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Summary : 
 
With the development of computer instrumentation, the integration of topology optimization 
and form-finding tools, into the design process, has become a possibility. Making it possible 
to resolve complex problems with efficient yet flexible solutions. However, this requires an 
understanding of the process and scope of these tools. 
For this reason, this work aims to study the implementation of the stress lines optimization 
method as well as the limits of this method, and the quality of its solutions. The stress line 
optimization method is a method offering the possibility of creating complex structures, 
without significant loss of material, thanks to homogeneous and efficient structural layout. 
However, the solutions produced are not competitive with those of other methods in the 
study of simple structures. On the other hand, this method only uses simple operations unlike 
algorithms minimizing the volume. Thus, it finds its usefulness in problems aimed at finding a 
structurally efficient layout for a large number of elements. 
 
Key words : Topology optimization, Layout optimization, Stress lines, Frame structure, Truss, 
Simplification, Constructability. 
 
 

Résumé : 
 
Avec le développement de l’instrumentation informatique, il est aujourd’hui devenu possible 
d’intégrer au processus de conception, des outils d’optimisation et de form-finding. Cela 
permettrait de répondre à des problèmes complexes par des résolutions efficaces et flexibles. 
Cela nécessite toutefois une compréhension du processus et du domaine d’application de ces 
outils. 
Pour cette raison, ce travail vise à étudier la mise en œuvre de la méthode d’optimisation par 

les lignes de contraintes ainsi que les limites de cette méthode, et la qualité de ses solutions. 

La méthode d’optimisation par les lignes de contraintes est une méthode offrant la possibilité 

de créer des structure complexes, sans perte de matière conséquente, grâce à une disposition 

homogène et efficace des éléments. Les solutions produites ne sont toutefois pas 

compétitives avec les autres méthodes pour des structures simples. D’autre part, cette 

méthode n’emploie que des opérations simples contrairement aux algorithmes minimisant le 

volume. Ainsi, elle trouve son utilité dans des problématiques visant à trouver une disposition 

structurellement efficace pour un grand nombre d’éléments. 

Mots clés : Optimisation topologique, Optimisation géométrique, Lignes de contraintes, 
Structures filaires, Poutres treillis 2D, Simplification, Constructibilité. 

 
 
 
 



Introduction : 
L’instrumentation informatique des activités de conception offre aujourd’hui une liberté plus 
large aux architectes et ingénieurs, ainsi que la possibilité de concevoir leurs projets de 
manière plus responsable. Ainsi, ces dernières décennies ont vu le développement des 
méthodes form-finding et d’optimisation topologique (optimisation du volume), permettant 
de trouver des solutions structurelles minimisant la quantité de matière, en la disposant là où 
elle est nécessaire. Ces méthodes sont diverses et variées, à la fois dans leur mise en œuvre 
et dans les solutions qu’elles apportent. 
 

Ainsi, elles ne sont pas toutes transposables à l’architecture. Beaucoup de ces méthodes 
produisent des formes complexes, trop complexes pour pouvoir être construites. La plupart 
de ces méthodes ont été développées, dans un premier lieu, pour un usage d’ingénierie 
mécanique (aviation, aérospatial, etc), dans un contexte où la perte de poids se traduit 
directement par une économie sur le long terme (carburant). Les pièces visées par cette 
optimisation sont généralement de petites tailles et produites grâces à des machines.  
 
 Toutefois, en architecture, l’échelle des formes 
à optimiser est bien plus importante, et celles-
ci ne peuvent être produites simplement. 
L’optimisation du volume n’est donc pas, dans 
ce contexte, l’unique critère. La complexité des 
solutions, la difficulté associée à leur mise en 
œuvre, est un facteur tout aussi important. En 
effet, dans le bâtiment, il est souvent plus 
économique de créer un élément très 
volumineux plutôt qu’un ensemble d’éléments 
moins volumineux, mais plus complexe à mettre 
en œuvre. La Figure 3 illustre une solution 
d’optimisation topologique pour une dalle sur 3 
points d’appuis dont la mise à œuvre à nécessité 
de l’impression 3D. 
 
On s’intéressera ici à un type de solutions en 
particulier, jugé plus aptes au domaine de 
l’architecture. Celles-ci fonctionnent avec des 
systèmes de nœuds et de barres permettant 
alors la conception de structures réticulaires, 
ouvrant l’usage de l’optimisation topologique à 
d’autres matériaux comme le bois.  
Bien que ce genre de méthodes soient 
prometteuses, il ne s’agit que de résolutions 
mathématiques et graphiques sans lien avec 
les réalités constructives (Figure 1). Pour 
rendre ces résultats constructibles, il est donc 
important de pouvoir contrôler leur 
complexité tout en conservant un volume 
optimisé (Figure 2). 

 
Figure 1 – Solution type de la méthode issue du plugin 
Peregrine 

 
Figure 2 – Solution après simplification, issue du plugin 
Peregrine 

 
Figure 3 – Illustration issue de (Jipa et al. 2016) 



 
La méthode la plus répandue à ce jour et répondant à ces critères est celle développée par les 
travaux de Matthew Gilbert et LimitState (à l’origine du plugin Peregrine). Toutefois, cette 
méthode nécessite une certaine puissance de calcul avec des solveurs. Elle approche 
l’optimisation par un calcul du volume de la structure que l’on cherche par la suite à minimiser. 
La méthode que l’on propose d’étudier ici, se base sur les lignes de contraintes et permettrait, 
sans solveur et sans calcul du volume, de proposer des solutions optimisées et à la complexité 
ajustable simplement. Cette étude visera à explorer le potentiel et les limites de cette 
méthode, tant dans sa mise en œuvre que dans ses résultats. 
 
Le processus de mise en œuvre de la méthode des lignes de contrainte, ainsi que les théories 
et hypothèses la justifiant, sont présentés dans une première partie. A la suite de laquelle, une 
étude comparative des résultats de cette méthode, avec ceux de Peregrine et des treillis de 
Warren et Howe, est présenté afin de connaître la pertinence et les possibles utilisations du 
travail réalisé ici. 
 
 

Etat de l’art : 
 
Le terme « optimisation topologique » concerne l’ensemble des méthodes visant à connaitre 
la répartition optimale de la matière dans une structure. C’est-à-dire, qu’il s’agit de méthodes 
de form-finding dont l’objectif est de minimiser le volume de matière dans une structure.  
 
La résolution de ce type de problème a commencé 
avant l’invention de l’ordinateur. Il n’était donc pas 
possible de calculer un grand nombre de solutions 
pour conserver la plus optimale. Ces résolutions 
étaient faites à la main, à partir d’observations du 
comportement des structures, afin d’en faire 
ressortir des propriétés permettant d’optimiser les 
structures à moindre coût.  Une des plus notables 
étant celle de (Michell 1904). Il inventa ce que l’on 
appelle aujourd’hui un treillis de Michell (Figure 4).  
 Il avança qu’une structure est la plus optimisée 
possible lorsque, sous chargement, la variation de contrainte subit par tous les éléments de la 
structure est proportionnelle à leurs longueurs. C’est-à-dire que la variation du taux de travail 
est identique pour tous les éléments. Il s’agit là d’une propriété importante de l’optimisation 
topologique puisque cela signifie, que dans une structure optimisée, indépendamment du 
chargement subit, Il n’y a pas d’éléments travaillant moins que les autres et donc possédant 
un surplus de matière. 
De cette propriété, il est possible d’en déduire plusieurs autres, qui permettent de 
grandement simplifier les calculs nécessaires dans la mise en œuvre des méthodes 
d’optimisation de la disposition des éléments. On notera que ces propriétés ont été prouvé 
mathématiquement par Michell. On peut donc se rapprocher des travaux de (Decker et al. 
2018) qui ont mis en pratique les propriétés avancées par Michell en réalisant des essais 
mécaniques. Ces essais réalisés pour plusieurs niveaux de complexité de treillis de Michell, ont 

 
Figure 4 – Treillis de Michell (Mazurek, A., Baker, 

W.F. & Tort, C. Geometrical aspects of optimum 

truss like structures. 2011) 



permis de prouver que les propriétés avancées étaient valables dans le domaine élastique et 
étaient justes pour tout niveau de complexité. 
 
Avec le développement des technologies associé à des puissances de calculs plus importantes 
et accessibles, les années 1990-2000 ont été marquées par le développement de beaucoup 
de recherches sur l’optimisation topologique. A cette époque, les travaux d’individus comme 
Ole Sigmund ont permis de généraliser et rendre plus accessible le savoir sur l’optimisation 
topologique, notamment avec des ouvrages comme « Topology Optimization : Theory, 
Methods and Applications » (Bendsøe et Sigmund 2003). Associé à ce partage de 
connaissance, un travail important sur l’efficacité et la rapidité des méthodes d’optimisation 
topologique a été effectué, comme présenté par (Sigmund 2001), « A 99 Line Topology 
Optimization Code Written in MATLAB. Structural and Multidisciplinary Optimization » ou 
(Andreassen et al. 2011), « Efficient topology optimization in MATLAB using 88 lines of code ». 
Cela a permis d’intégrer cet outil au processus de conception en ingénierie mécanique, tout 
particulièrement en aéronautique et aérospatial. Cet effort pour rendre accessible ces outils 
de conception a permis par la suite, le développement de beaucoup de méthodes différentes 
aux usages variés. Ainsi, on a vu, au cours de ces dernières années, un développement de 
l’optimisation topologique appliqué au milieu du bâtiment. 
 
Deux méthodes sont mises en place au cours de cette étude. Celle développée dans le plugin 
Peregrine et qui consiste en un solveur d’équations linéaires. Cette méthode visant un usage 
professionnel servira de témoin pour la méthode développée. Celle-ci, par l’usage des lignes 
de contraintes, vise à fournir des solutions optimisées à moindre coût en ne faisant pas usage 
de solveurs. 
 

Optimisation linéaire : 
Il s’agit de la méthode développée dans le plugin Peregrine (He et al. 2018). Les fondations 
de cette méthode se retrouvent dans beaucoup de méthodes et sont aujourd’hui celles 
utilisées dans la plupart des outils de ce type. 
La méthode d’optimisation linéaire se base sur la résolution d’équations linéaires simples pour 
aboutir à un domaine de solutions voulus. Pour cela, elle part d’une équation à optimiser 
(objectif), pour laquelle on va venir soustraire au domaine de solutions, les domaines de 
solutions d’équations contraintes permettant ainsi de réduire le nombre de solutions pour 
enfin prendre le meilleur possible d’après l’équation à optimiser. 

 
Le système à résoudre pour obtenir la forme optimale est le suivant : 

 

Avec :  
V = volume 
a = section 
l = longueurs 
B = matrice d’équilibre 
f = charge nodal 
q = champs de force 
 

L’équation à optimiser étant celle du volume, avec volume= ∑ longueurs * sections. Bq=f 
signifie que le chargement de la structure, f, doit être égale au champ de force interne, q, de 
la structure selon sa disposition, B. B étant une matrice (nœuds*barres) donnant la relation et 



position de chaque barre les unes avec les autres. Les inégalités servent à dimensionner la 
section en fonction de la charge reprise par la barre en question. 
Ainsi, le volume dépend de la longueur et de la section. Cette dernière dépend des charges 
internes ainsi que des angles. Ainsi, en modifiant le nombre de barres et la position des nœuds, 
on peut minimiser le volume. Il s’agit là du grand principe derrière l’optimisation linéaire. 
Par la suite, la structure se doit d’être simplifier. Pour cela, des nœuds sont fusionnés, les 
barres les moins importantes supprimées. Et enfin les nœuds restant sont déplacés lors d’un 
processus itératif, afin de trouver la disposition des nœuds produisant la structure au volume 
minimum. 
 
 

Méthode des lignes de contraintes : 
Il s’agit d’une méthode peu documentée utilisant comme référence les lignes de contraintes 
(« Stress Lines ») pour obtenir des structures optimisées. Cette méthode partage des points 
communs avec les travaux de Michell et emploie plusieurs propriétés avancées par Michell 
pour son fonctionnement. Une méthode d’optimisation utilisant les lignes de contraintes 
semble avoir été développée pour la première fois par (Li et Chen 2010). On notera que les 
lignes de contraintes sont un dérivé du champ des contraintes principales, qui est un résultat 
employé couramment pour calcul structurel. Il n’est pas exclusif à cette méthode. Au 
contraire, son usage, dans le cadre de l’optimisation topologique, est relativement rare. 
 
Cette méthode a l’avantage d’être relativement simple dans son fonctionnement et de ne 
nécessiter que très peu de calculs, contrairement à la méthode de l’optimisation linéaire. Il 
s’agit de déterminer les lignes de contraintes pour en déduire une structure optimisée. On 
notera qu’il existe un grand nombre de méthodes pour obtenir les lignes de contraintes. Il faut 
dans un premier temps déterminer les contraintes principales dans le système pour ensuite 
créer des lignes continues suivant le champ des contraintes.  
La méthode développée par la suite ne suit les travaux de (Li et Chen 2010) que dans la 
succession des étapes. Leur réalisation est adaptée en fonction des outils et savoir à ma 
disposition. 
 
On peut également se rapprocher des travaux de (Ruiz et Muttoni 2007) sur champs des 
contraintes appliquées à l’optimisation des structures en béton. Bien que la méthode mise en 
œuvre soit quelque peu différente, l’objectif et le résultat obtenu reste intéressant à 
considérer, pour l’utilisation des lignes de contraintes comme méthode d’optimisation. En 
effet, le travail de Ruiz et Muttoni rend compte, par l’emplacement des fissures dans les 
structures en béton, de l’importance de suivre les lignes de contraintes pour optimiser la 
structure. 
 
 
 

  



Problématique / But de la recherche : 
 
Avec l’évolution des outils de conception, les architectes et ingénieurs commencent à avoir 
accès des instruments permettant de concevoir de nouvelles formes, plus complexes, plus 
efficaces et plus responsables.  
Alors que ces outils sont encore étrangers pour beaucoup, il est nécessaire d’en questionner 
les usages ainsi que les principes fonctionnels. En effet, ces outils ne font pas que produire des 
formes. Les solutions fournis sont des structures, calculées et optimisées afin d’en assurer la 
stabilité. 
Le but de cette recherche est donc de développer une des méthodes permettant 
l’optimisation des structures, afin d’en observer les fondements et principes fonctionnels.  
On peut donc poser les problématiques suivantes : 
 

- Comment employer la méthode des lignes de contraintes pour obtenir des structures 
dont la disposition de la matière soit efficace ?  
Pour cela, un algorithme utilisant cette méthode est développé, permettant ainsi de 
remettre en question et de soulever des problématiques sur l’entièreté du processus. 

 
- Quels sont les limites des résultats fournis par cette méthode ? Quel potentiel porte 

cet outil ? Dans quel cadre peut-il être employé ou être favorisé ?  
Pour cela une étude comparative des résultats de la méthode des lignes de contraintes 
avec celle d’optimisation linéaire ainsi que des solutions standards, le tout sur une 
gamme large de complexité, est mise en place. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Résolution du problème d’optimisation topologique avec 
Grasshoppper : 
 

Vue d’ensemble : 
 

Processus traditionnel suivant la résolution par optimisation linéaire : 

a) b) c) d)  
 

Figure 5 – Processus d’optimisation topologique suivant la méthode d’optimisation linéaire 

a) Discrétisation du système 
b) Ajout et retrait de barres  
c) Form-finding : Déplacement des nœuds vers la position optimale 
d) Calcul des sections 

 
 

Processus réalisé suivant la résolution par lignes de contraintes : 

 
 
 
 
 
 
 

a) b)  
 

c)  d)  
Figure 6 – Processus d’optimisation topologique suivant la méthode des lignes de contraintes 

a) Discrétisation 
b) Champs des contraintes  
c) Lignes de contraintes 
d) Déduction de la structure optimisée 



 
 

 
Figure 7 – Schéma de fonctionnement de l’algorithme 



Limitations et contraintes : 
 Dans l’optique de rendre cet algorithme accessible à tous et en faciliter la 
compréhension, aucun plugin autre qu’Anemone n’a été utilisé. Ce choix traduit la volonté de 
vouloir présenter le processus dans son intégralité sans sauter d’étape et en s’efforçant de 
faire face à toutes les problématiques liées à ce genre de projet. Ainsi, afin de répondre à 
certaines problématiques survenues en cours de développement, des hypothèses ont été 
prises. Il n’a pas toujours été possible de justifier ou même vérifier ces hypothèses. Toutefois, 
nous nous efforcerons dans cette rédaction de présenter les raisons derrières ces choix, leurs 
limites et leurs influences sur le processus mis en place. 
 
Au-delà de sauter des étapes ou simplifier des tâches, l’utilisation de plugins présente un 
obstacle dans l’objectif du partage de connaissance. En effet, avec le temps, la disponibilité et 
les versions des plugins évoluent ce qui rendrait l’algorithme présenté ici, valable uniquement 
pour une période limitée. Le seul plugin utilisé est donc Anemone. Il s’agit d’un plugin simple, 
par Mateusz Zwierzycki, permettant la création de boucles itératives. Puisque nous n’utilisons 
pas de plugins, nous n’avons pas accès aux solveurs. On notera que la possibilité d’utiliser 
Matlab ou la librairie Numpy de Python pour avoir accès à un solveur a été écartée par choix. 
D’une part, parce qu’il est plus simple pour un débutant d’installer un plugin et d’autre part, 
par crainte de finir avec un algorithme python visualisé avec grasshopper. J’ai également la 
conviction que pour un individu n’ayant pas de connaissance en programmation, un 
algorithme grasshopper reste plus accessible qu’un algorithme Python ou Matlab. 
 
Afin de simplifier le développement de l’algorithme, son domaine d’utilisation restera 
restreint aux surfaces 2D planes. Il pourrait être généralisé aux surfaces non planes par des 
modifications relativement succinctes mise à part pour la partie attenant aux lignes de 
contraintes qui s’avérerait être un problème plus complexe. L’algorithme serait toutefois 
difficilement adaptable aux géométrie 3D car les calculs deviendraient alors trop lourds pour 
être réalisés avec Grasshopper.  
 
 L’algorithme a été développé sur la base d’une poutre simple, avec un appui simple et un 
appui glissant afin d’avoir un système isostatique1. Ce choix a été fait car nous connaissons les 
résultats à attendre pour une poutre isostatique, ce qui nous permet de vérifier les sorties de 
l’algorithme ainsi que de prendre des hypothèses de résolution allant dans le sens des 
résultats souhaités. Le schéma statique est présenté en Figure 8 et correspond au modèle 
établi en Figure 9. Un chargement asymétrique a été envisagé car la symétrie a tendance à 
simplifier les résultats. Il a été observé qu’en passant d’un chargement symétrique à un 
asymétrique, des problématiques pouvaient apparaitre. Ainsi, ce choix a été fait dans le but 
de mettre en place un algorithme pouvant traiter une variété de systèmes aussi large que 
possible. 

 
1 Le nombre d’inconnues de liaison est égal au nombre d’équations d’équilibre de la statique. Implique qu’il 
n’existe qu’un seul et unique équilibre statique pour le système.  

 
Figure 8 - Schéma statique de la poutre utilisée pour le développement de l’algorithme 



Initialisation et discrétisation :  
 
Cette partie élabore sur les possibilités et les choix afin de traduire le système présenté en 
Figure 8 dans l’optique de sa résolution, c’est-à-dire l’obtention de l’équilibre statique2. Nous 
verrons dans un premier temps les différents types de discrétisations et ce qu’elles impliquent. 
Nous regarderons ensuite l’initialisation tel que mise en place dans l’algorithme. 
 

Initialisation :  
La première étape de l’algorithme consiste en plusieurs entrées humaines, à savoir : 

- La géométrie (surface) de travail. Elle définit les limites géométriques de l’ensemble 
des solutions possibles. 

- Les points d’appuis. Ce sont les points d’ancrage de la structure, les seuls points 
contraints dans leur déplacement. On distingue ici les appuis simples, ne pouvant se 
déplacer, et les appuis glissants, avec un degré de liberté, pouvant se déplacer sur un 
axe. 

- Le chargement. Ici un chargement nodal. On le définit par un point d’application et un 
vecteur associé représentant la valeur et l’orientation de la force considérée. 
 

 
Figure 9 – Sortie Grasshopper des données d’entrées (Surface de travail, points d’appuis et chargement) 

 

Les autres entrées humaines sont le module d’élasticité et les sections (afin de calculer la 
raideur axiale). Or, comme présenté par (Li et Chen 2010), d’après les conditions d’équilibre, 
pour un système d’élément finis à matériaux isotopiques et opérant dans le domaine 
élastique, nous avons les propriétés suivantes : 
 

- Le vecteur de déplacement des points est proportionnel au vecteur de force externe 
(chargement) et est inversement proportionnel à la raideur axiale.  

- Ce qui signifie que les directions du champ des contraintes ne sont affectées ni par la 
valeur du module d’élasticité, ni par la valeur du chargement tant que nous restons 
dans le domaine élastique. 

 
Ces propriétés ont une incidence importante sur la méthode choisie, puisqu’elle implique qu’à 
moins de changer la géométrie de base, les appuis ou la position du chargement, les formes 
sortant de l’algorithme resteront valides. Nous pouvons donc changer de matériaux, ou la 

 
2 On dit d’un système qu’il est en équilibre statique si la résultante des forces dans le système est nulle. C’est-à-
dire, si tous les points du système sont immobiles. 



valeur du chargement sans avoir à refaire de calcul, ce qui en fait un outil particulièrement 
intéressant pour la conception. 
 

Discrétisations :  
La discrétisation est la division d’un domaine continu (ici notre surface) en un grand nombre 
de domaines simples dont l’ensemble reproduit le domaine d’origine (Figure 10). Cela nous 
permet de décomposer des calculs lourds et complexes en un ensemble d’opérations simples. 
Plus concrètement, nous divisions une surface continue (ex : une surface courbe) en un 
assemblage de surfaces simples (souvent des triangles), formant une maille équivalente à la 
surface d’origine. Ici nous traitons une surface rectangle relativement simple que nous 
discrétisons afin de connaitre le comportement interne de cette géométrie. Cette 
décomposition peut être appliquée à n’importe quelle surface pourvu qu’elle soit continue. 
Cette méthode permet donc de traiter un grand nombre de géométries indépendamment de 
leurs complexités. 

 
Figure 10 – Discrétisation du domaine d’étude (rectangle) en un ensemble de domaines simples (triangles) 

 
Nous allons dans un premier temps voire les méthodes « traditionnelles » (pour résolution par 
optimisation linéaire) mises en place dans le cadre de la résolution d’un problème 
d’optimisation topologique. Nous verrons ensuite la méthode mise en place dans l’algorithme. 
En effet, nous verrons dans la partie « Etablir la figure de référence » que les méthodes 
« traditionnelles » ne sont pas adaptées à la méthode mise en place ici. 
 

Méthodes de discrétisation « traditionnelles » : 
Il existe plusieurs méthodes afin de discrétiser, avec des variations selon le but recherché. Le 
type de discrétisation va donc dépendre de la manière dont on cherche à obtenir la figure de 
référence, figure qui sera ensuite traitée et simplifiée pour obtenir le résultat final. D’après les 
études de (Gilbert et Tyas 2003), on peut distinguer deux types de méthodes, en particulier : 
 

- La méthode par retrait de barre (Figure 11) : 
 Cette méthode consiste à créer l’ensemble des barres 
pouvant exister dans le but de retirer celles ne travaillant 
pas par la suite. Tous les nœuds sont donc connectés les 
uns aux autres. 
On peut facilement voir l’inconvénient de cette méthode. 
Le nombre de barres à créer est n(n-1), avec n le nombre 
de nœuds. Cette méthode est donc très lourde en calcul 
et empêche l’implémentation d’un grand nombre de 
nœuds et donc l’obtention de résultats précis. 
 

  

 
Figure 11 – Discrétisation type avec 
tous les nœuds connectés 



 
- La méthode par ajout et retrait (Figure 12) : 

Cette méthode ne connecte que les nœuds à proximité, 
réduisant ainsi massivement la quantité de calculs 
nécessaire. C’est cette méthode qui est généralement 
utilisée dans les algorithmes d’optimisation topologique 
employés de nos jours. Les barres non calculées sont 
extrapolées des déplacements de nœuds à postériori. 
 
Ces méthodes se basent sur la conservation des barres, accompagné d’une recherche de la 
forme optimale par déplacement des nœuds. Cela signifie que les barres se doivent d’être 
correctement simulées. C’est-à-dire qu’avec ces méthodes, on différencie, la résistance axiale 
de compression et de la traction des barres. Ce qui ne sera pas le cas pour la méthode 
employée. 
On notera que le type de discrétisation n’a pas d’influence sur le résultat final, seule la vitesse 
de calcul est impactée. Nous verrons dans la partie sur la figure de référence comment les 
barres peuvent être ajoutées, ainsi que les limitations de la méthode ne la rendant pas 
optimale pour cette résolution. 
 

Méthode mis en œuvre : 
 
Comparé aux méthodes traditionnelles, la méthode réalisée 
ne se focalise pas sur les barres mais sur les mailles en elles-
mêmes. En effet, aucune barre ne sera conservée, elles ne 
serviront qu’à obtenir les efforts internes du domaine 
d’étude. On peut donc se permettre d’avoir la maille la plus 
légère possible afin d’accélérer les calculs (Figure 13).  
 
La méthode mise en œuvre se base sur le champ des contraintes afin de déduire la forme 
optimale. Notre but est donc ici de pouvoir obtenir ce champ. Ce qui signifie que le maillage 
se doit d’être uniforme afin de rester dans le domaine où les propriétés avancées par (Li et 
Chen 2010) restent valides. Celles-ci ont été présentées dans la partie « initialisation », à 
savoir se placer dans un système d’élément finis à matériaux isotopiques et opérant dans le 
domaine élastique.  
Cela signifie également qu’ici nous ne prenons pas une résistance axiale de compression et de 
traction différente pour les barres car nous avons besoin que le domaine soit isotrope. Nous 
pouvons faire cela car ces barres ne sont pas conservées, donc leur comportement n’a pas 
besoin d’être réaliste. Nous établirons par la suite deux champs de contraintes, 
respectivement en traction et en compression, séparant ainsi les directions associées à l’un et 
à l’autre. 
Le domaine d’étude étant isotrope, les directions du champ des contraintes ne sont pas 
affectées par la valeur du module d’élasticité, nous pourrons donc associer, à postériori, des 
résistances différentes aux barres issues de chaque champ sans pour autant s’éloigner de la 
disposition optimale.  
 

 
Figure 12 – Discrétisation type pour 

ajout et retrait  

 

Figure 13 – Discrétisation utilisée  



Triangulation et stabilité : 
On notera également qu’indépendamment de la méthode nous cherchons à avoir une maille 
constituée de triangles. La raison est simple, une maille constituée de rectangle est instable. 
Comme le présente (Gilbert et Tyas 2003), il est possible de s’affranchir de la triangulation 
tant que les mailles connectant le chargement aux appuis sont triangulées. Dans notre cas, 
puisque nous nécessitons d’avoir un maillage uniforme il est nécessaire que cette 
triangulation soit présente partout. 
 

 

Figure 14 – Déformation de la maille carrée à un temps t  

 

Figure 15 - Déformation de la maille rectangulaire à l’équilibre 

 
La Figure 14 présente la déformation du système établie dans le cas d’une maille 
uniquement constituée de carrés. Cette maille instable se déformera jusqu’à ce que l’appuis 
glissant (à droite) atteigne l’autre appui. La Figure 15 présente la déformation pour une 
maille, cette fois, triangulaire. On observe que la triangulation rend la maille rigide et lui 
permet d’atteindre un équilibre statique après une légère déformation. 
 

Algorithme :  

 
Figure 16 – Discrétisation mise en œuvre dans l’algorithme 

On notera dans la Figure 16, que la maille a été élargie par rapport au domaine d’étude. Cela 
est dû au fait que pour obtenir les lignes de contraintes, une extrapolation du champ de 
contraintes sur les bords du domaine était nécessaire mais complexe à réaliser 
qualitativement. Il a donc été choisi d’élargir le domaine d’étude dans les premières étapes 
afin d’obtenir les valeurs manquantes. 

 
 
 
 
 



Résolution du système : 
 
L’objectif de cette étape est de résoudre le système établi, c’est-à-dire obtenir la position de 
l’équilibre statique du système. A partir de cela, il est possible de déduire la déformation du 
système sous les contraintes établies.  
La méthode de calcul qui a été choisie pour trouver cette position d’équilibre est la méthode 
de la relaxation dynamique. Il s’agit d’une méthode de calcul en grand déplacement alors que 
la méthode traditionnellement utilisé est une méthode de calcul linéaire3. Cette dernière 
nécessite un solveur. On emploie ici la relaxation dynamique, bien que plus lourde en calculs, 
elle ne nécessite que la mise en place d’un processus itératif. 

En employant la seconde loi de Newton (∑ 𝐹⃗ = 𝑚 ∗ 𝑎⃗), il est possible de connaitre la vitesse 
et donc la position à un instant t de chaque point dans le système. Le processus itératif calcule 
donc le déplacement de chaque point dans le temps jusqu’à que ces derniers atteignent un 
équilibre statique, c’est-à-dire, qu’ils soient parfaitement immobiles. 
L’algorithme mis en place a été conçu par Marc Leyral et est issus du travail (Leyral, Ebode, et 
al. 2021). 
 
 
 

Relaxation Dynamique 
 
Il s’agit d’une méthode de calcul combinant des calculs simples de la physique newtonienne, 
et un processus itératif. L’objectif est de trouver la position d’équilibre du système, c’est-à-
dire de la géométrie fournie, reposant sur les appuis désignés et soumise à un ensemble de 
charges. En effet, la géométrie qui est fournie à l’algorithme, n’a pas atteint sa position 
d’équilibre. De la même manière, qu’une poutre préfabriquée après avoir été posée et mise 
en charge, va se déformer très légèrement, notre géométrie, sous les conditions du système 
établi (appuis et charges) va bouger et se déformer pour atteindre sa position naturelle. 

Au cour du processus itératif, à l’instant t, la position des nœuds à l’instant t+1 est calculée 
grâce à la 2ème Loi de Newton (principe fondamental de la dynamique, cf formule ci-dessous). 
D’après cette dernière, l’accélération d’un corps est proportionnelle à la somme des forces 
appliquées sur ce dernier et inversement proportionnelle à sa masse. Cela nous permet de 

calculer l'accélération fictive de tous les points de la maille : ∑ 𝐹⃗ = 𝑚 ∗ 𝑎⃗    →   𝑎⃗  =
∑ 𝐹⃗

𝑚
 

 
3 Il existe 3 grandes méthodes de calculs : l’analyse linéaire, non linéaire selon la théorie du second ordre et 
l’analyse en grands déplacements. 

L’analyse linéaire (premier ordre), comme son nom l’indique, se base des fonctions linéaires, c’est-à-
dire la relation physique entre une valeur initiale x et une valeur de résultat y. L’analyse se fait sur une structure 
non déformée. 

L’analyse du second ordre, comparée à l’analyse linéaire, prend en compte les effets d’instabilité dus au 
chargement. L’analyse se fait sur une structure déformée mais dont les déformations sont supposées petites. 
Par exemple, les efforts normaux entrainent généralement une augmentation des moments fléchissant. On 
notera que les structures en bois sont généralement calculées par analyse linéaire, mais il reste intéressant de 
comprendre et de savoir qu’ils existent différentes méthodes de calculs ayant différentes implications. 
 L’analyse statique en grand déplacements se fait sur une structure déformée dont les déformées sont 
supposées grandes. Il s’agit d’une méthode itérative. 



Dans notre cas, il existe trois forces qui agissent aux nœuds : 

- Le chargement nodal,  

- Le poids propre appliqué aux nœuds (𝐹⃗ = 𝑚 ∗ 𝑔⃗), où m est la somme des poids des 
demi-barres connectées à chaque nœud, 

- La force de Hooke dans chaque élément, proportionnelle à la raideur axial (EA) et à la 

déformation (∆𝐿 = 𝐿 − 𝐿0), tel que (𝐹⃗ = 𝐸𝐴 ∗ ∆𝐿⃗⃗ ⃗⃗⃗). Elle modélise le comportement 
élastique des barres, se comprimant lorsque ∆𝐿 < 0 et s’allongeant lorsque ∆𝐿 > 0. 
Elle reste valide lorsque les déformations restent faibles, c’est-à-dire lorsque les barres 
restent dans le domaine élastique. Si les déformations deviennent trop importantes 
alors les barres entrent dans le domaine plastique et les déformations sont censées 
être irréversible, invalidant donc la loi. Elle permet d’assurer l’équilibre de chaque 
nœud en apportant une rigidité au système. 

Une fois l’accélération 𝑎𝑡⃗⃗ ⃗⃗  à un instant fictif t calculée, et connaissant la vitesse initiale 𝑣𝑡⃗⃗ ⃗⃗  au 
même instant, on déduit la vitesse 𝑣𝑡+𝑑𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ de chaque nœud à l’instant suivant t + dt.  On obtient, 
par dérivation de la vitesse, le déplacement de chaque nœud durant la durée dt. 
 
Nous obtenons alors les positions de chaque nœud à l'instant t + dt. L’opération est reproduite 
jusqu'à parvenir à un équilibre statique de la structure. Cet équilibre implique l’absence de 
mouvement macroscopique de la structure. Cela signifie que la somme des forces extérieurs 
(chargement et réactions d’appuis) est égal à 0, tel que : 
 

∑ 𝐹𝑒𝑥𝑡/𝑥 = 0,  ∑ 𝐹𝑒𝑥𝑡/𝑦 = 0   et  ∑ 𝑀𝑒𝑥𝑡/𝑦 = 0,  les conditions d’équilibre statique 

 
Le système étant constitué entièrement d’articulations, aucun moment n’est transféré au sein 
du système. Lorsque ces conditions sont satisfaites pour la structure considérée globalement. 
Cela signifie également que les équations de la statique sont satisfaites pour chaque portion, 
chaque maille du domaine étudiée.  
 
 Toutefois, le système établi est constitué de rotules parfaites et ne contient aucun moyen de 
dissiper son énergie, comme la viscosité de l’air. Cela signifie qu’il est contraint d’osciller 
autour de sa position d’équilibre tel un pendule indéfiniment. Il est donc nécessaire de 
rajouter un amortissement dans le système, c’est-à-dire, un moyen de dissiper entièrement 
l’énergie totale du système. 

 
 Pour cela, la méthode avancée par (Barnes 1999) est mise en œuvre. Barnes montre qu’il est 
possible de dissiper l’énergie cinétique en annulant toutes les vitesses des nœuds lorsque 
l’énergie cinétique commence à décroître. En effet, cela signifie qu’elle a atteint un maximum 
local et, donc, l’énergie potentielle est minimale : la structure est proche de sa forme 
d’équilibre.  



 On peut faire le parallèle à un pendule qui oscille. Lorsque 
le pendule est au plus haut, sa vitesse est nulle et l’énergie 
potentielle est maximale. Le pendule accélère ensuite sur 
sa descente, avant d’atteindre le point plus bas (le point 
d’équilibre). En ce point, l’énergie cinétique est maximale, 
tandis que l’énergie potentielle est minimale. Si le 
pendule continu, il va remonter et donc perdre en vitesse. 
L’énergie cinétique va donc décroitre. En annulant les 
vitesses lorsque que celles-ci commencent à décroitre, on 
dissipe l’énergie cinétique du système au plus proche de 
sa position d’équilibre. Lorsque toute l’énergie est 
dissipée, le système est à l’équilibre. Il est important que 
l’amortissement se fasse au plus proche de la position 
d’équilibre car les vitesses permettent le déplacement et 
la déformation du système vers cette même position. Ainsi si la vitesse est annulée loin de la 
position d’équilibre, atteindre cette dernière va demander plus de temps. 
 
 

Forces et déformations : 
 
Il est possible de déduire la déformation de chaque barre ainsi que la force associée à cette 
déformation en comparant la maille à l’équilibre à celle d’origine.  
 
La déformation d’une barre est donnée par : 

  𝜀 =  
𝐿−𝐿0

𝐿0
 ,  où 𝐿 est la longueur de la barre dans le modèle à l’équilibre, 

 et 𝐿0 est la longueur de la barre dans le modèle d’origine. 

 
Figure 18 - Champs des déformations 

De foncer à claire, fortes à faibles déformations 

 

On observe ici (Figure 18) le comportement attendu d’une poutre isostatique fonctionnant 
en flexion, avec des déformations importantes sur les fibres inférieures et supérieures. Et 
peu de déformations en fibre neutre et autour des appuis. 

On notera que les distances L et L0 peuvent être obtenues pour des barres n’existant pas, 
simplement en calculant la distance entre deux points. De cette manière on peut obtenir la 
déformation de barres n’ayant pas été calculés. C’est le principe derrière la méthode d’ajout 

 
Figure 17 - Énergie cinétique d’une 
relaxation dynamique avec 
amortissement visqueux 



présentée dans la partie « discrétisation ». Cela permet donc d’économiser énormément en 
temps de calcul. 

Pour déterminer le champ de forces, on considère la maille du système, issu de la relaxation 
dynamique, comme un mécanisme. C’est-à-dire, un assemblage de pièces subissant une 
déformation élastique car étant soumises à des actions mécaniques d’intensité variable. Afin 
d’obtenir le champ de force, le système est donc assimilé à un assemblage de masse (nœuds) 
et ressort (barres) fonctionnant en traction/compression. Ce mécanisme nous permet 
d’établir un lien de proportionnalité entre l’allongement et la force. Ce lien est donné par la 
loi de Hooke : 
 

𝐹 = 𝑘 ∗ ∆𝐿  , avec k la constante de raideur de ressort, 

D’où,  𝐹 = 𝐸𝐴 ∗
𝐿−𝐿0

𝐿0
  , avec E le module de Young, A la section 

 
En effet, si une barre est raccourcie à l’équilibre alors elle est en compression. A l’opposé si 
elle s’allonge elle est en traction. On obtient donc des efforts négatifs en compression et 
positif en traction. 

 
Figure 19 – Champs de forces 

De foncer à claire, forts à faibles efforts. Bleu = compression. Rouge = traction. 

 

On observe ici (Figure 19) le comportement attendu d’une poutre isostatique fonctionnant 
en flexion, avec une fibre supérieure en compression et une fibre inférieure en traction. 
Ainsi, que des pics de compression au droit des appuis. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Etablir la figure de référence : 
On définit comme la figure de référence, la structure la plus optimisée possible, celle 
possédant le minimum de volume de matière possible parmi l’ensemble des solutions 
possibles. Cette structure est ensuite simplifiée afin d’être rendue constructible. Cette 
simplification s’accompagne par un accroissement du volume. 
 La structure la plus optimisée  tel qu’avancé par (Michell 1904)  et contient un nombre infini 
de barres, infiniment fines et reprenant des efforts infiniment faibles. Ces solutions produisent 
les structures dont le volume de matériaux est le plus proche de la limite mathématique 
(minimum). Cette structure est en réalité une forme du champ des contraintes (Figure 20). Ce 
dernier étant continu, il est possible d’attribuer en tous points du domaine, un tenseur de 
contraintes contenant les directions et les valeurs des contraintes en ces points. 
 La méthode mise en œuvre est directement déduite de cette figure de référence optimale 
par interpolation du champ des contraintes. Seulement une proportion nécessaire de ces 
lignes sont tracées (Figure 21) afin d’obtenir une figure de référence exploitable. 
 Dans le cas de l’optimisation linéaire, la figure de référence est obtenue avec l’ajout et le 
retrait des barres puis par la déformation de la structure (déplacement des nœuds) afin de 
suivre les directions de la figure de référence optimale. La complexité de la structure produite 
dépend du nombre de points créés lors de la discrétisation (Figure 22). Ainsi, théoriquement, 
plus le nombre de points est grand plus la figure de référence sera précise et de faible volume.  

 

 
Figure 20 – Champs des contraintes principales 

Le champ est séparé en traction (rouge) et compression (bleu) 

 
Figure 21 – Figure de référence type lignes de contraintes produit par l’algorithme créer 

 

 
Figure 22 – Figure de référence type produit par un algorithme utilisant l’optimisation linéaire (Plugin 
Peregrine) 

Ici la forme est déjà relativement simplifiée. Cela est due au fait que le plugin dans sa version non payante 
limite le nombre de barres. 



Méthode « traditionnelle » : 
La méthode généralement employée, dans le cadre d’un algorithme d’optimisation linéaire, 
afin d’obtenir la figure de référence consiste à ajouter et retirer des barres (Gilbert et Tyas 
2003) dans le système discrétisé jusqu’à atteindre une disposition optimale. Les nœuds sont 
ensuite déplacés afin que les directions des barres soient avec le parcours des efforts dans le 
système. 
 
La Figure 23 présente une tentative de mise en place de cette méthode après avoir établie le 
champ de force (Figure 19). Le résultat est celui auquel on peut s’attendre. C’est-à-dire que 
les barres restantes (celles reprenant des efforts relativement importants) se situent en fibre 
supérieur, inférieur, au point de chargement et aux appuis. Tandis qu’en fibre neutre (au 
centre), il ne reste quasiment plus aucun membre. Ce résultat traduit donc une réalité 
physique tout en restant très loin du résultat souhaité. Pour atteindre notre objectif ici, il 
faudrait mettre en place un filtre permettant de retirer les barres adjacentes et parallèle. 
Toutefois, même une fois cela réalisé, il faudrait encore s’assurer que les barres restantes 
soient encore connectées. Ces étapes à la fois lourdes en calculs et dont l’efficacité, ainsi que 
la validité sont à interroger, ne semblent donc pas être une piste satisfaisante de résolution.  
Il est à ce stade plus judicieux de s’éloigner des méthodes « traditionnelles » au profit de 
méthodes moins efficaces mais plus simples à implémenter au sein de l’algorithme développé, 
et dont nous pouvons justifier la validité. 
 

 
Figure 23 – Résultat de l’algorithme après retrait des barres à effort faible 

 
 
 
 
 
 
 
 
 
 



Méthode des lignes de contraintes : 
La méthode étudiée par (Kam-Ming Mark Tam et Mueller 2015) et (Li et Chen 2010) se servant 
de lignes de contraintes afin de construire une structure optimisé se prête tout 
particulièrement à une adaptation sur Grasshopper. Cette méthode possède plusieurs 
avantages majeurs : 

- Les calculs lourds sont réalisés en amont, ce qui permet d’avoir une phase finale 
(création de la structure) dont les calculs sont quasi-instantanés. 

- Elle ne nécessite pas de retour en arrière. Ce qui signifie qu’une fois les étapes 
préliminaires (lignes de contraintes) calculées, elle donne accès à un large ensemble 
de solutions sans nécessiter de calculs supplémentaires. 

- Elle est très visuelle (Figure 39) et permet à l’utilisateur de pouvoir choisir le degré de 
simplicité de la structure résultante avec facilité. 

 
Cette méthode se décompose en 3 parties : 

- Etablir le champ des contraintes principales (Figure 20). C’est-à-dire déterminer les 
directions et valeurs des efforts dans le domaine. Les directions correspondent aux 
valeurs telles que la contrainte principale est maximale, et donc que le cisaillement est 
minimal. Il s’agit donc de la direction pour laquelle la reprise d’effort est la plus efficace 
pour le matériau. Le champ obtenu étant continu, on peut donc connaitre le vecteur 
de contrainte en tout point.  

- Tracer les lignes de contraintes par interpolation (Figure 21). Cette étape permet de 
pouvoir créer des continuités entre les éléments et donc de s’assurer que la structure 
suit le champ des contrainte. 

- Tracer la structure à partir des lignes de contraintes. Les nœuds se trouvent à 
l’intersection entre les lignes de contraintes en traction et celle en compression, ce qui 
permet de s’assurer de la position optimale des points et que les barres suivent les 
directions du champ de contraintes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Champs des contraintes : 
 
Le champ des contraintes (principales) est un champ de vecteurs indiquant la direction et la 
valeur des contraintes principales dans le système. Les contraintes principales sont les 
contraintes normales pour lesquelles les contraintes tangentielles sont nulles4. Le champ des 
contraintes principales peut être déterminer par opération sur le champ de force établie 
(Figure 25).  
Ces directions seraient donc celle optimales pour la reprise d’effort. Cela implique que les 
éléments suivant ces directions ne travaillent qu’en compression ou traction et ne 
reprennent donc pas d’efforts tranchants. Les matériaux comme le bois possèdent une 
résistance particulièrement faible à ce genre d’effort orthogonaux. Ainsi en s’assurant que 
les matériaux ne reprennent que des efforts pour lesquelles ils sont naturellement résistant, 
la quantité de matière nécessaire s’en voit réduit. 
 
Une des méthodes afin d’obtenir le champ des contraintes est 
de tracer le cercle de Mohr (Figure 24) et d’y lire les contraintes 
principales et secondaires ainsi que la contrainte de 
cisaillement. Ou encore de diagonaliser le tenseur des 
contraintes. Toutefois, cela implique des opérations lourdes en 
calculs. 
La méthode mise en place est celle développé par (Leyral, Chef, 
et al. 2021). Cette méthode permet, à moindre coût, d’estimer 
la direction et la valeur de la contrainte principale. Elle ne 
calcule pas les contraintes et se sert de la propriété selon 
laquelle, la contrainte principale (σI) correspond à un 
maximum de la contrainte et qu’à cette contrainte est associé 
une contrainte de cisaillement nulle (τ) (Figure 24). 
 

 
4 En théorie, les contraintes principales sont les contraintes pour lesquelles il existe une base 
orthonormale (Figure 25.c) tel que le tenseur des contraintes est une matrice diagonale.  
 

Soit, (
𝜎𝑥𝑥 𝜏𝑥𝑦

𝜏𝑦𝑥 𝜎𝑦𝑦
) le tenseur de contraintes, avec 𝜎𝑥𝑥 et 𝜎𝑦𝑦 les contraintes normales et 𝜏𝑦𝑥 =

𝜏𝑥𝑦 (car le tenseur des contraintes est toujours symétrique) la contrainte de cisaillement. 

 
Toute matrice symétrique réelle étant diagonalisable, on a l’existence du tenseur suivant : 

(
𝜎𝐼 0
0 𝜎𝐼𝐼

), pour lequel 𝜎𝐼  et 𝜎𝐼𝐼 sont les contraintes principales et les contraintes de 

cisaillement sont nulles. 
 
Cela signifie qu’il existe des vecteurs propres correspondant aux directions principales des 
contraintes et des valeurs propres correspondant aux contraintes principales. 
 

 
Figure 24 - Cercle de Mohr 



Comme on l’a vu précédemment, à l’équilibre, les 
équations de la statique sont satisfaites dans toutes les 
mailles du système. Ainsi, il est possible de traiter 
chaque maille individuellement et donc de se ramener 
à un système simple contenant 3 barres et 3 nœuds. 
 
Le champ de forces (Figure 25.a), fournit les forces 
associées à chaque barre. Or les conditions d’équilibres 
statiques donnent, pour toutes mailles : 

𝐹12 + 𝐹23 + 𝐹13 = 0 
Cela implique qu’il existe une force de signe opposé et 
équivalente à la somme des deux autres. 
 
On cherche d’abord à connaitre la réaction à chaque 
nœud (Figure 25.b) dans la maille étudiée afin de 
connaitre la réaction maximale. En effet, dans un 
système à 3 nœuds la réaction maximale 
correspondrait à la contrainte principale (cela étant 
valable uniquement dans un système à 3 nœuds). 
 
Cela est dû au fait que les conditions d’équilibres 
statiques nous donnent : 

𝐹1
⃗⃗ ⃗⃗ + 𝐹2

⃗⃗ ⃗⃗ + 𝐹3
⃗⃗ ⃗⃗ = 0 

 
Considérons une base orthonormée (𝑢⃗⃗, 𝑣⃗) sur laquelle 

les vecteurs 𝐹1
⃗⃗ ⃗⃗ , 𝐹2

⃗⃗ ⃗⃗ , 𝐹3
⃗⃗ ⃗⃗  sont projetables, comme celles 

présentées en Figure 25.c. 
L’orientation de cette base sera celle de la contrainte 
principale. On cherche donc les orientations de cette 
base tel que la projection des forces sur celle-ci donne 
la valeur maximum, celle-ci sera la contrainte 
principale. 
Par produit vectoriel on peut écrire l’équation suivante 
:   

𝐹1
⃗⃗ ⃗⃗ . 𝑢⃗⃗ + 𝐹2

⃗⃗ ⃗⃗ . 𝑢⃗⃗ + 𝐹3
⃗⃗ ⃗⃗ . 𝑢⃗⃗ = 0. 𝑢⃗⃗ 

 
Par projection sur (𝑢⃗⃗, 𝑣⃗), il est possible d’écrire les 
forces de la façon suivante : 

𝐹⃗ = 𝐹. 𝑐𝑜𝑠𝛼. 𝑢⃗⃗ + 𝐹. 𝑠𝑖𝑛𝛼. 𝑣⃗,  avec α l’angle entre 𝐹⃗ et 
𝑢⃗⃗. 
 

On obtient donc (en sachant que  𝑢⃗⃗. 𝑢⃗⃗ = 1 et 𝑢⃗⃗. 𝑣⃗ = 0) : 
𝐹1. 𝑐𝑜𝑠𝛾. 𝑢⃗⃗ + 𝐹2. 𝑐𝑜𝑠𝛽. 𝑢⃗⃗ + 𝐹3. 𝑐𝑜𝑠𝛼. 𝑢⃗⃗ = 0. 𝑢⃗⃗ 

, avec (α,β,γ) les angles entre les forces et l’axe 𝑢⃗⃗. 
 
Posons maintenant, F3 > F2, F1.   

a)     

b)    

c)            

d)             
Figure 25 – Processus de calcul du champ de 

contraintes à partir du champ de forces 

a) Forces des barres dans une maille 
b) Calcul des réactions aux nœuds 
c) Projection des réactions dans le référentiel 

de la plus grande réaction 

d) Contraintes principales associées à la maille 



Ce qui signifie d’après les conditions d’équilibre l’équation suivante est vérifiée pour tout α : 
𝐹3. 𝑐𝑜𝑠𝛼. 𝑢⃗⃗ = 𝐹1. cos(𝛼 + 𝑖) . 𝑢⃗⃗ + 𝐹2. cos (𝛼 + 𝑗). 𝑢⃗⃗  

, avec 𝛼 l’angle entre 𝐹3
⃗⃗ ⃗⃗  et 𝑢⃗⃗ et (i,j) les angles entre 𝐹1

⃗⃗ ⃗⃗ , 𝐹3
⃗⃗ ⃗⃗  et 𝐹2

⃗⃗ ⃗⃗ , 𝐹3
⃗⃗ ⃗⃗ . 

 
𝐹3 Étant une constante on obtient le résultat suivant :  

max
−

𝜋

2
≤𝛼≤

𝜋

2

(𝐹3. 𝑐𝑜𝑠𝛼) =  𝐹3  , avec α=0 

C’est-à-dire que la valeur maximum pouvant être atteinte (contrainte principale) est donc 

celle pour laquelle l’angle entre 𝐹3
⃗⃗ ⃗⃗  et 𝑢⃗⃗  est α=0. La contrainte principale est donc égale à la 

réaction maximale dans un triangle et son orientation est celle de cette dernière. On peut en 
déduire par projection sur 𝑣⃗ la contrainte principale secondaire (Figure 25.d).5  
 
La méthode mise en place ici est donc une méthode rapide et très légère en calculs permettant 
l’obtention du champ des contraintes dans un système constitué de triangles. Les limites de 
cette méthode sont qu’elle ne fonctionne que pour des triangles et qu’elle ne permet 
d’obtenir la contrainte de cisaillement. 
 
A noter que la contrainte de cisaillement est bien nulle lorsque l’on suit le champ de contrainte 
principale et n’est donc pas nécessaire ici. Toutefois, lorsque la structure simplifiée sera 
dessinée, celle-ci ne suivra pas parfaitement le champ des contraintes et subira donc une 
contrainte de cisaillement. Bien que ce processus ait pour but de minimiser cette dernière il 
reste intéressant de pouvoir la mesurer. 
 
Le champ des contraintes ainsi obtenu, contient les contraintes principales ainsi que les 
contraintes principales secondaires (perpendiculaires aux contraintes principales). Toutefois, 
il ne différencie pas entre traction et compression. Puisque nous cherchons à déterminer la 
disposition des éléments d’une structure à partir de ce champ, il est préférable de séparer le 
champ non pas en contraintes principales et secondaires mais en contraintes de compression 
et de traction (Figure 26). 
 

 
Figure 26 – Champs des contraintes principales 

Le champ est séparé en traction (rouge) et compression (bleu) 
 

 
5 Clarification Force-Contrainte : Dans cette partie nous parlons dans un premier temps de forces puis de 
contraintes, sans établir de lien entre les deux. La raison est linéarité entre les deux. En effet, la force s’écrie 
𝐹 = 𝜎𝑆 avec σ la contrainte et S la section des barres. Lors de la relaxation dynamique nous avons attribué des 
sections S aux barres. Celles-ci, par la loi de Hooke définissent la raideur axiale des barres. Or comme vu p. 11, 
la raideur et donc la section n’a pas d’influence sur les directions du champ, seulement sur les valeurs. Ainsi, 
quand nous ne parlons de barres nous privilégions le terme force, et quand nous parlons de mailles (surfaces) 
nous privilégions le terme contrainte.  



Lignes de contraintes – Figure de référence : 
 
Le champ de contraintes indique des directions mais n’est pas exploitable en l’état. Bien qu’il 
soit possible de relier les vecteurs du champ actuelle afin d’obtenir un résultat exploitable, 
comme réalisé dans (Prevost et al. 2022). Ici, la qualité des lignes aura un impact direct sur la 
qualité de la structure. Il est donc nécessaire de mettre en œuvre une méthode permettant 
d’obtenir des lignes de contraintes continues et de qualité. 
La méthode employée est inspirée de celle présentée par (Li et Chen 2010), dans laquelle on 
va chercher à obtenir, par interpolations, les contraintes en tous points du système. 
L’avantage de cette méthode est qu’elle permet d’obtenir une grande précision à partir d’un 
champ de contrainte peu précis. Elle est également plus légère en calcul et s’associe donc très 
bien avec la relaxation dynamique qui est plus lourde en calculs et à tendance à limiter la 
précision de la maille possible. 
Cela permet par la suite, de connecter ces points et trouver des lignes de contraintes 
continues. Celle-ci représente le parcours des efforts dans le système. En théorie, il existe une 
infinité de ces lignes mais de manière pratique, en tracer seulement une certaine proportion 
est suffisant. Ces lignes serviront par la suite de base à la structure optimisée.  
 

Interpolation bilinéaire (Figure 27) : 
Soit un point R, pour lequel on cherche à connaitre la 
contrainte principale. Ce point se trouve dans une maille 
rectangulaire, dont à chaque coin est attribué une contrainte 
(𝜎𝐴⃗⃗⃗⃗⃗, 𝜎𝐵⃗⃗⃗⃗⃗, 𝜎𝐶⃗⃗⃗⃗⃗, 𝜎𝐷⃗⃗ ⃗⃗⃗). 
On procède par interpolation bilinéaire pour obtenir la 
contrainte en R. C’est-à-dire, par interpolation linéaire sur A et 
B pour obtenir R1, puis sur C et D pour obtenir R2 et enfin sur R1 
et R2 pour obtenir R. 
 
La formule de l’interpolation linéaire est la suivante (appliqué 
ici à R1) : 

𝜎𝑅1⃗⃗ ⃗⃗ ⃗⃗⃗ =  𝜎𝐴⃗⃗⃗⃗⃗.
(𝑥 − 𝑥1)

(𝑥2 − 𝑥1)
+ 𝜎𝐵⃗⃗⃗⃗⃗.

(𝑥2 − 𝑥)

(𝑥2 − 𝑥1)
 

 
C’est pour cette méthode que la maille lors de la discrétisation a été élargie. Cela nous permet 
de pouvoir déterminer les contraintes sur les bordures du système sans perdre en précision. 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 27 – Schéma interpolation bilinéaire 



 Continuité par processus itératif : 
 
 Pour accéder à des résultats qualitatifs sans être trop 
lourd en calcul, il est nécessaire d’obtenir des lignes de 
contraintes continues et d’avoir un intervalle constant 
entre celles-ci. 
Pour cela, au lieu de connecter des points déjà existants, il 
est préférable de partir de points de base appartenant à 
différentes lignes de contraintes puis de trouver la position 
des points formant ces lignes à partir des points de bases 
(Figure 28). 
Ainsi la distance entre les points de base donnera 
l’intervalle entre les lignes de contraintes tracées. Les 
points suivants sont déterminés par un processus itératif. 
 
On part d’un point Pi-1 auquel on associe une contrainte principale 𝜎𝑖−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  déterminé par 
interpolation bilinéaire. Le point Pi est ensuite déterminé en déplaçant le point Pi-1 d’une 
distance δ suivant la direction de σi-1. On associe alors au point Pi sa contrainte principale 𝜎𝑖⃗⃗⃗ ⃗. 
On peut alors déterminer par un processus itératif tous les points appartenant à une ligne de 
contrainte pour ensuite tracer celle-ci (Figure 29). 
 Ainsi la qualité des lignes tracées peut être contrôlée en modifiant δ. On peut noter qu’un δ 
valant la moitié de la largeur d’une maille semble en général suffisant à obtenir des résultats 
précis sans redondance de calculs. En effet, au-delà d’augmenter la quantité de calcul à 
réaliser, avoir un δ trop faible s’avère être inutile. La perte d’information dû à la taille de la 
maille est en partie récupérée par l’interpolation mais ce n’est le cas qu’à l’échelle de la maille. 
Pour les échelles bien plus petites, l’interpolation ne fournit aucune précision dans ses 
résultats. 
 

 

 
Figure 28 – Schéma du processus itératif 
traçant les lignes de contraintes 

 
Figure 29 – Lignes de contraintes de compression (bleu) et de traction (rouge) tracer pour processus itératif 

 
Figure 30 – Schéma des lignes de contraintes attendus pour le système étudié. Issus de (Tuchscherer, 
Birrcher, et Bayrak 2011) 

 



 Discussion et ouverture : 
 On peut noter que la Figure 29 comporte des anomalies et des vides. Ces anomalies et vides 
empêchent d’obtenir un résultat final qualitatif. La structure tracée étant directement déduite 
des lignes de contraintes, si celles-ci sont de mauvaises qualités alors le résultat final le sera 
aussi. 
Nous verrons dans cette partie le processus mis en place pour résoudre cette problématique, 
sans oublier qu’il s’agit d’une étape lourde en calculs et qu’il est donc nécessaire d’obtenir un 
résultat le plus qualitatif possible en faisant un minimum de calculs. 
 
 Les anomalies (visibles sur le bas de la Figure 
31) sont dues au fait que certains vecteurs ont 
mal été orienté (Figure 32, sur la bordure 
inférieure). La majorité de ces anomalies ont 
pu être éliminées en procédant à une 
correction du champ des contraintes en 
s’assurant que les contraintes soient 
orientées dans le sens des contraintes 
voisines. Toutefois, cela échoue souvent dans 
les zones où le champ varie fortement, 
comme les coins ou le centre. Comme, indiqué 
en Figure 25.d, la direction de la contrainte 
principale est un plan et non un vecteur. On 
choisit d’employer des vecteurs car le 
processus itératif déplaçant les points 
nécessite d’avoir un sens. Le sens de ces 
vecteurs va donc dépendre de la manière dont 
on dispose les points dans le processus 
itératif. Comme on va le voir par la suite, la 
disposition des points est un sujet en soit, 
pour lequel il existe beaucoup de solutions 
possibles. 
 
 
Les vides peuvent être dû au fait que dans ces 
zones le champ de contraintes se dilate 
(Figure 33). Cela se produit très 
régulièrement, mais une solution a pu être 
trouvée. Nous la verrons par la suite. 
Une autre raison peut être la forte variation dans le champ des contraintes (centre de la Figure 
32). Cela se traduit, pour les lignes de contraintes, par des angles de courbures très aigues 
pouvant avoir pour effet qu’une ligne passe deux fois dans une maille ou effectue un U au sein 
d’une maille. Dans le processus itératif, on observe alors des allers et retours dans deux mailles 
voisines (Figure 31).  
Il est également possible qu’il soit impossible de tracer une courbe car le vecteur de la 
contrainte du point de base est orienté vers l’extérieur de la géométrie. Dans ce cas, certaines 
lignes ne sont pas tracées en raison de la disposition des points de bases ainsi qu’au sens des 
vecteurs contraintes. 

 
Figure 31 – Lignes de contraintes de compression 
comprenant les anomalies et des vides 

 
Figure 32 – Champs des contraintes dont les lignes 
sont issues 

 
Figure 33 – Champs des contraintes de compression 
au niveau de l’appuis, montrant le champ se dilatant/ 

s’écartant vers les bords  



Afin d’obtenir les lignes de contraintes présentes dans ces vides, une autre méthode de 
disposition des points est donc à mettre en œuvre. A noter que nous souhaitons avoir des 
lignes continues allant d’un bord à l’autre et dont la répartition est la plus homogène possible, 
il n’est donc pas possible de placer les points de base aléatoirement. 
 
 On peut observer en Figure 34, le vide laissé 
par une disposition des points de base sur le 
contour de la géométrie. On peut également 
voir dans le champ des contraintes le 
retournement de sens des vecteurs et ayant 
pour effet de créer ce vide.  
Ici le champ a été orienté de cette manière 
car nous souhaitions obtenir des lignes de 
contraintes continues allant d’un bord à 
l’autre. Ce qui a induit un choix du sens des 
vecteurs orientés selon x (gauche – droite)
 
On notera que la Figure 35 fournit les lignes 
de contraintes selon les mêmes conditions 
que la Figure 34 avec comme seul 
changement, l’inversion du sens des vecteurs 
(droite – gauche). Bien que cette inversion 
permette de réduire des vides, ce n’est pas 
une solution viable dans le sens paramétrique 
de l’algorithme puisque le problème se 
reposera dès que la géométrie changera. Une 
autre méthode doit donc être envisagée. 
 
Le but fut dans un premier temps de trouver 
une méthode permettant d’obtenir 
l’ensemble les lignes de contraintes sans 
avoir de vide.  
Une des solutions envisagées pour combler 
ce vide fut de disposer les points de bases non 
pas sur le contour mais suivant l’axe entre la 
contrainte maximum en compression et en 
traction (Figure 36). L’idée est de placer les 
points sur ce qu’on pourrait appeler le 
« sommet » des lignes de contraintes. Les 
points placés à cet endroit ne seraient pas 
soumis au changement de direction des vecteurs et permettraient de tracer des résultats sans 
se soucier des sens. Toutefois, l’axe tracé n'est qu’une approximation de l’emplacement des 
sommets puisque ceux-ci ne forment pas une droite mais une courbe non linéaire.  
Il ne semble pas y avoir de méthodes simples (sans avoir recourt à un premier tracer 
déterminant l’emplacement des sommets) permettant d’obtenir cette courbe. Toutefois, 
cette méthode, associée à la première pour obtenir les tracés des extrémités semble 
engendrer des résultats plus qualitatifs. 

  

 

 
Figure 34 – Lignes de contraintes avec disposition des points 

de bases sur le contour de la géométrie 

 
Figure 35 - Lignes de contraintes selon disposition identique à 

Figure 34 mais avec sens de vecteurs inversé 

 

 
Figure 36- Lignes de contraintes avec disposition des points de 

bases suivant l’axe entre la contrainte maximum en 
compression et en traction (excluant les réactions aux appuis) 
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Il existe un grand nombre de méthodes afin de traiter ces problématiques mais ces méthodes 
doivent rester générales au risque de perdre le caractère paramétrique de l’algorithme. De la 
même manière il serait possible de placer un grand nombre points au hasard afin de s’assurer 
d’obtenir toutes les lignes de contraintes mais cela nécessiterait une quantité de calculs trop 
importante pour le faire en une fois, et cela ralentirait fortement les étapes qui suivent. 
 
Après plusieurs d’essais et différentes méthodes mise en place, il semblerait que tracer 
l’ensemble des lignes de contraintes en une fois nécessiterait de connaitre le comportement 
du champ des contraintes. C’est-à-dire, savoir où celui-ci se dilate et se contracte. Cela signifie 
qu’une analyse zone par zone serait nécessaire avec des comparaisons entre zones. Cela 
semble fortement compliqué à mettre en place, ce qui est contraire à l’objectif.  
La méthode à laquelle nous avons abouti, est une méthode en deux étapes visant à être la 
plus légère en calcul possible. Dans un premier temps, les lignes de contraintes sont tracées 
suivant la méthode montrée en Figure 34. Cela permet d’obtenir une base de travail viable 
indépendamment de la géométrie de base. Nous pouvons par la suite déterminer assez 
simplement les zones sans lignes de contraintes, et y répartir des points de bases tel que 
montré en Figure 37. 
Les lignes de contraintes obtenues à l’issue de ces deux étapes (Figure 38), ne laissent donc 
aucuns vides et restent disposées de manière relativement homogène. Cela devient important 
par la suite car plus le nombre de lignes est grand, plus les calculs sont lourds. Ainsi se 
contenter de combler les trous plutôt que de placer un maximum de points au hasard est plus 
judicieux pour le bon fonctionnement de l’algorithme. 
 
Ce genre de résolution est quelque chose qui fut quasi-systématique dans le développement 
de l’algorithme, celle-ci ayant été l’une des plus grosses puisque qu’impliquant des boucles 
itératives. Le processus de développer une méthode à partir des hypothèses et théories 
établies, repérer les failles et les manques dans la méthode, en trouver les sources, trouver 
des solutions permettant de rectifier au mieux le problème tout en prenant en compte les 
limitations imposées. Le plus souvent le but n’était pas de trouver la solution parfaite mais 
celle qui permet de passer à l’étape suivante le plus efficacement et simplement sans être 
impacté par les problèmes existants. Cette logique est quelque chose qui devient très 
important vers la fin de l’algorithme pour que celui reste utilisable de manière fluide. 
 
 
 
 

 
Figure 37 - Disposition des points de bases dans les vides laissé par la première 

étape 

 
Figure 38 – Lignes de contraintes à l’issue des deux étapes 
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Tracer de la structure optimisée : 
 

Méthode : 
Cette dernière étape dans le processus est inspirée de la méthode de (Li et Chen 2010) en 
sélectionnant certaines lignes de contraintes et en les connectant. 
Les lignes de compression formeront les barres fonctionnant en compression et les lignes de 
traction formeront celles en traction. L’intersection des lignes de compression et des lignes de 
traction formeront les nœuds de la structure (Figure 40). Cette méthode de résolution assure 
d’une part, que les barres formées sont dans la disposition la plus efficace possible, c’est-à-
dire qu’elles suivent au mieux le champ des contraintes. Ainsi plus le nombre de barres est 
important (complexité élevée) plus ces dernières seront proches de la ligne de contraintes 
dont elles sont issues. Et d’autre part, cette méthode assure que les nœuds sont bien dans 
leur position optimale, c’est-à-dire, sur la ligne de contrainte que les barres suivent. On notera 
qu’une étape de déplacement des points, form-finding, est nécessaire dans la méthode de 
(Gilbert et Tyas 2003) pour obtenir ce résultat. On peut donc mettre en parallèle les deux 
méthodes, où l’une est directement issue de la forme la plus optimisée (figure de référence), 
tandis que l’autre déforme une structure préexistante afin de se rapprocher de la figure de 
référence. 
 
Dans un premier temps, il s’agit de sélectionner les lignes de contraintes qui constitueront la 
structure. L’avantage de la méthode présentée est, comme on peut le voir en Figure 39, que 
ce choix est très visuel et permet à l’utilisateur d’avoir une pleine connaissance des différentes 
dispositions possibles, avec la possibilité de pouvoir ajouter ou retirer des lignes à la main si 
cela s’avère être nécessaire. De la même manière, la complexité de la structure tracée, c’est-
à-dire le nombre de barres sélectionné (plus on sélectionne un grand nombre de barres plus 
la structure sera complexe), est directement visible donnant ainsi une grande transparence 
sur l’ensemble des solutions possibles. 
 
Afin de tracer une structure « viable », c’est-à-dire, pouvant transmettre les efforts du point 
de chargement aux appuis, certains critères se doivent d’être respectés. En effet, la structure 
à tracer n’est dans un sens qu’une simplification de l’ensemble des lignes de contraintes 
(Michell p20 – les lignes de contraintes sont la structure la plus optimisée. Celle-ci contient un 
nombre infini de barres, infiniment fines et reprenant des efforts infiniment faibles). Il faut 
donc s’assurer qu’en simplifiant la structure des éléments nécessaires ne sont pas supprimés. 
Le critère applicable à toute typologie est qu’il doit toujours exister un élément continue 
connectant les appuis et la charge. 
 
D’autres critères ont pu être observés afin d’obtenir le résultat ci-présent sans pour autant 
prouver que ceux-ci sont généralisables. Les critères observés sont de manière exhaustive : 

- La nécessité d’une enveloppe extérieure allant d’un appui à l’autre. Cette enveloppe 
contient en général une partie des lignes de contraintes maximales (lignes de 
contraintes contenant les contraintes les plus importantes du système). 

- La nécessité d’avoir une répartition homogène des lignes sélectionnées. Pour assurer, 
que la longueur des barres reste équivalente à tous les membres, évitant ainsi les 
risques de flambement et de membres surdimensionnées. 

 
Dans notre cas, il a été possible d’obtenir un résultat acceptable lorsque : 
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- Un ensemble de lignes réparties de manière homogène a été sélectionné 
- Les lignes passant par les appuis ont été ajoutées 
- Une ligne connectant les appuis et le large a été ajoutée 
- L’enveloppe extérieure a été créé. C’est-à-dire, une connexion entre les lignes 

passant par les appuis et les autres lignes. 
 
Il s’agit donc d’un processus qui est actuellement difficile à généraliser car nécessitant trop 
d’opérations spécifiques à ce système pour parvenir à un résultat. On notera que l’existence 
de ces critères montre qu’il est important d’avoir des lignes de contraintes propres et de 
qualités car cela peut rendre l’obtention d’un résultat à cette étape très complexe autrement. 

 
Figure 39 – Choix des lignes contraintes formant la structure 

 
Figure 40 – Structure issue des lignes de contraintes sélectionnées en Figure 39 

 

Répartition des barres : 
 
Deux méthodes de sélections des barres ont été envisagées ici. La première est une répartition 
homogène des lignes sélectionnées, assurant ainsi d’avoir des barres de longueur équivalente. 
C’est la méthode qui est traditionnellement employée comme présentée dans la Figure 41. 
La seconde consisterait à densifier le nombre de barres aux endroits où les contraintes sont 
plus élevées (Figure 40). L’avantage de cette méthode est qu’aux endroits reprenant le plus 
d’effort, plus d’éléments sont placés, permettant ainsi de mieux répartir les efforts. Toutefois, 
cela implique également des assemblages plus denses à ces endroits.  
Aucun résultat concluant montrant la supériorité d’une méthode par rapport à l’autre n’a été 
trouvé. On choisira néanmoins une répartition homogène car, suite au dimensionnement, il 
en est sorti, qu’avoir des barres excessivement petites (trop courtes) ou trop longues 
(soumises au flambement) engendrait une perte de matière dans la plupart des cas. 
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Figure 41 – Structure issue du plugin Peregrine pour le système étudié 

 

Variation de typologie – implémentation d’un arc : 
 
L’analyse structurelle suivante a été réalisée sur le logiciel de calcul RSTAB. Cette analyse vise 
à comparer deux procédés structurels sous des conditions identiques. Les conditions sont les 
suivantes : 

- Géométrie de 10m x 2m de hauteur (Ratio où l’impact de la modification est 
conséquent sans pour autant être majoritaire) 

- Appui simple à gauche, appui glissant à droite 
- Charge Nodal de 100 kN (10T) au centre en membrure supérieure 
- Les deux structures ont les exactes mêmes dispositions à l’exception de la partie que 

l’on souhaite observer 
- Les sections sont identiques pour tous les éléments  

 
La première structure (Figure 42) est une sortie directe de l’algorithme alors que la seconde 
(Figure 43) remplace la partie à proximité du point de chargement par un arc avec des rayons. 
Dans la disposition avec un arc, toutes les lignes de compression sont connectées avec le point 
de chargement alors que dans la sortie de l’algorithme, une seule barre est connectée au point 
de chargement. On peut donc s’interroger sur la répartition des efforts et le rôle de certains 
éléments.  

 
Bien que l’on cherche à savoir si le résultat de l’algorithme doit être altéré, cette altération 
n’est pas aléatoire. On peut voir avec la Figure 39 et la Figure 40, que ce principe structurel 
est parfois adopté naturellement par l’algorithme, mais de manière plus notable, il est adopté 

 
Figure 42 – Structure 1 (sortie de l’algorithme sans altération) 

 
Figure 43 – Structure 2 (implémentation d’un arc) 
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systématiquement par la méthode utilisée dans le plugin Peregrine. On notera que la 
différence entre ce plugin et notre algorithme est que le plugin utilise un processus itératif, au 
cours duquel il détermine les efforts passant dans les éléments, pour ne conserver que les 
barres les plus utiles, tandis que l’algorithme se contente de déduire la disposition de ces 
barres. L’algorithme ne calcule à aucun moment les efforts dans la structure qu’il renvoie. 
 
Il s’agit à la fois d’une qualité et d’un défaut 
de la méthode que nous cherchons à mettre 
en œuvre ici.  Cela montre qu’il est possible 
d’approcher une forme d’optimisation des 
structures sans avoir à calculer les éléments 
au sein de ces structures. En contrepartie, 
les structures sortantes de l’algorithme 
doivent être légèrement retouchées. Ce 
sont les conditions développées dans la 
partie précédente. En effet, les lignes de 
contraintes sont des courbes libres dans la 
géométrie, elles n’ont aucun lien avec les 
points d’appuis et de chargement. Il s’agit 
donc de déduire une structure à partir des 
lignes de contraintes en prenant en compte 
les points d’appuis et de chargement. Cela 
signifie qu’altérer la structure pour que les 
lignes se connectent au point de chargement 
peut être une étape nécessaire de 
l’algorithme.   
 
Les résultats de l’analyse sont présentés en  
Figure 44 et  
Figure 45. On notera d’abord que le 
dimensionnement à montrer que 
l’implémentation de l’arc a permis de 
réduire de 20% le volume de matière 
nécessaire pour assurer la stabilité de la 
structure.  
On peut en voir la raison sur la Figure 45, qui 
présente les déformations des structures 
sous l’effet du chargement. En effet, on peut 
voir que la présence de l’arc augmente 
fortement la stabilité de la structure. Dans le 
premier cas, au niveau du point de 
chargement, on peut voir un « écrasement » 
de la structure qui pourrait indiquer une 
difficulté à transmettre les efforts aux 
éléments voisins.  
 

 
 

Figure 44 - Diagramme Efforts Normaux N(kN) à ELU 

 

 
 

Figure 45 - Déformation à l’ELS QP W, fin (mm) 
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La Figure 44 présente plusieurs résultats intéressants. Tout d’abord, dans les deux cas, la 
répartition des efforts est en accord avec les lignes de contraintes. C’est-à-dire, que les 
éléments placés sur les lignes de contraintes de traction travaillent en traction et de la même 
manière pour la compression. Il s’agit là d’un résultat important puisque cela montre que les 
éléments placés sur une ligne de contraintes sont bien soumis aux mêmes contraintes que 
cette ligne. Enfin la répartition des efforts semble légèrement plus homogène sur la structure 
avec l’arc, ce qui va dans le sens des observations précédentes.  
On notera également que la ligne formant l’arc ne semble pas être anodine. On peut voir dans 
la Figure 44, que la ligne étant supposée former la partie gauche de l’arc ne reprend aucun 
effort, contrairement à la ligne de la rangée d’après qui reprend des efforts semblables à la 
ligne formant la partie droite de l’arc. Je ne vois pas d’explication pouvant justifier ce 
comportement. Par observation, on pourrait émettre l’hypothèse que la symétrie joue un rôle 
dans cette répartition des efforts. 
 
D’après les résultat obtenu, l’implémentation 
de l’arc et des rayons au niveau du point de 
chargement semble être un critère nécessaire 
pour assurer la stabilité et l’efficacité de la 
structure.  
La question de la généralisation se pose alors. 
Dans le cas des poutres, on peut définir le 
principe de fonctionnement de ces structures. 
Toutefois, cela n’est pas forcément 
transposable à toutes les géométries. Il s’agit 
donc d’un sujet à approfondir. Les travaux de 
Michell (Figure 46) sur l’économie de matière 
des structures réticulaires semblent pointer 
dans la même direction. (En raison de la 
difficulté à trouver plus que quelques extraits de ses travaux, ainsi que mon incapacité à 
pouvoir lire des travaux de cette époque et leur complexité, je n'ai pas été en mesure de 
pouvoir enrichir cette étude par les travaux de Michell). 
 
Le principe de fonctionnement est le suivant. Il s’agit de connecter les lignes au point de 
chargement. Si le point de chargement est en membrure inférieure (membrure reprenant de 
la traction) alors il est connecté aux lignes de traction (cas de la Figure 40). A l’opposé, si le 
point de chargement est en membrure supérieure (membrure reprenant de la compression) 
alors il est connecté aux lignes de compression (cas étudier dans cette partie). Pour un 
maximum d’efficacité, l’arc doit faire la hauteur de la poutre et se connecter à toutes les lignes.  
Plus concrètement, on retire les lignes entre le point de charge et la membrure opposée. La 
ligne la plus proche du point de chargement est alors l’arc. Tous les nœuds sur cette ligne sont 
connectés au point de chargement et formant ainsi les rayons. 
Comme on l’a vu cette méthode augmente fortement la stabilité de la structure, réduisant 
ainsi son volume total. Toutefois, cela introduit la création de membres (rayons) dont la 
longueur est indépendante de la complexité de la structure. Cela les rend particulièrement 
sensibles au flambement, faisant ainsi perdre la structure en efficacité. 
 
 

 
Figure 46 – Illustration issu de (Michell 1904) 
concernant la disposition d’un système à trois forces 
minimisant le volume nécessaire 
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Résultats – Rapport entre complexité et efficacité : 
 

Méthode :  
Il s’agit dans cette partie de tester les limites de l’algorithme développé et de mesurer 
l’efficacité de la méthode mise en œuvre. Pour cela, une étude comparative entre un 
ensemble de résultats de l’algorithme, du plugin Peregrine et des treillis classiques de type 
Warren et Howe.  
Le but est ici de mesurer la complexité (nombre de nœuds) en fonction du volume de matière 
requis pour assurer la stabilité des structures. Ainsi on considère comme simple et efficace un 
résultat alliant une faible complexité et un faible volume. Le but de cette étude est de pouvoir 
rendre compte des capacités de la méthode développée en la comparant à des solutions 
standards et solutions optimisées par des méthodes reconnues.  
 
Le cadre de cette étude porte sur une poutre simple. On retiendra que la méthode développée 
ainsi que celle de Peregrine ne sont pas limitées aux poutres treillis. Ainsi les résultats 
présentés ne représente pas l’intégralité des possibilités qu’offrent ces méthodes. Il est 
néanmoins important de connaître la fiabilité de la méthode développée dans un cadre connu 
et maitrisé avant de chercher le meilleur usage de cette méthode. 
 
La typologie étudiée est une poutre simple telle que développée au cours de cette recherche. 
Les caractéristiques du système étudié sont les suivantes : 

- Géométrie de 10m x 2m de hauteur. Ce ratio a été choisi car il s’agit d’un ratio qui 
permet de voir une grande variété de typologies différentes sans observer une forte 
répétition (si la longueur est bien plus élevée que la largeur alors une répétition du 
motif sera observée). 

- Appui simple à gauche, appui glissant à droite. 
- Charge Nodal de 100 kN (10T) au centre, en membrure supérieure. Ramenée à une 

charge répartie, Cela représente 10kN/ml. Ce qui correspond à une capacité portante 
de 10m de complexe de toiture à 1kN/m² (100kg/m²), 100m² de toiture. 

- Les sections sont optimisées par éléments. Il s’agit de sections circulaires en bois pour 
simplifier le processus. L’incrément dans la liste de sections est de 1cm. Cela signifie 
que certains éléments seront surdimensionnés. Le choix de limiter les sections 
disponibles est lié au fait qu’en réalité le choix de section est limité. Un incrément de 
1cm peut déjà être considéré comme généreux. Il s’agit donc là d’une pénalité peu 
pénalisante pour les structures simple mais dont l’impact augmente avec le nombre 
d’élément. Cela reflète une réalité constructive. L’impact mesuré sur le volume est de 
l’ordre d’au maximum 5% d’augmentation. 

 
Les volumes sont mesurés sous trois catégories afin de prendre en compte un maximum de 
facteurs, devant être pris en compte dans le dimensionnement du type de structures étudiées 
ici. Séparer ces mesures permet également de mesurer l’impact de ces facteurs. Les types de 
volumes mesurés sont les suivant : 

- Le volume de matière minimum pour assurer la stabilité de la structure (résistance en 
compression et traction uniquement) 
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- Le volume de matière minimum pour assurer la stabilité de la structure ainsi que son 
utilisation (résistance en compression et traction + Critère de flèche6) 

- Le volume de matière minimum pour assurer la stabilité de la structure, y compris le 
flambement des éléments en compression et son utilisation (résistance en 
compression et traction + Résistance au flambement + Critère de flèche) 

 
Les volumes sont donnés relativement à la structure « C0 », étant la structure la plus simple, 
composée uniquement de 3 éléments. Il a été choisi de présenter les résultats de cette façon 
car pour ce système (géométrie, appuis, position de la charge) les résultats relatifs sont 
indépendants de la valeur du chargement, ce qui permet de généraliser nos résultats. Dans 
les faits, cela n’est vrai que pour le premier volume. En effet, une augmentation de la charge 
entrainera une augmentation de la déformé et donc le volume augmentera pour compenser 
cette déformé. 
La prise en compte de tous ces critères permet de se faire une idée du comportement globale 
ainsi que de l’efficacité des structures.  
 
Dans notre étude, les treillis de Warren et Howe ont été dessiné sans réflexion poussée sur 
leur géométrie. On pourra se référer à l’étude porté par (Latteur, Samyn, et De Wilde 2000) 
sur les treillis de Warren, Pratt et Howe pour plus d’information sur leurs dispositions 
optimales. Comme indiqué dans cette étude, tandis que les treillis de Warren et Pratt sont 
équivalents dans leur volume, les treillis de Warren restent plus efficaces en termes de 
déformation. D’autre part, les treillis de Howe sont inférieurs à la fois en volume et en 
déformation. On a donc choisi d’intégrer à cette étude les treillis de Warren et Howe, ce qui 
permet d’avoir une gamme plus large de résultat à comparer à ceux des algorithmes. 
 
Enfin, l’optimisation du volume des éléments ainsi que la prise en compte du critère de flèche 
ont été faite grâce au plugin Karamba3D afin de simplifier la tâche et surtout d’accélérer le 
processus. Karamba3D est un outil paramétrique d'ingénierie structurelle qui fournit une 
analyse précise des treillis, des portiques et des coques. La vérification au flambement est 
réalisée séparément et se contente d’augmenter les sections issues de Karamba3D si celle-ci 
ne sont pas en mesure de reprendre les efforts de flambement. 
 
 
 
 

 
6 Le critère de flèche indique le déplacement vertical limite d’une structure en fonction 

de sa portée. 

Il est défini conformément à l’EN 1995-1-1 et à son Annexe Nationale. Les déplacements 

verticaux des éléments de structure en bois respecteront les critères suivants, L étant 

la distance entre deux appuis de l’élément concerné : 

Caractéristique Symbole Valeur limite 

Flèche instantanée (déformation immédiate après application de la charge) winst L / 300 

Flèche résultante finale (déformation totale qui se produit au fil du temps – fluage) wnet,fin L / 200 
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Prise en compte du flambement : 
 
Le flambement est un effet d’instabilité dans les structures élastique par 
lequel un élément subissant un effort normal de compression tend à fléchir 
et se déformer hors de son axe neutre (Figure 47).  
Il est important de prendre ce phénomène en compte car plus une barre est 
longue plus elle est affectée par le flambement. Ainsi, si il était ignoré, cela 
pourrait amener à sous-dimensionner un élement. Cet impact peut être 
important pour les structures simples contenant peu de barres comme 
«  HOWE ». On notera qu’il y a une présence notable du flambement dans 
les résultats de l’algorithme. Cela est du au fait que les rayons de l’arc 
subissent du flambement. Il reste néanmoins plus économique de les 
dimensionner au flambement plutôt que d’ajouter des barres pour les 
recouper et réduire le flambement. 
 
Les vérifications suivantes sont effectuées conformément à l’EN 1995-1-1 : 

- Effet système :      ksys=1  
- Coefficient réducteur des caractéristiques mécaniques γM : 

   Bois massif : 1.30 / Lamellé-collé : 1.25 / LVL : 1.2  
 

- Longueur de flambement : Rotule – Rotule :  ly = 1 x L 
- Élancement :       λy = l0,y / iy 

       Avec,  iy =√(Iy / (b x h))  
- Module élastique axial caractéristique   E0.k  
- Contrainte de compression axiale    fc,0,k  
- Élancement relatif :      λrel,y = λy / π x √(fc,0,k / E0.k) 

   Si >0.3 : risque de flambement, vérification du flambement nécessaire 
- Facteur de rectitude βc :  Bois massif : 0.2 / Lamellé-collé : 0.1 / LVL : 0.1 
- Facteurs d'instabilité :     kc,y = 1 / ( ky + √(ky² - λrel,y²) ) 

       Avec,  ky = 0.5 x [1+βc x (λrel,y - 0,3)+λrel,y² ] 
- Résistance de calcul en compression parallèle au fil :  

fc,0,d = kmod x ksys x fc,0,k / γM 

- Contrainte de compression parallèle au fil à l'ELU :   
σc,0,d = NELU,compression / (b x h) 
 

- Vérification du flambement :     σc,0,d / (kc,y x fc,0,d ) <1 

 

 
Figure 47 – Schéma 
présentant le mode de 
flambement d’un élément 
entre deux appuis simples 
articulés 

 
Figure 48 – Propriétés caractéristiques des bois massids résineux définies par NF EN 338 (décembre 2009), pour 
calculs avec Eurocode 5 
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 Résultats : 
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Figure 49 – Tableaux de résultats liés au graphique de la Figure 50, présentant pour différentes typologies de poutres treillis 

le volume de matière nécessaire pour assurer la stabilité, en prenant compte le critère de flèche et le flambement 
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Figure 50 – Graphique présentant l’évolution du volume de matière en fonction de la complexité pour différentes méthodes de 

conception des poutres treillis 
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A la lecture du graphique, on trouve que le treillis de Warren possède le meilleur ratio 
complexité/ Volume parmi toutes les solutions. Peregrine propose, par ailleurs, les solutions 
les plus efficaces. Elles restent néanmoins plus complexes qu’un Trellis de Warren, pour un 
volume seulement légèrement meilleur. Par rapport à un treillis de Howe à complexité égale, 
Peregrine montre une économie de matière allant jusqu’à 25%. Il s’agit là d’un excellent 
résultat, qui pourrait peut-être réussir à compenser le coût de fabrication plus important 
qu’ont les treillis aux géométries complexes. En effet, un treillis de Howe est constitué de 
barres verticales, horizontales ainsi que des diagonales. Les angles sont toujours les mêmes et 
donc les assemblages sont plus simples à réaliser comparé à un treillis issu d’un algorithme 
nécessitant des assemblages sur mesure). On comprend également ici pourquoi les treillis 
standards sont toujours privilégiés à ce jour. Ils possèdent un rapport complexité/ volume très 
intéressant tout en restant facile à concevoir, calculer et réaliser. 
 
Les résultats issus de l’algorithme sont en accord avec les hypothèses posées et voir même 
plutôt intéressants. Les observations réalisées sont les suivantes : 
 

- L’algorithme ne sais pas faire du très simple (peu de nœuds). Cela est dû au fait qu’un 
grand nombre de critères ont été mis en place pour pouvoir obtenir des résultats. La 
cause est donc la rédaction de l’algorithme et non la méthode. 
 

- Les solutions sont très stables (volume constant et 
disposition simple) à haute complexité. Comparé à 
Peregrine (Figure 52), les solutions produites (Figure 
51) sont plus simples en termes de disposition et se 
montrent même plus efficaces. Cela est dû au fait 
que Peregrine retire les éléments travaillant le 
moins. Ainsi à haute complexité, les résultats ont 
tendance à perdre en efficacité. La raison principale 
pour cette perte est l’incrément imposé dans le 
choix des sections. La solution de Peregrine possède 
beaucoup d’éléments et est donc fortement 
pénalisée par cette contrainte. D’autre part, ce 
genre de complexité ne peut être approché par les 
typologies de treillis standards. 

 
- Dans l’ensemble la méthode développée est la moins efficace. Pourquoi est-ce le cas ? 

Il faut revenir à la définition des méthodes. La forme d’origine (énoncé par Michell, 
p20) est théoriquement la plus optimisée possible. Pour obtenir nos résultats, cette 
forme est simplifiée. Notre simplification est-elle la meilleure ? celle prenant le 
meilleur de la forme d’origine ? La réponse est non. La simplification effectuée est 
aléatoire, elle se contente de choisir des lignes de contrainte de manière homogène 
au sein de la géométrie. Il est donc logique qu’une méthode dont le but est de 
minimiser le volume (Peregrine) soit plus efficace qu’une méthode se limitant à 
simplifier une forme plus optimisée. Le résultat est donc attendu. Il reste à prendre en 
considération le fait que l’algorithme de Peregrine calcul le volume à chaque étape et 
modifie sa solution afin de réduire ce volume alors que la méthode des lignes de 
contrainte ne calcule pas une seule fois, au cour du processus, le volume de sa solution.  

 
Figure 51 – Typologie « C5 » (Algorithme) 

Nb nœud : 55 – Volume RM : 0.44 

 
Figure 52 – Typologie « P5 » (Peregrine) 

Nb nœud : 51 – Volume RM : 0.54 
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On retiendra alors que la méthode des lignes de contraintes permet de créer des structures 
complexes, sans perte de matière conséquente, grâce à une disposition homogène et efficace 
des éléments. 
 
La méthode développée n’est donc pas la plus adaptée pour traiter des problématiques 
nécessitant des structures simples comme des poutres treillis. D’autre part, cette méthode 
n’emploie que des opérations simples contrairement aux algorithmes minimisant le volume. 
Ainsi elle trouve son utilité dans des problématiques visant à trouver une disposition 
structurellement efficace d’un grand nombre d’éléments. On peut alors penser au travail de 
Kam-Ming Mark Tam et Caitlin T. Mueller sur les grid shells (Kam-Ming Mark Tam et Mueller 
2015) et l’impression 3D (K.-M.M. Tam et al. 2016)  
 

Ouverture : 
- Il serait intéressant d’étudier l’évolution du volume des différentes typologies en faisant 
varier les conditions initiales, à savoir la géométrie, les points d’appuis et les points de 
chargement. 
- L’étude a porté sur une géométrie de ratio L x L/5. Il serait intéressant de voir pour d’autre 
ratio si certaines méthodes perdent ou gagnent efficacité. 
- Une autre étude intéressante à réaliser serait sur le chargement. Notamment le cas 
combinant une charge orientée sur z et une -z. Il s’agit d’une combinaison de charge courante 
pour des treillis en toiture. Cela correspond au cas les charges de vents qui mettent une partie 
de la toiture est en suppression et une autre en dépression. Ce cas est intéressant à étudier 
car il engendre une inversion du fonctionnement des éléments sur une moitié de la structure. 
- La prise en compte de la stabilité global de la structure (contreventement) est un sujet 
complexe mais nécessaire pour rendre ces structures constructibles. Il est d’ordinaire fait à la 
main par l’ingénieur. La possibilité d’optimiser ces solutions à un potentiel très fort, qui 
pourrait venir à modifier la façon dont nous concevons. On peut notamment penser aux 
travaux de (Weldeyesus et al. 2019) sur le sujet. On notera également que dans cette étude, 
seuls les nœuds à l’intérieur de l’enveloppe sont des articulations. Les éléments formant 
l’enveloppe doivent assurer une continuité pour garantir la stabilité de la structure. Le sujet 
de la stabilité pour cette méthode est donc omniprésent.  
- Les problématiques de stabilité s’accompagnent également de la question des assemblages. 
En effet, l’algorithme ne prend pas en compte les assemblages. Cela a pour conséquence que 
la stabilité ne peut être assuré que si l’ensemble des nœuds sont des encastrements, ce qui 
rend les structures difficilement constructibles et nécessiterait pour des structures en bois, la 
mise en place d’une grande quantité de ferrures. Toutefois, si l’on revient à la forme étudiée 
(poutre sur deux appuis), la stabilité peut être obtenu en ne considérant que des 
encastrements sur l’enveloppe de la structure.  Une étude statique de la structure produite 
afin de trouver les causes de son instabilité permettrait donc de pouvoir réduire le nombre 
d’encastrement. On peut toutefois s’interroger sur l’impact que cela a sur l’efficacité des 
solutions proposées. Il est possible que dans certains cas, l’ajout d’une barre pour supprimer 
une instabilité se montre être plus efficace que de créer un encastrement. Il s’agit donc d’une 
question riche et complexe qui est lien direct avec la constructibilité des structures. 
- Comme on a pu le voir, la méthode d’optimisation par les lignes de contraintes présente un 
potentiel important pour obtenir des solutions complexes et efficaces. Suivant les travaux de 
Kam-Ming Mark Tam et Caitlin T. Mueller, l’étude de cette méthode appliquée aux grid shells, 
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à l’impression 3D ou à tout autre type de problématiques nécessitant ce genre de solution 
peut s’avérer particulièrement intéressante. 
- Enfin, l’algorithme développé ici n’est pas généralisable à toutes les géométries et tous les 
systèmes.  Cela est à la fois dû à la rédaction de l’algorithme de la dernière partie (tracer de la 
structure) et aux hypothèses émises. En effet, les critères émis pour permettre le tracer de la 
structure n’ont pas été prouvé être nécessaire ou suffisant pour assurer le tracer de la 
structure dans tous les cas. Un travail de recherche de ces critères est donc encore à réaliser. 
 
 

Conclusion : 
Au cours de ce travail, la mise en œuvre de la méthode d’optimisation par les lignes de 

contraintes a été présenté avec les problématiques qui lui sont associés, ainsi que des 

résolutions possibles. Par le biais de l’étude comparative, il a été possible d’observer les limites 

de cette méthode, ainsi que la qualité de ses solutions. 

Ainsi, la méthode d’optimisation par les lignes de contraintes est une méthode offrant la 
possibilité de créer des structure complexes, sans perte de matière conséquente, grâce à une 
disposition homogène et efficace des éléments. Les solutions produites ne sont toutefois pas 
compétitives avec les autres méthodes pour des structures simples. 
On retiendra, d’autre part, que cette méthode n’emploie que des opérations simples 

contrairement aux algorithmes minimisant le volume. Ainsi elle trouve son utilité dans des 

problématiques visant à trouver une disposition structurellement efficace d’un grand nombre 

d’éléments. 

 Enfin, on notera que cette étude s’est placée, par les caractéristiques du système choisi, dans 
une situation mettant en avant les solutions standards comme Howe et Warren. Comme dit 
précédemment, cette comparaison est nécessaire afin de pouvoir créer des parallèles et faire 
ressortir les forces et faiblesses de chaque méthode, pour ensuite en trouver des utilisations 
adéquates. On peut alors revenir aux principes de ce séminaire : 
« Si les outils ont pour vocation de prolonger la main de l’architecte, il reste à savoir comment, 
à quels moments du processus de conception et ce qu’ils induisent. » (François Guéna, Caroline 
Lecourtois, « Un séminaire de recherche sur le numérique et la conception architecturale à 
l’ENSA Paris la Villette » DNArchi, 22/02/12) 
En effet, les algorithmes de form-finding et d’optimisation topologique sont des outils 
puissants s’ils sont utilisés pour la bonne tâche et au bon moment. Il s’agit, avant tout, d’outils 
de conception capable de résoudre des problèmes complexes. Ils sont capables de proposer 
des solutions variées et aux typologies éloignées des solutions standards tout en restant 
efficaces.  
Ces solutions sont donc une base de travail permettant de sortir des idées préconçues 
auxquelles architectes et ingénieurs sont formatés. Ainsi, l'utilisation dès la conception 
permettrait de s'orienter vers des designs plus responsables. La capacité de simplifier et 
d’altérer la solution permet à ses typologies de ne pas être des freins à la conception et de 
rendre les structures plus adéquates et constructibles. 

 



45 

Table des illustrations : 
Figure 1 – Solution type de la méthode issue du plugin Peregrine ............................................................................................ 4 
Figure 2 – Solution après simplification, issue du plugin Peregrine ........................................................................................... 4 
Figure 3 – Illustration issue de (Jipa et al. 2016) ........................................................................................................................ 4 

Figure 4 – Treillis de Michell (Mazurek, A., Baker, W.F. & Tort, C. Geometrical aspects of optimum truss like structures. 

2011) .......................................................................................................................................................................................... 5 
Figure 5 – Processus d’optimisation topologique suivant la méthode d’optimisation linéaire .................................................. 9 
Figure 6 – Processus d’optimisation topologique suivant la méthode des lignes de contraintes .............................................. 9 
Figure 7 – Schéma de fonctionnement de l’algorithme ........................................................................................................... 10 
Figure 8 - Schéma statique de la poutre utilisée pour le développement de l’algorithme ...................................................... 11 
Figure 9 – Sortie Grasshopper des données d’entrées (Surface de travail, points d’appuis et chargement) ........................... 12 
Figure 10 – Discrétisation du domaine d’étude (rectangle) en un ensemble de domaines simples (triangles) ....................... 13 
Figure 11 – Discrétisation type avec tous les nœuds connectés .............................................................................................. 13 
Figure 12 – Discrétisation type pour ajout et retrait ................................................................................................................ 14 
Figure 13 – Discrétisation utilisée ............................................................................................................................................ 14 
Figure 14 – Déformation de la maille carrée à un temps t ....................................................................................................... 15 
Figure 15 - Déformation de la maille rectangulaire à l’équilibre .............................................................................................. 15 
Figure 16 – Discrétisation mise en œuvre dans l’algorithme ................................................................................................... 15 
Figure 17 - Énergie cinétique d’une relaxation dynamique avec amortissement visqueux ..................................................... 18 
Figure 18 - Champs des déformations ...................................................................................................................................... 18 
Figure 19 – Champs de forces .................................................................................................................................................. 19 
Figure 20 – Champs des contraintes principales ...................................................................................................................... 20 
Figure 21 – Figure de référence type lignes de contraintes produit par l’algorithme créer ..................................................... 20 
Figure 22 – Figure de référence type produit par un algorithme utilisant l’optimisation linéaire (Plugin Peregrine) .............. 20 
Figure 23 – Résultat de l’algorithme après retrait des barres à effort faible ........................................................................... 21 
Figure 24 - Cercle de Mohr ....................................................................................................................................................... 23 
Figure 25 – Processus de calcul du champ de contraintes à partir du champ de forces .......................................................... 24 
Figure 26 – Champs des contraintes principales ...................................................................................................................... 25 
Figure 27 – Schéma interpolation bilinéaire ............................................................................................................................. 26 
Figure 28 – Schéma du processus itératif traçant les lignes de contraintes ............................................................................. 27 
Figure 29 – Lignes de contraintes de compression (bleu) et de traction (rouge) tracer pour processus itératif ..................... 27 
Figure 30 – Schéma des lignes de contraintes attendus pour le système étudié. Issus de (Tuchscherer, Birrcher, et Bayrak 
2011) ........................................................................................................................................................................................ 27 
Figure 31 – Lignes de contraintes de compression comprenant les anomalies et des vides.................................................... 28 
Figure 32 – Champs des contraintes dont les lignes sont issues .............................................................................................. 28 
Figure 33 – Champs des contraintes de compression au niveau de l’appuis, montrant le champ se dilatant/ s’écartant vers 
les bords ................................................................................................................................................................................... 28 
Figure 34 – Lignes de contraintes avec disposition des points de bases sur le contour de la géométrie ................................. 29 
Figure 35 - Lignes de contraintes selon disposition identique à Figure 34 mais avec sens de vecteurs inversé ...................... 29 
Figure 36- Lignes de contraintes avec disposition des points de bases suivant l’axe entre la contrainte maximum en 
compression et en traction (excluant les réactions aux appuis) .............................................................................................. 29 
Figure 37 - Disposition des points de bases dans les vides laissé par la première étape ......................................................... 30 
Figure 38 – Lignes de contraintes à l’issue des deux étapes .................................................................................................... 30 
Figure 39 – Choix des lignes contraintes formant la structure ................................................................................................. 32 
Figure 40 – Structure issue des lignes de contraintes sélectionnées en Figure 39 ................................................................... 32 
Figure 41 – Structure issue du plugin Peregrine pour le système étudié ................................................................................. 33 
Figure 42 – Structure 1 (sortie de l’algorithme sans altération) ............................................................................................... 33 
Figure 43 – Structure 2 (implémentation d’un arc) .................................................................................................................. 33 
Figure 44 - Diagramme Efforts Normaux N(kN) à ELU .............................................................................................................. 34 
Figure 45 - Déformation à l’ELS QP W, fin (mm) ...................................................................................................................... 34 
Figure 46 – Illustration issu de (Michell 1904) concernant la disposition d’un système à trois forces minimisant le volume 
nécessaire ................................................................................................................................................................................. 35 
Figure 47 – Schéma présentant le mode de flambement d’un élément entre deux appuis simples articulés ......................... 38 
Figure 48 – Propriétés caractéristiques des bois massids résineux définies par NF EN 338 (décembre 2009), pour calculs avec 
Eurocode 5 ............................................................................................................................................................................... 38 
Figure 49 – Tableaux de résultats liés au graphique de la Figure 50, présentant pour différentes typologies de poutres treillis 
le volume de matière nécessaire pour assurer la stabilité, en prenant compte le critère de flèche et le flambement ........... 40 
Figure 50 – Graphique présentant l’évolution du volume de matière en fonction de la complexité pour différentes méthodes 
de conception des poutres treillis ............................................................................................................................................ 41 
Figure 51 – Typologie « C5 » (Algorithme) ............................................................................................................................... 42 
Figure 52 – Typologie « P5 » (Peregrine) .................................................................................................................................. 42 
 



46 

Bibliographie : 

‑

‑

 

‑

‑

‑

‑

‑

‑

‑

 

 
 

 




