en calcul pour Uordinateur, il est préférable de Uutiliser.

C’est pourquoi dans 'écriture du modele final, j’ai essayé d’utiliser le moins de blocs possible
pour favoriser la qualité des solutions algorithmiques. Voici ci-dessous, figure 18, le modele

optimisé.

Figure 18 : Algorithme du modeéle final

La lecture du modele se fait de la gauche vers la droite, des parametres vers les objectifs. Pour
expliquer le fonctionnement de l’algorithme, je vais le découper en deux parties, la création des

jeux avec leur parameétres et 'évaluation des objectifs.
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Explication du modele final

Premiére partie, mise en place des éléments :

— o

[——0:0———

Figure 19 : Premiére partie de ’algorithme du modéle final

Comme on peut le voir dans la figure 19, j’ai commencé par créer le parc en utilisant le
composant « rectangle » en définissant une taille de 100x100 a l’aide d’un composant « slider ».
J’ai ensuite voulu créer la bordure du parc qui servira par la suite pour évaluer si les jeux sortent
du parc. Pour cela j’ai connecté mon rectangle avec ’élément « scale » qui m’a permis d’avoir
une projection plus grande de ce rectangle ; puis en connectant mon rectangle et sa projection
au composant « boundary surfaces » j’ai pu récupérer sa bordure. J’ai ensuite extrudé la bordure

d’un metre en utilisant le composant « extrusion ».

D’un autre c6té, j’ai créé les jeux en utilisant le composant « contruct point » qui permet de créer
des points en fonction des coordonnées sur X et Y que je lui donne en entrée. Pour les
coordonnées, j’ai utilisé le composant « gene pool » qui permet de configurer plusieurs sliders en
méme temps. C’est justement sur ces parametres que U'algorithme va agir. Comme je souhaitais
avoir trois jeux circulaires, j’ai construit trois points que j’ai utilisé pour étre le centre des cercles
des jeux. Pour ¢a, j’ai connecté ces points aux composants « circle » en indiquant avec un autre
composant « gene pool » la taille des trois jeux que je souhaitais. Ensuite, j’ai extrudé les surfaces

des jeux a aide du composant « extrusion » comme dans le cas de la bordure du parc.
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Deuxieme partie, 'évaluation des éléments :

Figure 20 : Deuxiéme partie de [’algorithme du modeéle final

Comme on peut le voir dans la figure 20, pour savoir si les jeux se chevauchent ou s’ils sortent du
parc, j’ai utilisé le composant « solid intersection », qui me permet d’obtenir les volumes
d’intersection entre les jeux. De la méme maniére, j’ai comparé les volumes des jeux avec la
bordure pour déterminer s’ils sortaient. J’ai ainsi pu récupérer les valeurs, en metres cubes, du
volume de chevauchement des jeux entre eux et avec extérieur du parc. A ce moment-l3, j’ai
attribué des coefficients a ces valeurs pour affiner le parametre objectif, qui, dans ce cas, est la

somme des volumes que je viens de calculer.

Pour évaluer le deuxieme objectif, j’ai créé un triangle grace au composant « polyline » a partir du
composant « construct point », qui m’a servi a créer les centres des trois jeux. J’ai ensuite converti
cette polyline en surface a ’aide du composant « boundary surfaces », puis je Uai extrudée d’un
metre. Enfin, j’ai mesuré la surface, en métres cubes, du triangle extrudé a l’aide du composant
«volume ». De cette maniere, j’ai pu utiliser cette valeur en metres cubes comme parametre

objectif. Plus cette valeur est importante, plus les jeux sont dispersés.
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B. Analyse des résultats

Voici ci-dessous les configurations des algorithmes génétiques Galapagos et Octopus dont je me

suis servi pour exploiter les résultats.

Ces parametres ont été choisis pour favoriser 'exploration de ’espace des solutions. Je donne
tous ces informations sur le réglage des algorithmes génétiques pour que toute Uexpérience soit
transparente et reproductible. Je ne développerai pas d’avantage sur le sujet de la configuration

des algorithmes qui ne fais pas l'objet ici de mon mémoire.

Configuration Galapagos

L'étude a été menée sur 25 générations, avec une population initiale de 100 individus et une
population par génération de 50 individus. Les paramétres spécifiques définissant 'évolution des

générations étaient les suivants :

Maintien (5 %) : Ce paramétre assure que 5 % des individus les plus performants d'une
génération sont conservés dans la suivante, ce qui permet de préserver les meilleures solutions

identifiées tout en laissant de la place pour l'exploration de nouvelles solutions.

Taux de consanguinité (70 %) : Ce taux élevé favorise le croisement entre individus ayant des
caractéristiques similaires, renforgant l'exploitation des meilleures solutions en affinant leurs

variantes.

Population initiale (100 individus) : Une taille initiale modérée permet de commencer
l'optimisation avec une diversité raisonnable, offrant un bon équilibre entre performance de

calcul et diversité génétique.

Population par génération (50 individus) : La population a chaque génération.

Configuration Octopus

L'étude a été menée sur 25 générations, avec une population initiale de 250 individus. Voici les

parametres spécifiques définissant l'évolution des générations :
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Taux d'élitisme (0,5) : Ce parametre garantit que 50 % des individus les plus performants d'une
génération sont automatiquement conservés pour la génération suivante, préservant ainsi les

meilleures solutions et évitant leur perte au cours de l'évolution.

Probabilité de mutation (0,8) : Cette valeur indique qu'une mutation est appliquée a 80 % des
individus, permettant d'introduire une diversité génétique importante et de réduire le risque de

convergence prématurée vers une solution sous-optimale.

Taux de mutation (0,9) : Pour les individus sélectionnés pour la mutation, 90 % de leurs genes

sont modifiés, favorisant une exploration plus large de l'espace des solutions possibles.

Taux de croisement (0,6) : Ce parametre contrble le mélange des caractéristiques entre deux
individus lors du croisement, en fixant a 60 % la proportion d'individus créés par recombinaison

des genes parentaux.

Ces réglages permettent de maintenir un équilibre entre l'exploration de nouvelles solutions et

l'exploitation des meilleures solutions identifiées a chaque itération.
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Le tableau des résultats

OCTOPUS GALAPAGOS

TYPES DE SOLUTION

Figure 21 : Tableau des résultats
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Classification des types de solutions

La configuration du modele du parc pour enfants offre un nombre suffisamment petit de type de
solutions pour qu’il soit possible de les trouver manuellement. En effet, pour satisfaire le critere
de maximisation de surface de jeux dans le parc, il faut que les deux jeux de plus grande taille se
mettent sur une diagonale et que le petit jeu occupe 'un des deux angles restants. Il existe donc
4 configurations possibles des jeux de grandes tailles sur les diagonales et pour chacune d’entre
elles, il existe deux positions possibles de jeux de petite taille dans les angles restants. Ily a donc
8 solutions évidentes pour satisfaire au mieux 'objectif de maximisation de surface de jeux dans

le parc.

En utilisant ces 8 types de solutions, cela permet de définir un cadre dans ’analyse des résultats
et leur comparaison avec les solutions de algorithme mono-objectif Galapagos. Quant au
second critere objectif, qui est de maximiser la distance entre les centres des jeux, il est
représenté en trois catégories dans le tableau : compact, normal, dispersé. Ces catégories je les

ai choisies pour permettre une représentation de ce critére objectif.

55



Galapagos, l'algorithme génétique mono-objectif

Pour l'utilisation de l’algorithme mono objectif Galapagos, j’ai réalisé huit fois Uexpérience et j’ai
obtenu a chaque fois un type de solution qui correspondait parfaitement aux attentes du critére
de maximisation de surface de jeux dans le parc mais Galapagos ne m’offrait pas d’autre choix

de type de solution. Apres avoir effectué huit itérations de Galapagos, j’ai donc obtenu cing types

de solutions quij’ai inscrit dans le tableau des résultats.

Galapagos Editor
Options Solvers Record

5’) B> startsoiver ~ 3¢ Stop Solver @]@e e
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Figure 22 : Interface Galapagos aprés ’arrét de l’algorithme

La figure 22 représente Uinterface d’affichage des résultats de Galapagos. On peut voir la vitesse
de convergence du modele sur la partie de droite. Mais aussi que le graphique en dents de scie
juste en-dessous qui indique la différence génétique entre les 5 meilleurs solutions ne montre
quasiment aucune différence entre ces solutions. Autrement dit, les meilleures solutions
conservées par lUalgorithme au bout d’un certain moment sont presque identiques car elles

correspondent a une valeur élevée du parametre objectif.

ILest intéressant de noter que Galapagos ne cherche pas de juste milieu entre deux objectifs car
il ne peut contréler qu’une valeur qui correspond au parametre objectif. Autrement dit, si 'on a
dissimulé des objectifs en les pondérant derriere ce parametre objectif, il ne saura pas les
différencier. Cette notion est trés importante car pour choisir quel objectif va prendre le dessus
il suffit de Uindiquer dans la pondération des valeurs de deux objectifs. Dans cet exemple,
l'objectif principal est de maximiser les surfaces de jeux dans le parc et le second est d’écarter

le plus possible les centre des jeux entre eux. J’ai choisi de pondérer le critére d’écartement des
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jeuxdetelle maniére a ce que U'objectif des surfaces reste prioritaire. J’ai expliqué cette stratégie,

Partie lll, B), dans la partie sur la définition du parameétre objectif.

Cette notion permet de comprendre le principe fondamental qui sépare ces deux algorithmes.
Galapagos se concentre sur une valeur a optimiser alors que Octopus peut différencier les
objectifs et donc apporter une exploration spécifique a chaque objectif. Ce qui se traduit dans le

graphique par un front de Pareto qui permet une exploration plus large de ’espace des solutions.

Pour trouver un type de solution Galapagos est trés performant, cela permet a architecte d’avoir
une piste pour commencer ces recherches mais cela ne permet pas d’avoir une vision

d’ensemble sur I’éventail des solutions possibles.
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Octopus, Ualgorithme multi-objectifs

Pour regrouper les résultats dans le tableau par type de solution évidente, je me suis aidé de
l’option Parameter Diversity qui permet de trouver plus simplement les types de solutions décrit
précédemment. Cette option ne sert qu’a organiser différemment le nuage de solutions apres le
travail de Ualgorithme en offrant une troisieme dimension dans le graphique d’affichage des
solutions. Cela permet de regrouper les solutions dont les valeurs des parametres sont proches.
Pourrappel, les deux autres axes dans le graphique représentent les objectifs de surface des jeux
dans le parc et de dispersion de ces derniers. Aprés avoir parcouru les solutions du graphique,

j’ai rangé les solutions trouvées dans les 8 types de solutions déterminées précédemment.

Voici ci-dessous le graphique des solutions obtenue avec Uutilisation d’Octopus :

ersity:

Figure 23 : Graphique de représentation des solutions

Les deux graphiques, figure 23, représentent le méme nuage de solutions mais observé sous un
angle différent. Dans le graphique de droite, les axes horizontaux correspondent aux parameétres
objectifs et 'axe vertical a la diversité génétique. Dans le graphique de gauche en revanche, les
deux parametres objectifs sont sur le plan frontal et cela permet d’observer ce que 'on appelle
un front de Pareto. Pour rappel, cela correspond aux solutions qui sont les meilleurs compromis
entre les objectifs. Toutes les solutions ne sont pas affichées pour ne pas perdre en lisibilité dans
l'utilisation du graphique, dans ce cas, ne sont affichées que les meilleures solutions, celles qui
appartiennent au front de Pareto. Comme le graphique est en 3 dimensions avec le parameétre de
Genetic Diversity, le front de Pareto est un peu particulier car il est n’est plus une simple courbe

mais une nappe a trois dimensions qui considére aussi les diversités génétiques comme un
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objectif. L’option de diversité génétique permet de simplifier la phase de recherche des types de
solutions qui se fait manuellement. Pour visualiser une solution, il suffit de cliquer sur l'une

d’entre elles dans le graphique et elles s’affichent sur Uinterface 3D de Rhinocéros.

Conclusion intermédiaire

Octopus se distingue par sa capacité a explorer un large spectre de solutions grace a la prise en
compte de multiples objectifs. Cette exploration permet de générer un front de Pareto qui met en
évidence les compromis possibles entre les différents critéres. Il semble que son principe de

fonctionnement soit favorable a Uexploration des types de solutions.

En revanche, Galapagos, bien qu’efficace pour optimiser un objectif unique, ne propose pas de
variété significative dans ses solutions. Les cing itérations effectuées ont produit des résultats
similaires, se concentrant uniquement sur la meilleure valeur pour U'objectif défini. Cela limite la
capacité a explorer différentes alternatives de conception. Il semble que son intérét dans

’explorations des types de solutions soit moins pertinent que celui d’Octopus.

Critique de 'expérience du parc

Dans U'expérience du parc, les deux objectifs sont tres liés (pour rappel : la surface des jeux dans
le parc et U'écartement des jeux entre eux). Il serait intéressant de faire une expérience avec deux
objectifs qui sont beaucoup moins en relation pour observer la réponse algorithmique, soit les

compromis trouvés.

D’un autre c6té, le nombre de types de solutions lié au critere de surface était suffisamment
simple pour étre identifiable manuellement donc il n’y pas eu de réel enjeu de recherche sur les

solutions obtenues.

C’est pourquoi, pour finir cette partie expérience, je vais vous présenter une expérience que j’ai
développé dans U'objectif d’aller plus loin dans la compréhension des algorithmes multi-objectif

pour Uexploration des types de solution.
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C. Pour aller plus loin en multicriteres : La grille du
jeu d’échec

Objectifs

L’objectif de cette expérience est d’utiliser l’algorithme génétique multi-objectifs Octopus dans
le cadre d’une exploration en phase de conception architecturale dont on ne connait pas le
nombre de type de solutions. Autrement dit, dans une expérience ou l’on ne connait pas d’avance
les types de solutions car il n’y a pas de solution évidente. Cela permettra de compléter mon

analyse sur la capacité d’exploration des algorithmes multi-objectifs.

Pour cela j’ai choisi de configurer une expérience ou les deux criteres objectifs sont
contradictoires pour avoir un front de Pareto intéressant mais aussi qu’ils n’aient aucun rapport

entre eux pour que les solutions ne soient pas évidentes.

Configuration du modele

L’idée de cette expérience est de travailler sur Uimplantation de batiments en plan masse sur une
grille de huit par huit suivant des regles définis par Uarchitecte. La surface de bati correspond a 7

unités qui sont représentées par des carrées blancs dans la grille.
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Premiére objectif

Le premier objectif correspond a une regle de voisinage entre les las cases baties blanches. Pour
conserver une bonne illumination de la fagade ainsi qu’une bonne aération, chaque case est

pondérée en fonction de son nombre d’angles partagés avec les voisins. La regle est illustrée ci-
dessous, figure 24.

En fonction du nombre d’angles que la case partage avec les autres cases voisines, un score est
attribué. Moins elle possede d’angles en commun plus son score est élevé comme on peut le voir

dans le tableau de la regle. J’ai créé Ualgorithme de tel sorte qu’il soit impossible d’avoir deux

cases blanches qui se superposent.
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Figure 24 : Schéma explicatif de la regle de voisinage

Octopus vise a maximiser le score de chaque case en minimisant le nombre d’angles en
commun. Je tiens a préciser qu’une multitude de régles de voisinage sont applicables et que j’ai
choisi celle-ci de maniére arbitraire pour tester la réponse algorithmique. On pourrait imaginer
que U'architecte a des attentes plus précises sur les régles de voisinages qu’il souhaite mettre en

place. Par exemple, en favorisant des systemes d’assemblage entre voisins en leur donnant un
meilleur score.
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Pour aller plus loin dans cette expérience, on aurait pu imaginer autoriser les superpositions de
cases blanches et considérer que cela correspond a un nombre d’étages. Cela aurait donné une
proposition a trois dimensions qui peut étre représentée en volume dans Rhinoceros. A partir de
regles simples comme celle du voisinage que je viens de présenter, on peut obtenir des modeles

complexes.

ILexiste un jeu appelé le Jeu de la Vie, créé par John Conway, illustré ci-dessous, figure 25, dont
le principe est de simuler la naissance et la mort des cellules sur une grille a deux dimensions. A
chaque itération, les cellules peuvent naitre ou disparaitre en fonction de régles simples liées a
leur environnement immeédiat. Ce modéle m’a inspiré pour cette seconde expérience, car il
illustre parfaitement comment des systemes complexes peuvent émerger de conditions initiales
élémentaires. En reprenant cette logique, mon expérience vise a démontrer comment des
solutions variées et pertinentes peuvent naitre a partir de regles et de contraintes bien définies,

exprimant ainsi la richesse de U’exploration algorithmique de solutions en architecture.

Figure 25 : L’interface du jeu de la vie
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Second objectif

Le second objectif correspond a la dispersion des cases blanches. Autrement dit, si les cases
sont contenues dans un cercle de petite taille, elles sont compactes en revanche, si elles sont

contenues dans un cercle de grande taille, elles sont dispersées.

Le but de cet objectif est de rendre le systeme de cases blanches le plus compacte possible
sachant que cet objectif va en opposition avec celui d’attribuer un score élevé aux blanches qui

ont peu de voisins.

Pour réaliser cet objectif dans le modele algorithmique j’ai réalisé un cercle qui contient tous les
centres des cases blanches et qui a pour centre la position moyenne de toutes les cases
blanches et pour rayon la plus grande distance entre le ce centre la et le centre de la case le plus

éloigné. Octopus a pour objectif de minimiser la taille de ce cercle.

Présentation de l’algorithme

Voici ci-dessous, figure 26, Ualgorithme sur Uinterface Grasshopper de U'expérience de la grille.

Figure 26 : Algorithme de l’expérience de la Grille

Je ne vais pas développer U'écriture de Ualgorithme, mais j’aimerais montrer que U'on retrouve de
la méme maniere que pour U'algorithme précédent une configuration en deux parties : la mise en

place des éléments et ’évaluation des critéres objectifs.
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Analyse des résultats

Dans cette expérience Octopus a pour objectif de maximiser le score de la regle de voisinage et
de contenir les cases blanches. Cela se traduit dans le graphique des résultats d’Octopus par en
abscisse U'objectif lié a la regle de voisinage et en ordonnée U'objectif lié a la regle de dispersion

comme présentée ci-dessous.

Les parametres d’Octopus utilisés sont les mémes que pour U'expérience précédente. Je rappelle

qu’ils ont été choisis pour favoriser 'exploration des types de solutions.

Figure 27 : Graphique d’Octopus de représentation des résultats

Dans ce graphique, nous pouvons observer le front de Pareto, qui correspond aux meilleurs
compromis entre les deux objectifs. Je n’ai pas utilisé option Parameter Diversity dans cette
expérience car l'objectif n’était pas de faire une analyse aussi poussée que dans U'expérience
précédente. En effet pour gagner du temps dans U'analyse, je me suis concentré sur les résultats
obtenus sur le front de Pareto en deux dimensions comme vous pouvez le voir dans le graphique.
Pour aller plus loin, une analyse plus complete de '’ensemble des types de solutions serait

intéressante avec cet outil.
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A partir des solutions de ce graphique, j’ai récupéré 9 solutions parmi celles proposées qui me
semble pertinentes pour montrer différents types de solutions obtenues par Octopus. Ces
solutions sont rangées dans un ordre précis: de la plus compacte a la plus dispersée qui
correspond a un parcours des solutions en partant d’en haut a gauche a en bas a droite de

Uillustration du graphique, figure 28.

Figure 28 : Extrait des solutions issues du front de Pareto
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J’ai choisi d’afficher ces solutions car elles sont pour moi représentatives de ’ensemble des
solutions rencontrées. Cette matrice de solutions permet de se rendre compte de la diversité des
solutions obtenues. De la premiere solution choisie, la plus compacte, a la derniere, la plus
dispersée, une graduation de la dispersion des cases blanches s’effectue, avec le respect de la
regle de voisinage qui vient offrir des assemblages intéressants. La richesse de ces assemblages
intermédiaires représente tout Uintérét de Uexploration des algorithmes génétiques
multicriteres. Ainsi la premiere solution et la derniere sont les plus évidentes a trouver alors que
celles qui proviennent d’'un compromis entre les deux criteres ont des assemblages intéressants

a analyser.

Dans cette expérience, il semble exister un trés grand nombre de possibilités. En effet, le nombre
de combinaisons possibles pour choisir 7 cases blanches parmi 64 cases possibles est 621
216 192. Ce nombre de possibilités d’assemblages montre bien Uincapacité pour U'architecte de
parcourir toutes les solutions possibles manuellement. De la méme maniére, Il semble donc
difficile de savoir si ’ensemble des types de solutions a été parcouru par l'algorithme. Malgré
cela, les 17 solutions obtenues sur le front de Pareto dans le graphique précédent donnent une
quantité raisonnable de solutions prometteuses a 'architecte. Méme si 'algorithme ne parcourt
pas entierement ’ensemble des solutions, il peut analyser un grand nombre de solutions
rapidement et les retranscrire simplement pour passer d’une quantité traitable seulement a

l'ordinateur a une quantité traitable par un humain par le biais du front de Pareto.

En effet cet inventaire de solutions offre une source de possibilités a ’architecte dans la réflexion
sur son assemblage d’espace bati. Cela permet a architecte d’utiliser des types d’implantations
qui favorisent la densité et ’éclairement. La variation progressive de 'assemblage des cases
blanches dans lillustration ci-dessus permet une variété de choix importante pour choisir

exactement ce qui correspond au besoin du projet de l'architecte.
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V. Conclusion

Conclusion sur cette méthode d’exploration

Pour réussir cette méthode d'exploration, il est essentiel de définir avec précision les parameétres,
les contraintes et les objectifs qui structureront le modéle numérique. La qualité des réponses
générées par l'algorithme dépend directement de ces choix. Il est également crucial de trouver
un équilibre en offrant suffisamment de liberté a 'outil pour explorer des solutions intéressantes,

tout en évitant de le submerger par un éventail excessif de possibilités.

Dans cette phase d'exploration, les algorithmes multi-objectifs se révelent plus adaptés que les
algorithmes mono-objectif. En effet, ils permettent de générer des compromis pertinents entre
différents objectifs, enrichissant ainsi le processus de conception. De plus, leur représentation
graphique des solutions, souvent sous forme de diagrammes, simplifie le travail de sélection

pour l'architecte, rendant les résultats plus exploitables et visuellement clairs.

Pistes pour le futur

Une des pistes d’amélioration pour le futur est Uintégration de critéres subjectifs, comme
I’esthétique ou la symbolique, au sein du processus algorithmique. Ces aspects, difficilement
quantifiables, pourraient étre pris en compte grace aux réseaux de neurones. Ces derniers, en
étant entrainés sur des ensembles de données architecturales incluant des évaluations
humaines, pourraient apprendre a reconnaitre et a prioriser des qualités subjectives dans les

solutions générées.

Cette intégration pourrait transformer la maniére dont les algorithmes participent au processus
de création en architecture. Par exemple, les réseaux de neurones pourraient identifier des
tendances esthétiques en fonction de contextes culturels ou historiques spécifiques, ou encore
proposer des solutions équilibrant harmonie visuelle et contraintes techniques. En interagissant
de maniére itérative avec 'architecte, ces outils offriraient non seulement des solutions
optimisées mais aussi enrichies d’une dimension qualitative, laissant a 'architecte la possibilité
d’affiner ou de réorienter les propositions selon ses intentions. Cela permettrait de dépasser les
limites actuelles des algorithmes génétiques, souvent cantonnés a des critéres purement

quantitatifs, pour ouvrir la voie a une conception véritablement hybride.
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