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With the development of computer instrumentation, the integration of topology optimization
and form-finding tools, into the design process, has become a possibility. Making it possible
to resolve complex problems with efficient yet flexible solutions. However, this requires an
understanding of the process and scope of these tools.

For this reason, this work aims to study the implementation of the stress lines optimization
method as well as the limits of this method, and the quality of its solutions. The stress line
optimization method is a method offering the possibility of creating complex structures,
without significant loss of material, thanks to homogeneous and efficient structural layout.
However, the solutions produced are not competitive with those of other methods in the
study of simple structures. On the other hand, this method only uses simple operations unlike
algorithms minimizing the volume. Thus, it finds its usefulness in problems aimed at finding a
structurally efficient layout for a large number of elements.

Key words : Topology optimization, Layout optimization, Stress lines, Frame structure, Truss,
Simplification, Constructability.

Avec le développement de I'instrumentation informatique, il est aujourd’hui devenu possible
d’intégrer au processus de conception, des outils d’optimisation et de form-finding. Cela
permettrait de répondre a des problémes complexes par des résolutions efficaces et flexibles.
Cela nécessite toutefois une compréhension du processus et du domaine d’application de ces
outils.

Pour cette raison, ce travail vise a étudier la mise en ceuvre de la méthode d’optimisation par
les lignes de contraintes ainsi que les limites de cette méthode, et la qualité de ses solutions.
La méthode d’optimisation par les lignes de contraintes est une méthode offrant la possibilité
de créer des structure complexes, sans perte de matiére conséquente, grace a une disposition
homogene et efficace des éléments. Les solutions produites ne sont toutefois pas
compétitives avec les autres méthodes pour des structures simples. D’autre part, cette
méthode n’emploie que des opérations simples contrairement aux algorithmes minimisant le
volume. Ainsi, elle trouve son utilité dans des problématiques visant a trouver une disposition
structurellement efficace pour un grand nombre d’éléments.

Mots clés : Optimisation topologique, Optimisation géométrique, Lignes de contraintes,
Structures filaires, Poutres treillis 2D, Simplification, Constructibilité.
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L'instrumentation informatique des activités de conception offre aujourd’hui une liberté plus
large aux architectes et ingénieurs, ainsi que la possibilité de concevoir leurs projets de
maniere plus responsable. Ainsi, ces dernieres décennies ont vu le développement des
méthodes form-finding et d’optimisation topologique (optimisation du volume), permettant
de trouver des solutions structurelles minimisant la quantité de matiere, en la disposant la ou
elle est nécessaire. Ces méthodes sont diverses et variées, a la fois dans leur mise en ceuvre
et dans les solutions qu’elles apportent.

Ainsi, elles ne sont pas toutes transposables a I'architecture. Beaucoup de ces méthodes
produisent des formes complexes, trop complexes pour pouvoir étre construites. La plupart
de ces méthodes ont été développées, dans un premier lieu, pour un usage d’ingénierie
mécanique (aviation, aérospatial, etc), dans un contexte ou la perte de poids se traduit
directement par une économie sur le long terme (carburant). Les piéces visées par cette
optimisation sont généralement de petites tailles et produites graces a des machines.

Toutefois, en architecture, I’échelle des formes

a optimiser est bien plus importante, et celles- T —
ci ne peuvent étre produites simplement. | A “‘ ‘
L’optimisation du volume n’est donc pas, dans
ce contexte, l'unique critére. La complexité des
solutions, la difficulté associée a leur mise en
ceuvre, est un facteur tout aussi important. En
effet, dans le batiment, il est souvent plus
économique de «créer un élément tres
volumineux plutét qu’un ensemble d’éléments
moins volumineux, mais plus complexe a mettre
en ceuvre. La Figure 3 illustre une solution
d’optimisation topologique pour une dalle sur 3
points d’appuis dont la mise a ceuvre a nécessité
de I'impression 3D.

A el

Figure 3 — lllustration issue de (Jipa et al. 01) ‘

On s’intéressera ici a un type de solutions en
particulier, jugé plus aptes au domaine de
I'architecture. Celles-ci fonctionnent avec des

systemes de noeuds et de barres permettant A

alors la conception de structures réticulaires, Frigure 1 — Solution type de la méthode issue du plugin

ouvrant I'usage de I'optimisation topologique a Peregrine
d’autres matériaux comme le bois.

Bien que ce genre de méthodes soient ‘
prometteuses, il ne s’agit que de résolutions

mathématiques et graphiques sans lien avec

les réalités constructives (Figure 1). Pour

rendre ces résultats constructibles, il est donc A

important de pouvoir  contrdler leur Figure 2 — Solution aprés simplification, issue du plugin

L, Peregrine
complexité tout en conservant un volume

optimisé (Figure 2).
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La méthode la plus répandue a ce jour et répondant a ces critéres est celle développée par les
travaux de Matthew Gilbert et LimitState (a I'origine du plugin Peregrine). Toutefois, cette
méthode nécessite une certaine puissance de calcul avec des solveurs. Elle approche
I’optimisation par un calcul du volume de la structure que I'on cherche par la suite a minimiser.
La méthode que I'on propose d’étudier ici, se base sur les lignes de contraintes et permettrait,
sans solveur et sans calcul du volume, de proposer des solutions optimisées et a la complexité
ajustable simplement. Cette étude visera a explorer le potentiel et les limites de cette
méthode, tant dans sa mise en ceuvre que dans ses résultats.

Le processus de mise en ceuvre de la méthode des lignes de contrainte, ainsi que les théories
et hypotheses la justifiant, sont présentés dans une premiere partie. A la suite de laquelle, une
étude comparative des résultats de cette méthode, avec ceux de Peregrine et des treillis de
Warren et Howe, est présenté afin de connaitre la pertinence et les possibles utilisations du
travail réalisé ici.

Le terme « optimisation topologique » concerne I'ensemble des méthodes visant a connaitre
la répartition optimale de la matiére dans une structure. C'est-a-dire, qu’il s’agit de méthodes
de form-finding dont I'objectif est de minimiser le volume de matiére dans une structure.

La résolution de ce type de probleme a commencé e
avant I'invention de I'ordinateur. Il n’était donc pas —
possible de calculer un grand nombre de solutions
pour conserver la plus optimale. Ces résolutions
étaient faites a la main, a partir d’observations du
comportement des structures, afin d’en faire
ressortir des propriétés permettant d’optimiser les -
structures a moindre colt. Une des plus notables Figure 4 — Treillis de Michell (Mazurek, A., Baker,
étant celle de (Michell 1904). Il inventa ce que 'on  W.F. & Tort, C. Geometrical aspects of optimum
appelle aujourd’hui un treillis de Michell (Figure 4).  russ like structures. 2011)

Il avanca qu’une structure est la plus optimisée

possible lorsque, sous chargement, la variation de contrainte subit par tous les éléments de la
structure est proportionnelle a leurs longueurs. C'est-a-dire que la variation du taux de travail
est identique pour tous les éléments. |l s’agit la d’une propriété importante de I'optimisation
topologique puisque cela signifie, que dans une structure optimisée, indépendamment du
chargement subit, Il n’y a pas d’éléments travaillant moins que les autres et donc possédant
un surplus de matiere.

De cette propriété, il est possible d’en déduire plusieurs autres, qui permettent de
grandement simplifier les calculs nécessaires dans la mise en ceuvre des méthodes
d’optimisation de la disposition des éléments. On notera que ces propriétés ont été prouvé
mathématiquement par Michell. On peut donc se rapprocher des travaux de (Decker et al.
2018) qui ont mis en pratique les propriétés avancées par Michell en réalisant des essais
mécaniques. Ces essais réalisés pour plusieurs niveaux de complexité de treillis de Michell, ont
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permis de prouver que les propriétés avancées étaient valables dans le domaine élastique et
étaient justes pour tout niveau de complexité.

Avec le développement des technologies associé a des puissances de calculs plus importantes
et accessibles, les années 1990-2000 ont été marquées par le développement de beaucoup
de recherches sur I'optimisation topologique. A cette époque, les travaux d’individus comme
Ole Sigmund ont permis de généraliser et rendre plus accessible le savoir sur I'optimisation
topologique, notamment avec des ouvrages comme « Topology Optimization: Theory,
Methods and Applications » (Bendsge et Sigmund 2003). Associé a ce partage de
connaissance, un travail important sur I'efficacité et la rapidité des méthodes d’optimisation
topologique a été effectué, comme présenté par (Sigmund 2001), « A 99 Line Topology
Optimization Code Written in MATLAB. Structural and Multidisciplinary Optimization » ou
(Andreassen et al. 2011), « Efficient topology optimization in MATLAB using 88 lines of code ».
Cela a permis d’intégrer cet outil au processus de conception en ingénierie mécanique, tout
particulierement en aéronautique et aérospatial. Cet effort pour rendre accessible ces outils
de conception a permis par la suite, le développement de beaucoup de méthodes différentes
aux usages variés. Ainsi, on a vu, au cours de ces dernieres années, un développement de
I’optimisation topologique appliqué au milieu du batiment.

Deux méthodes sont mises en place au cours de cette étude. Celle développée dans le plugin
Peregrine et qui consiste en un solveur d’équations linéaires. Cette méthode visant un usage
professionnel servira de témoin pour la méthode développée. Celle-ci, par I'usage des lignes
de contraintes, vise a fournir des solutions optimisées a moindre co(t en ne faisant pas usage
de solveurs.

Il s’agit de la méthode développée dans le plugin Peregrine (He et al. 2018). Les fondations
de cette méthode se retrouvent dans beaucoup de méthodes et sont aujourd’hui celles
utilisées dans la plupart des outils de ce type.

La méthode d’optimisation linéaire se base sur la résolution d’équations linéaires simples pour
aboutir a un domaine de solutions voulus. Pour cela, elle part d’'une équation a optimiser
(objectif), pour laguelle on va venir soustraire au domaine de solutions, les domaines de
solutions d’équations contraintes permettant ainsi de réduire le nombre de solutions pour
enfin prendre le meilleur possible d’aprés I'équation a optimiser.

Le systéme a résoudre pour obtenir la forme optimale est le suivant :

minV =1Ta Avec :
:'tq V =volume

a = section
By | = longueurs
q=—0 a B = matrice d’équilibre
q<oTa f = charge nodal
a>0, g = champs de force

L’équation a optimiser étant celle du volume, avec volume= ¥ longueurs * sections. Bqg=f
signifie que le chargement de la structure, f, doit étre égale au champ de force interne, q, de
la structure selon sa disposition, B. B étant une matrice (nceuds*barres) donnant la relation et
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position de chaque barre les unes avec les autres. Les inégalités servent a dimensionner la
section en fonction de la charge reprise par la barre en question.

Ainsi, le volume dépend de la longueur et de la section. Cette derniere dépend des charges
internes ainsi que des angles. Ainsi, en modifiant le nombre de barres et la position des nceuds,
on peut minimiser le volume. Il s’agit la du grand principe derriere I'optimisation linéaire.

Par la suite, la structure se doit d’étre simplifier. Pour cela, des nceuds sont fusionnés, les
barres les moins importantes supprimées. Et enfin les noeuds restant sont déplacés lors d’un
processus itératif, afin de trouver la disposition des nceuds produisant la structure au volume
minimum.

Méthode des lignes de contraintes :

Il s’agit d’'une méthode peu documentée utilisant comme référence les lignes de contraintes
(« Stress Lines ») pour obtenir des structures optimisées. Cette méthode partage des points
communs avec les travaux de Michell et emploie plusieurs propriétés avancées par Michell
pour son fonctionnement. Une méthode d’optimisation utilisant les lignes de contraintes
semble avoir été développée pour la premiére fois par (Li et Chen 2010). On notera que les
lignes de contraintes sont un dérivé du champ des contraintes principales, qui est un résultat
employé couramment pour calcul structurel. Il n’est pas exclusif a cette méthode. Au
contraire, son usage, dans le cadre de I'optimisation topologique, est relativement rare.

Cette méthode a I'avantage d’étre relativement simple dans son fonctionnement et de ne
nécessiter que trés peu de calculs, contrairement a la méthode de I'optimisation linéaire. Il
s’agit de déterminer les lignes de contraintes pour en déduire une structure optimisée. On
notera qu’il existe un grand nombre de méthodes pour obtenir les lignes de contraintes. Il faut
dans un premier temps déterminer les contraintes principales dans le systéme pour ensuite
créer des lignes continues suivant le champ des contraintes.

La méthode développée par la suite ne suit les travaux de (Li et Chen 2010) que dans la
succession des étapes. Leur réalisation est adaptée en fonction des outils et savoir a ma
disposition.

On peut également se rapprocher des travaux de (Ruiz et Muttoni 2007) sur champs des
contraintes appliquées a I'optimisation des structures en béton. Bien que la méthode mise en
ceuvre soit quelque peu différente, I'objectif et le résultat obtenu reste intéressant a
considérer, pour l'utilisation des lignes de contraintes comme méthode d’optimisation. En
effet, le travail de Ruiz et Muttoni rend compte, par I'emplacement des fissures dans les
structures en béton, de I'importance de suivre les lignes de contraintes pour optimiser la
structure.
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Avec I’évolution des outils de conception, les architectes et ingénieurs commencent a avoir
acces des instruments permettant de concevoir de nouvelles formes, plus complexes, plus
efficaces et plus responsables.

Alors que ces outils sont encore étrangers pour beaucoup, il est nécessaire d’en questionner
les usages ainsi que les principes fonctionnels. En effet, ces outils ne font pas que produire des
formes. Les solutions fournis sont des structures, calculées et optimisées afin d’en assurer la
stabilité.

Le but de cette recherche est donc de développer une des méthodes permettant
I’'optimisation des structures, afin d’en observer les fondements et principes fonctionnels.
On peut donc poser les problématiques suivantes :

- Comment employer la méthode des lignes de contraintes pour obtenir des structures
dont la disposition de la matiére soit efficace ?
Pour cela, un algorithme utilisant cette méthode est développé, permettant ainsi de
remettre en question et de soulever des problématiques sur I'entiéreté du processus.

- Quels sont les limites des résultats fournis par cette méthode ? Quel potentiel porte
cet outil ? Dans quel cadre peut-il étre employé ou étre favorisé ?
Pour cela une étude comparative des résultats de la méthode des lignes de contraintes
avec celle d’optimisation linéaire ainsi que des solutions standards, le tout sur une
gamme large de complexité, est mise en place.
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Résolution du probleme d’optimisation topologique avec
Grasshoppper :

Vue d’ensemble :

Processus traditionnel suivant la résolution par optimisation linéaire :

a)
Figure 5 — Processus d’optimisation topologique suivant la méthode d’optimisation linéaire
a) Discrétisation du systéeme
b) Ajout et retrait de barres
c¢) Form-finding : Déplacement des nceuds vers la position optimale
d) Calcul des sections
Processus réalisé suivant la résolution par lignes de contraintes :
a) b)
bttid ’\i‘x\k N\ yava : : = 7 ~\
c) ' d)

Figure 6 — Processus d’optimisation topologique suivant la méthode des lignes de contraintes

a) Discrétisation

b) Champs des contraintes

c) Lignes de contraintes

d) Déduction de la structure optimisée

Mémoire — A.Breugnot
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Limitations et contraintes :

Dans l'optique de rendre cet algorithme accessible a tous et en faciliter la
compréhension, aucun plugin autre qu’Anemone n’a été utilisé. Ce choix traduit la volonté de
vouloir présenter le processus dans son intégralité sans sauter d’étape et en s’efforcant de
faire face a toutes les problématiques liées a ce genre de projet. Ainsi, afin de répondre a
certaines problématiques survenues en cours de développement, des hypothéses ont été
prises. |l n’a pas toujours été possible de justifier ou méme vérifier ces hypotheses. Toutefois,
nous nous efforcerons dans cette rédaction de présenter les raisons derrieres ces choix, leurs
limites et leurs influences sur le processus mis en place.

Au-dela de sauter des étapes ou simplifier des taches, I'utilisation de plugins présente un
obstacle dans I'objectif du partage de connaissance. En effet, avec le temps, la disponibilité et
les versions des plugins évoluent ce qui rendrait I'algorithme présenté ici, valable uniquement
pour une période limitée. Le seul plugin utilisé est donc Anemone. Il s’agit d’un plugin simple,
par Mateusz Zwierzycki, permettant la création de boucles itératives. Puisque nous n’utilisons
pas de plugins, nous n’avons pas acceés aux solveurs. On notera que la possibilité d’utiliser
Matlab ou la librairie Numpy de Python pour avoir accés a un solveur a été écartée par choix.
D’une part, parce qu’il est plus simple pour un débutant d’installer un plugin et d’autre part,
par crainte de finir avec un algorithme python visualisé avec grasshopper. J'ai également la
conviction que pour un individu n’ayant pas de connaissance en programmation, un
algorithme grasshopper reste plus accessible qu’un algorithme Python ou Matlab.

Afin de simplifier le développement de l'algorithme, son domaine d’utilisation restera
restreint aux surfaces 2D planes. Il pourrait étre généralisé aux surfaces non planes par des
modifications relativement succinctes mise a part pour la partie attenant aux lignes de
contraintes qui s’avérerait étre un probleme plus complexe. L'algorithme serait toutefois
difficilement adaptable aux géométrie 3D car les calculs deviendraient alors trop lourds pour
étre réalisés avec Grasshopper.

L'algorithme a été développé sur la base d’une poutre simple, avec un appui simple et un
appui glissant afin d’avoir un systéme isostatique®. Ce choix a été fait car nous connaissons les
résultats a attendre pour une poutre isostatique, ce qui nous permet de vérifier les sorties de
I'algorithme ainsi que de prendre des hypothéses de résolution allant dans le sens des
résultats souhaités. Le schéma statique est présenté en Figure 8 et correspond au modeéle
établi en Figure 9. Un chargement asymétrique a été envisagé car la symétrie a tendance a
simplifier les résultats. Il a été observé qu’en passant d’un chargement symétrique a un
asymétrique, des problématiques pouvaient apparaitre. Ainsi, ce choix a été fait dans le but
de mettre en place un algorithme pouvant traiter une variété de systémes aussi large que
possible.

A £

Figure 8 - Schéma statique de la poutre utilisée pour le développement de I'algorithme

1 Le nombre d’inconnues de liaison est égal au nombre d’équations d’équilibre de la statique. Implique qu’il
n’existe qu’un seul et unique équilibre statique pour le systéme.

m
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Initialisation et discrétisation :

Cette partie élabore sur les possibilités et les choix afin de traduire le systeme présenté en
Figure 8 dans l'optique de sa résolution, c’est-a-dire I'obtention de I’équilibre statique?. Nous
verrons dans un premier temps les différents types de discrétisations et ce qu’elles impliquent.
Nous regarderons ensuite l'initialisation tel que mise en place dans I'algorithme.

Initialisation :
La premiere étape de I'algorithme consiste en plusieurs entrées humaines, a savoir :

- La géométrie (surface) de travail. Elle définit les limites géométriques de I'ensemble
des solutions possibles.

- Les points d’appuis. Ce sont les points d’ancrage de la structure, les seuls points
contraints dans leur déplacement. On distingue ici les appuis simples, ne pouvant se
déplacer, et les appuis glissants, avec un degré de liberté, pouvant se déplacer sur un
axe.

- Le chargement. Ici un chargement nodal. On le définit par un point d’application et un
vecteur associé représentant la valeur et I'orientation de la force considérée.

v

Figure 9 — Sortie Grasshopper des données d’entrées (Surface de travail, points d’appuis et chargement)

Les autres entrées humaines sont le module d’élasticité et les sections (afin de calculer la
raideur axiale). Or, comme présenté par (Li et Chen 2010), d’aprés les conditions d’équilibre,
pour un systeme d’élément finis a matériaux isotopiques et opérant dans le domaine
élastique, nous avons les propriétés suivantes :

- Le vecteur de déplacement des points est proportionnel au vecteur de force externe
(chargement) et est inversement proportionnel a la raideur axiale.

- Ce qui signifie que les directions du champ des contraintes ne sont affectées ni par la
valeur du module d’élasticité, ni par la valeur du chargement tant que nous restons
dans le domaine élastique.

Ces propriétés ont une incidence importante sur la méthode choisie, puisqu’elle implique qu’a
moins de changer la géométrie de base, les appuis ou la position du chargement, les formes
sortant de I'algorithme resteront valides. Nous pouvons donc changer de matériaux, ou la

2 0n dit d’un systéme qu’il est en équilibre statique si la résultante des forces dans le systéme est nulle. C’est-a-
dire, si tous les points du systeme sont immobiles.
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valeur du chargement sans avoir a refaire de calcul, ce qui en fait un outil particulierement
intéressant pour la conception.

Discrétisations :

La discrétisation est la division d’un domaine continu (ici notre surface) en un grand nombre
de domaines simples dont I'ensemble reproduit le domaine d’origine (Figure 10). Cela nous
permet de décomposer des calculs lourds et complexes en un ensemble d’opérations simples.
Plus concrétement, nous divisions une surface continue (ex: une surface courbe) en un
assemblage de surfaces simples (souvent des triangles), formant une maille équivalente a la
surface d’origine. Ici nous traitons une surface rectangle relativement simple que nous
discrétisons afin de connaitre le comportement interne de cette géométrie. Cette
décomposition peut étre appliquée a n’importe quelle surface pourvu qu’elle soit continue.
Cette méthode permet donc de traiter un grand nombre de géométries indépendamment de
leurs complexités.

Figure 10 — Discrétisation du domaine d’étude (rectangle) en un ensemble de domaines simples (triangles)

Nous allons dans un premier temps voire les méthodes « traditionnelles » (pour résolution par
optimisation linéaire) mises en place dans le cadre de la résolution d’'un probléme
d’optimisation topologique. Nous verrons ensuite la méthode mise en place dans I'algorithme.
En effet, nous verrons dans la partie « Etablir la figure de référence » que les méthodes
« traditionnelles » ne sont pas adaptées a la méthode mise en place ici.

Meéthodes de discrétisation « traditionnelles » :

Il existe plusieurs méthodes afin de discrétiser, avec des variations selon le but recherché. Le
type de discrétisation va donc dépendre de la maniére dont on cherche a obtenir la figure de
référence, figure qui sera ensuite traitée et simplifiée pour obtenir le résultat final. D’apreés les
études de (Gilbert et Tyas 2003), on peut distinguer deux types de méthodes, en particulier :

- La méthode par retrait de barre (Figure 11) :

Cette méthode consiste a créer I'ensemble des barres
pouvant exister dans le but de retirer celles ne travaillant
pas par la suite. Tous les nceuds sont donc connectés les
uns aux autres.

On peut facilement voir I'inconvénient de cette méthode.
Le nombre de barres a créer est n(n-1), avec n le nombre
de nceuds. Cette méthode est donc trés lourde en calcul
et empéche I'implémentation d’un grand nombre de Figure 11 — Discrétisation type avec

. p , . tous les nceuds connectés

nceuds et donc I'obtention de résultats précis.
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- La méthode par ajout et retrait (Figure 12) :
Cette méthode ne connecte que les nceuds a proximité,
réduisant ainsi massivement la quantité de calculs C
nécessaire. C'est cette méthode qui est généralement
utilisée dans les algorithmes d’optimisation topologique
employés de nos jours. Les barres non calculées sont o b

extrapolées des déplacements de nceuds a postériori. Figure 12 - Discrétisation type pour
ajOUt et retrait

Ces méthodes se basent sur la conservation des barres, accompagné d’une recherche de la
forme optimale par déplacement des nceuds. Cela signifie que les barres se doivent d’étre
correctement simulées. C’'est-a-dire qu’avec ces méthodes, on différencie, la résistance axiale
de compression et de la traction des barres. Ce qui ne sera pas le cas pour la méthode
employée.

On notera que le type de discrétisation n’a pas d’influence sur le résultat final, seule la vitesse
de calcul est impactée. Nous verrons dans la partie sur la figure de référence comment les
barres peuvent étre ajoutées, ainsi que les limitations de la méthode ne la rendant pas
optimale pour cette résolution.

Meéthode mis en ceuvre :

0
Comparé aux méthodes traditionnelles, la méthode réalisée
ne se focalise pas sur les barres mais sur les mailles en elles-
mémes. En effet, aucune barre ne sera conservée, elles ne
serviront qu’a obtenir les efforts internes du domaine
d’étude. On peut donc se permettre d’avoir la maille la plus ~
légére possible afin d’accélérer les calculs (Figure 13). Figure 13 — Discretisation utilisée

La méthode mise en ceuvre se base sur le champ des contraintes afin de déduire la forme
optimale. Notre but est donc ici de pouvoir obtenir ce champ. Ce qui signifie que le maillage
se doit d’étre uniforme afin de rester dans le domaine ou les propriétés avancées par (Li et
Chen 2010) restent valides. Celles-ci ont été présentées dans la partie « initialisation », a
savoir se placer dans un systéme d’élément finis a matériaux isotopiques et opérant dans le
domaine élastique.

Cela signifie également qu’ici nous ne prenons pas une résistance axiale de compression et de
traction différente pour les barres car nous avons besoin que le domaine soit isotrope. Nous
pouvons faire cela car ces barres ne sont pas conservées, donc leur comportement n’a pas
besoin d’étre réaliste. Nous établirons par la suite deux champs de contraintes,
respectivement en traction et en compression, séparant ainsi les directions associées a l'un et
a l'autre.

Le domaine d’étude étant isotrope, les directions du champ des contraintes ne sont pas
affectées par la valeur du module d’élasticité, nous pourrons donc associer, a postériori, des
résistances différentes aux barres issues de chaque champ sans pour autant s’éloigner de la
disposition optimale.
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Triangulation et stabilité :

On notera également qu’indépendamment de la méthode nous cherchons a avoir une maille
constituée de triangles. La raison est simple, une maille constituée de rectangle est instable.
Comme le présente (Gilbert et Tyas 2003), il est possible de s’affranchir de la triangulation
tant que les mailles connectant le chargement aux appuis sont triangulées. Dans notre cas,
puisque nous nécessitons d’avoir un maillage uniforme il est nécessaire que cette
triangulation soit présente partout.

N e e
R e e A
. N Jl
SEecSas fi
JAVAVivivaviwawamaD]
7717 TS AN
Figure 14 — Déformation de la maille carrée a un temps t Figure 15 - Déformation de la maille rectangulaire a I'équilibre

La Figure 14 présente la déformation du systeme établie dans le cas d’'une maille
uniguement constituée de carrés. Cette maille instable se déformera jusqu’a ce que I'appuis
glissant (a droite) atteigne I"autre appui. La Figure 15 présente la déformation pour une
maille, cette fois, triangulaire. On observe que la triangulation rend la maille rigide et lui
permet d’atteindre un équilibre statique apres une légere déformation.

Algorithme :

Figure 16 — Discrétisation mise en ceuvre dans l'algorithme

On notera dans la Figure 16, que la maille a été élargie par rapport au domaine d’étude. Cela
est di au fait que pour obtenir les lignes de contraintes, une extrapolation du champ de
contraintes sur les bords du domaine était nécessaire mais complexe a réaliser
qualitativement. Il a donc été choisi d’élargir le domaine d’étude dans les premiéres étapes
afin d’obtenir les valeurs manquantes.
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Résolution du systeme :

L'objectif de cette étape est de résoudre le systéme établi, c’est-a-dire obtenir la position de
I’équilibre statique du systéme. A partir de cela, il est possible de déduire la déformation du
systéme sous les contraintes établies.

La méthode de calcul qui a été choisie pour trouver cette position d’équilibre est la méthode
de la relaxation dynamique. Il s’agit d’'une méthode de calcul en grand déplacement alors que
la méthode traditionnellement utilisé est une méthode de calcul linéaire3. Cette derniére
nécessite un solveur. On emploie ici la relaxation dynamique, bien que plus lourde en calculs,
elle ne nécessite que la mise en place d’un processus itératif.

En employant la seconde loi de Newton (3 F=m=« d), il est possible de connaitre la vitesse
et donc la position a un instant t de chaque point dans le systéme. Le processus itératif calcule
donc le déplacement de chaque point dans le temps jusqu’a que ces derniers atteignent un
équilibre statique, c’est-a-dire, qu’ils soient parfaitement immobiles.

L'algorithme mis en place a été concu par Marc Leyral et est issus du travail (Leyral, Ebode, et
al. 2021).

Relaxation Dynamique

Il s’agit d’une méthode de calcul combinant des calculs simples de la physique newtonienne,
et un processus itératif. L'objectif est de trouver la position d’équilibre du systéme, c’est-a-
dire de la géométrie fournie, reposant sur les appuis désignés et soumise a un ensemble de
charges. En effet, la géométrie qui est fournie a I'algorithme, n’a pas atteint sa position
d’équilibre. De la méme maniére, qu’une poutre préfabriquée apreés avoir été posée et mise
en charge, va se déformer tres légérement, notre géométrie, sous les conditions du systeme
établi (appuis et charges) va bouger et se déformer pour atteindre sa position naturelle.

Au cour du processus itératif, a I'instant t, la position des noeuds a l'instant t+1 est calculée
grace a la 2°™¢ Loi de Newton (principe fondamental de la dynamique, cf formule ci-dessous).
D’aprés cette derniére, 'accélération d’un corps est proportionnelle a la somme des forces
appliquées sur ce dernier et inversement proportionnelle a sa masse. Cela nous permet de

= - -
calculer I'accélération fictive de tous les pointsde lamaille: Y F =m=x*a - a = —

311 existe 3 grandes méthodes de calculs : I'analyse linéaire, non linéaire selon la théorie du second ordre et
I’analyse en grands déplacements.

L’analyse linéaire (premier ordre), comme son nom l'indique, se base des fonctions linéaires, c’est-a-
dire la relation physique entre une valeur initiale x et une valeur de résultat y. L’analyse se fait sur une structure
non déformée.

L’analyse du second ordre, comparée a I'analyse linéaire, prend en compte les effets d’instabilité dus au
chargement. L’analyse se fait sur une structure déformée mais dont les déformations sont supposées petites.
Par exemple, les efforts normaux entrainent généralement une augmentation des moments fléchissant. On
notera que les structures en bois sont généralement calculées par analyse linéaire, mais il reste intéressant de
comprendre et de savoir qu’ils existent différentes méthodes de calculs ayant différentes implications.

L’analyse statique en grand déplacements se fait sur une structure déformée dont les déformées sont
supposées grandes. Il s’agit d’'une méthode itérative.
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Dans notre cas, il existe trois forces qui agissent aux nceuds :

- Le chargement nodal,

- Le poids propre appliqué aux nceuds (ﬁ = m * g), ol m est la somme des poids des
demi-barres connectées a chaque nceud,
- Laforce de Hooke dans chaque élément, proportionnelle a la raideur axial (EA) et a la

déformation (AL = L — L), tel que (ﬁ = EA* ﬂ). Elle modélise le comportement
élastique des barres, se comprimant lorsque AL < 0 et s’allongeant lorsque AL > 0.
Elle reste valide lorsque les déformations restent faibles, c’est-a-dire lorsque les barres
restent dans le domaine élastique. Si les déformations deviennent trop importantes
alors les barres entrent dans le domaine plastique et les déformations sont censées
étre irréversible, invalidant donc la loi. Elle permet d’assurer I'équilibre de chaque
nceud en apportant une rigidité au systéme.

Une fois I'accélération a; a un instant fictif t calculée, et connaissant la vitesse initiale v; au
méme instant, on déduit la vitesse v, 4; de chaque nceud a I'instant suivant t + dt. On obtient,
par dérivation de la vitesse, le déplacement de chaque nceud durant la durée dt.

Nous obtenons alors les positions de chaque nceud a l'instant t + dt. L'opération est reproduite
jusqu'a parvenir a un équilibre statique de la structure. Cet équilibre implique I’'absence de
mouvement macroscopique de la structure. Cela signifie que la somme des forces extérieurs
(chargement et réactions d’appuis) est égal a 0, tel que :

Y Fext/x =0, XFextsy =0 et X My, = 0, les conditions d’équilibre statique

Le systeme étant constitué entierement d’articulations, aucun moment n’est transféré au sein
du systéme. Lorsque ces conditions sont satisfaites pour la structure considérée globalement.
Cela signifie également que les équations de la statique sont satisfaites pour chaque portion,
chaque maille du domaine étudiée.

Toutefois, le systéme établi est constitué de rotules parfaites et ne contient aucun moyen de
dissiper son énergie, comme la viscosité de I'air. Cela signifie qu’il est contraint d’osciller
autour de sa position d’équilibre tel un pendule indéfiniment. Il est donc nécessaire de
rajouter un amortissement dans le systeme, c’est-a-dire, un moyen de dissiper entierement
I’énergie totale du systéme.

Pour cela, la méthode avancée par (Barnes 1999) est mise en ceuvre. Barnes montre qu’il est
possible de dissiper I'énergie cinétique en annulant toutes les vitesses des noceuds lorsque
I’énergie cinétique commence a décroitre. En effet, cela signifie qu’elle a atteint un maximum
local et, donc, I'énergie potentielle est minimale : la structure est proche de sa forme
d’équilibre.
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On peut faire le paralléle a un pendule qui oscille. Lorsque
le pendule est au plus haut, sa vitesse est nulle et I'énergie
potentielle est maximale. Le pendule accélére ensuite sur
sa descente, avant d’atteindre le point plus bas (le point
d’équilibre). En ce point, I’énergie cinétique est maximale,
tandis que |’énergie potentielle est minimale. Si le
pendule continu, il va remonter et donc perdre en vitesse.
L’énergie cinétique va donc décroitre. En annulant les
vitesses lorsque que celles-ci commencent a décroitre, on
dissipe I'énergie cinétique du systéme au plus proche de
sa position d’équilibre. Lorsque toute I'énergie est
dissipée, le systéme est a I’équilibre. Il est important que relaxation dynamique avec
'amortissement se fasse au plus proche de la position amortissement visqueux

d’équilibre car les vitesses permettent le déplacement et

la déformation du systeme vers cette méme position. Ainsi si la vitesse est annulée loin de la
position d’équilibre, atteindre cette derniere va demander plus de temps.

Forces et déformations :

Il est possible de déduire la déformation de chaque barre ainsi que la force associée a cette
déformation en comparant la maille a I’équilibre a celle d’origine.

La déformation d’une barre est donnée par :
L-L N N N , e
€= L—°, ou L est la longueur de la barre dans le modeéle a I’équilibre,
0

et L, est la longueur de la barre dans le modele d’origine.

Figure 18 - Champs des déformations

De foncer a claire, fortes a faibles déformations

On observe ici (Figure 18) le comportement attendu d’une poutre isostatique fonctionnant
en flexion, avec des déformations importantes sur les fibres inférieures et supérieures. Et
peu de déformations en fibre neutre et autour des appuis.

On notera que les distances L et Lo peuvent étre obtenues pour des barres n’existant pas,
simplement en calculant la distance entre deux points. De cette maniére on peut obtenir la
déformation de barres n’ayant pas été calculés. C'est le principe derriére la méthode d’ajout
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présentée dans la partie « discrétisation ». Cela permet donc d’économiser énormément en

temps de calcul.

Pour déterminer le champ de forces, on considére la maille du systéme, issu de la relaxation
dynamique, comme un mécanisme. C’est-a-dire, un assemblage de pieces subissant une
déformation élastique car étant soumises a des actions mécaniques d’intensité variable. Afin
d’obtenir le champ de force, le systéme est donc assimilé a un assemblage de masse (noeuds)
et ressort (barres) fonctionnant en traction/compression. Ce mécanisme nous permet

d’établir un lien de proportionnalité entre I'allongement et la force. Ce lien est donné par
loi de Hooke :

F=kx*AL , avec k la constante de raideur de ressort,
D'ol, F =EA <k

, avec E le module de Young, A la section
0

En effet, si une barre est raccourcie a I'équilibre alors elle est en compression. A 'opposé si
elle s’allonge elle est en traction. On obtient donc des efforts négatifs en compression et
positif en traction.
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Figure 19 — Champs de forces

De foncer a claire, forts a faibles efforts. Bleu = compression. Rouge = traction.

On observe ici (Figure 19) le comportement attendu d’une poutre isostatique fonctionnant
en flexion, avec une fibre supérieure en compression et une fibre inférieure en traction.
Ainsi, que des pics de compression au droit des appuis.
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On définit comme la figure de référence, la structure la plus optimisée possible, celle
possédant le minimum de volume de matiere possible parmi I'ensemble des solutions
possibles. Cette structure est ensuite simplifiée afin d’étre rendue constructible. Cette
simplification s"accompagne par un accroissement du volume.

La structure la plus optimisée tel qu’avancé par (Michell 1904) et contient un nombre infini
de barres, infiniment fines et reprenant des efforts infiniment faibles. Ces solutions produisent
les structures dont le volume de matériaux est le plus proche de la limite mathématique
(minimum). Cette structure est en réalité une forme du champ des contraintes (Figure 20). Ce
dernier étant continu, il est possible d’attribuer en tous points du domaine, un tenseur de
contraintes contenant les directions et les valeurs des contraintes en ces points.

La méthode mise en ceuvre est directement déduite de cette figure de référence optimale
par interpolation du champ des contraintes. Seulement une proportion nécessaire de ces
lignes sont tracées (Figure 21) afin d’obtenir une figure de référence exploitable.

Dans le cas de I'optimisation linéaire, la figure de référence est obtenue avec I'ajout et le
retrait des barres puis par la déformation de la structure (déplacement des nceuds) afin de
suivre les directions de la figure de référence optimale. La complexité de la structure produite
dépend du nombre de points créés lors de la discrétisation (Figure 22). Ainsi, théoriquement,
plus le nombre de points est grand plus la figure de référence sera précise et de faible volume.

Figure 20 — Champs des contraintes principales

Le champ est séparé en traction (rouge) et compression (bleu)

Figure 22 — Figure de référence type produit par un algorithme utilisant I'optimisation linéaire (Plugin
Peregrine)

Ici la forme est déja relativement simplifiée. Cela est due au fait que le plugin dans sa version non payante
limite le nombre de barres.
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Méthode « traditionnelle » :

La méthode généralement employée, dans le cadre d’un algorithme d’optimisation linéaire,
afin d’obtenir la figure de référence consiste a ajouter et retirer des barres (Gilbert et Tyas
2003) dans le systeme discrétisé jusqu’a atteindre une disposition optimale. Les nceuds sont
ensuite déplacés afin que les directions des barres soient avec le parcours des efforts dans le
systéme.

La Figure 23 présente une tentative de mise en place de cette méthode apres avoir établie le
champ de force (Figure 19). Le résultat est celui auquel on peut s’attendre. C’'est-a-dire que
les barres restantes (celles reprenant des efforts relativement importants) se situent en fibre
supérieur, inférieur, au point de chargement et aux appuis. Tandis qu’en fibre neutre (au
centre), il ne reste quasiment plus aucun membre. Ce résultat traduit donc une réalité
physique tout en restant trés loin du résultat souhaité. Pour atteindre notre objectif ici, il
faudrait mettre en place un filtre permettant de retirer les barres adjacentes et parallele.
Toutefois, méme une fois cela réalisé, il faudrait encore s’assurer que les barres restantes
soient encore connectées. Ces étapes a la fois lourdes en calculs et dont I'efficacité, ainsi que
la validité sont a interroger, ne semblent donc pas étre une piste satisfaisante de résolution.

Il est a ce stade plus judicieux de s’éloigner des méthodes « traditionnelles » au profit de
méthodes moins efficaces mais plus simples a implémenter au sein de I'algorithme développé,
et dont nous pouvons justifier la validité.

Figure 23 — Résultat de I'algorithme apres retrait des barres a effort faible
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Méthode des lignes de contraintes :

La méthode étudiée par (Kam-Ming Mark Tam et Mueller 2015) et (Li et Chen 2010) se servant
de lignes de contraintes afin de construire une structure optimisé se préte tout
particulierement a une adaptation sur Grasshopper. Cette méthode posséde plusieurs
avantages majeurs :

Les calculs lourds sont réalisés en amont, ce qui permet d’avoir une phase finale
(création de la structure) dont les calculs sont quasi-instantanés.

Elle ne nécessite pas de retour en arriere. Ce qui signifie qu’une fois les étapes
préliminaires (lignes de contraintes) calculées, elle donne accés a un large ensemble
de solutions sans nécessiter de calculs supplémentaires.

Elle est trés visuelle (Figure 39) et permet a 'utilisateur de pouvoir choisir le degré de
simplicité de la structure résultante avec facilité.

Cette méthode se décompose en 3 parties :

Etablir le champ des contraintes principales (Figure 20). C'est-a-dire déterminer les
directions et valeurs des efforts dans le domaine. Les directions correspondent aux
valeurs telles que la contrainte principale est maximale, et donc que le cisaillement est
minimal. Il s’agit donc de la direction pour laquelle la reprise d’effort est la plus efficace
pour le matériau. Le champ obtenu étant continu, on peut donc connaitre le vecteur
de contrainte en tout point.

Tracer les lignes de contraintes par interpolation (Figure 21). Cette étape permet de
pouvoir créer des continuités entre les éléments et donc de s’assurer que la structure
suit le champ des contrainte.

Tracer la structure a partir des lignes de contraintes. Les nceuds se trouvent a
I'intersection entre les lignes de contraintes en traction et celle en compression, ce qui
permet de s’assurer de la position optimale des points et que les barres suivent les
directions du champ de contraintes.

22
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Le champ des contraintes (principales) est un champ de vecteurs indiquant la direction et la
valeur des contraintes principales dans le systéme. Les contraintes principales sont les
contraintes normales pour lesquelles les contraintes tangentielles sont nulles®. Le champ des
contraintes principales peut étre déterminer par opération sur le champ de force établie

(Figure 25).

Ces directions seraient donc celle optimales pour la reprise d’effort. Cela implique que les
éléments suivant ces directions ne travaillent qu’en compression ou traction et ne
reprennent donc pas d’efforts tranchants. Les matériaux comme le bois possédent une
résistance particulierement faible a ce genre d’effort orthogonaux. Ainsi en s’assurant que
les matériaux ne reprennent que des efforts pour lesquelles ils sont naturellement résistant,

la quantité de matiere nécessaire s’en voit réduit.

Une des méthodes afin d’obtenir le champ des contraintes est
de tracer le cercle de Mohr (Figure 24) et d’y lire les contraintes
principales et secondaires ainsi que la contrainte de
cisaillement. Ou encore de diagonaliser le tenseur des
contraintes. Toutefois, cela implique des opérations lourdes en
calculs.

La méthode mise en place est celle développé par (Leyral, Chef,
et al. 2021). Cette méthode permet, a moindre co(t, d’estimer
la direction et la valeur de la contrainte principale. Elle ne
calcule pas les contraintes et se sert de la propriété selon
laquelle, la contrainte principale (o)) correspond a un
maximum de la contrainte et qu’a cette contrainte est associé
une contrainte de cisaillement nulle (t) (Figure 24).

T max

CTI o' U[

Figure 24 - Cercle de Mohr

4 En théorie, les contraintes principales sont les contraintes pour lesquelles il existe une base
orthonormale (Figure 25.c) tel que le tenseur des contraintes est une matrice diagonale.

Oxx Txy

Soit, (
Tyx Oyy

) le tenseur de contraintes, avec oy, et gy, les contraintes normales et 7,,, =

Txy (car le tenseur des contraintes est toujours symétrique) la contrainte de cisaillement.

Toute matrice symétrique réelle étant diagonalisable, on a I’existence du tenseur suivant :

0
cisaillement sont nulles.

o 0 . . .
( ! ), pour lequel o; et g;; sont les contraintes principales et les contraintes de
i

Cela signifie qu’il existe des vecteurs propres correspondant aux directions principales des
contraintes et des valeurs propres correspondant aux contraintes principales.
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Comme on I'a vu précédemment, a I'équilibre, les P.e.Fx
équations de la statique sont satisfaites dans toutes les P,
mailles du systéme. Ainsi, il est possible de traiter Fz

chaque maille individuellement et donc de se ramener

a un systéme simple contenant 3 barres et 3 nceuds.

Le champ de forces (Figure 25.a), fournit les forces )
associées a chaque barre. Or les conditions d’équilibres P.
statiques donnent, pour toutes mailles :

Fip + F;3+F3=0 a) F
Cela implique qu’il existe une force de signe opposé et
équivalente a la somme des deux autres.

On cherche d’abord a connaitre la réaction a chaque P
nceud (Figure 25.b) dans la maille étudiée afin de =) ’
connaitre la réaction maximale. En effet, dans un

systtme a 3 noeuds la réaction maximale

correspondrait a la contrainte principale (cela étant B

valable uniguement dans un systéeme a 3 nceuds).

Cela est dG au fait que les conditions d’équilibres
statiques nous donnent :

nent: b) Fe
F1+F2+F3=O

Considérons une base orthonormée (u, U) sur laquelle P—‘o .

les vecteurs Fl), F;,F? sont projetables, comme celles
présentées en Figure 25.c.

L'orientation de cette base sera celle de la contrainte
principale. On cherche donc les orientations de cette
base tel que la projection des forces sur celle-ci donne
la valeur maximum, celle-ci sera la contrainte .
principale. c)
Par produit vectoriel on peut écrire I’équation suivante

— — P

FLi+Ri+FRi=014 -/ P.

» O
Par projection sur (u,v), il est possible d’écrire les :

forces de la facon suivante :
F = F.cosa.u + F.sina.v, avec a I'angle entre F et

—

Uu. L4

d) a

On obtient donc (en sachantque .U = 1letu.v = 0) : Figure 25 — Processus de calcul du champ de
Fy.cosy i+ F, COSﬁ i+ Fs.cosa =01 contraintes a partir du champ de forces

—

, avec (a,B,y) les angles entre les forces et I'axe u. a) Forces des barres dans une maille

b) Calcul des réactions aux nosuds
. c) Projection des réactions dans le référentiel
Posons maintenant, F3 > F, Fa. de la plus grande réaction

d) Contraintes principales associées a la maille
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Ce qui signifie d’apres les conditions d’équilibre I’équation suivante est vérifiée pour tout a :
F3 cosa.u = Fy.cos(a +1).u+ Fz cos (a +]) u
, avec a I'angle entre F3 et U et (i,j) les angles entre Fl, F3 et FZ, F3

F; Etant une constante on obtient le résultat suivant :
max_(F3.cosa) = F; , avec a=0
——<as-
2 2
C'est-a-dire que la valeur maximum pouvant étre atteinte (contrainte principale) est donc
celle pour laquelle I'angle entre F; et i est a=0. La contrainte principale est donc égale a la
réaction maximale dans un triangle et son orientation est celle de cette derniére. On peut en

déduire par projection sur ¥ la contrainte principale secondaire (Figure 25.d).

La méthode mise en place ici est donc une méthode rapide et tres |égere en calculs permettant
I’obtention du champ des contraintes dans un systeme constitué de triangles. Les limites de
cette méthode sont qu’elle ne fonctionne que pour des triangles et qu’elle ne permet
d’obtenir la contrainte de cisaillement.

A noter que la contrainte de cisaillement est bien nulle lorsque I'on suit le champ de contrainte
principale et n’est donc pas nécessaire ici. Toutefois, lorsque la structure simplifiée sera
dessinée, celle-ci ne suivra pas parfaitement le champ des contraintes et subira donc une
contrainte de cisaillement. Bien que ce processus ait pour but de minimiser cette derniére il
reste intéressant de pouvoir la mesurer.

Le champ des contraintes ainsi obtenu, contient les contraintes principales ainsi que les
contraintes principales secondaires (perpendiculaires aux contraintes principales). Toutefois,
il ne différencie pas entre traction et compression. Puisque nous cherchons a déterminer la
disposition des éléments d’une structure a partir de ce champ, il est préférable de séparer le
champ non pas en contraintes principales et secondaires mais en contraintes de compression
et de traction (Figure 26).

Figure 26 — Champs des contraintes principales

Le champ est séparé en traction (rouge) et compression (bleu)

5 Clarification Force-Contrainte : Dans cette partie nous parlons dans un premier temps de forces puis de
contraintes, sans établir de lien entre les deux. La raison est linéarité entre les deux. En effet, la force s’écrie

F = oS avec o la contrainte et S la section des barres. Lors de la relaxation dynamique nous avons attribué des
sections S aux barres. Celles-ci, par la loi de Hooke définissent la raideur axiale des barres. Or comme vu p. 11,
la raideur et donc la section n’a pas d’influence sur les directions du champ, seulement sur les valeurs. Ainsi,
qguand nous ne parlons de barres nous privilégions le terme force, et quand nous parlons de mailles (surfaces)
nous privilégions le terme contrainte.
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Le champ de contraintes indique des directions mais n’est pas exploitable en I'état. Bien qu’il
soit possible de relier les vecteurs du champ actuelle afin d’obtenir un résultat exploitable,
comme réalisé dans (Prevost et al. 2022). Ici, la qualité des lignes aura un impact direct sur la
qualité de la structure. Il est donc nécessaire de mettre en ceuvre une méthode permettant
d’obtenir des lignes de contraintes continues et de qualité.

La méthode employée est inspirée de celle présentée par (Li et Chen 2010), dans laquelle on
va chercher a obtenir, par interpolations, les contraintes en tous points du systéeme.
L'avantage de cette méthode est qu’elle permet d’obtenir une grande précision a partir d’'un
champ de contrainte peu précis. Elle est également plus légere en calcul et s’associe donc tres
bien avec la relaxation dynamique qui est plus lourde en calculs et a tendance a limiter la
précision de la maille possible.

Cela permet par la suite, de connecter ces points et trouver des lignes de contraintes
continues. Celle-ci représente le parcours des efforts dans le systeme. En théorie, il existe une
infinité de ces lignes mais de maniére pratique, en tracer seulement une certaine proportion
est suffisant. Ces lignes serviront par la suite de base a la structure optimisée.

Interpolation bilinéaire ( ) :
Soit un point R, pour lequel on cherche a connaitre la
contrainte principale. Ce point se trouve dans une maille C R: D
rectangulaire, dont a chaque coin est attribué une contrainte v C . O
(04, 08, 0¢, 0p)-
On procéde par interpolation bilinéaire pour obtenir la R
contrainte en R. C'est-a-dire, par interpolation linéaire sur A et Y B
B pour obtenir R1, puis sur C et D pour obtenir Rz et enfin sur R1
et R, pour obtenir R.
La formule de I'interpolation linéaire est la suivante (appliqué A R B
iciaR1):
S O . Q,
9r1 = Oa- (x3 — x1) 5 (x; — x1) Figure 27 — Schéma interpolation bilinéaire

C’est pour cette méthode que la maille lors de la discrétisation a été élargie. Cela nous permet
de pouvoir déterminer les contraintes sur les bordures du systéme sans perdre en précision.
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Pour accéder a des résultats qualitatifs sans étre trop

lourd en calcul, il est nécessaire d’obtenir des lignes de

contraintes continues et d’avoir un intervalle constant P...
entre celles-ci.

Pour cela, au lieu de connecter des points déja existants, il
est préférable de partir de points de base appartenant a
différentes lignes de contraintes puis de trouver la position
des points formant ces lignes a partir des points de bases
(Figure 28).

Ainsi la distance entre les points de base donnera
I'intervalle entre les lignes de contraintes tracées. Les
points suivants sont déterminés par un processus itératif.

Figure 28 — Schéma du processus itératif
tracant les lignes de contraintes

On part d’un point Pi1 auquel on associe une contrainte principale g,_, déterminé par
interpolation bilinéaire. Le point P; est ensuite déterminé en déplagcant le point Pi.1 d’'une
distance & suivant la direction de oi.1. On associe alors au point Pisa contrainte principale ;.
On peut alors déterminer par un processus itératif tous les points appartenant a une ligne de
contrainte pour ensuite tracer celle-ci (Figure 29).

Ainsi la qualité des lignes tracées peut étre controlée en modifiant 6. On peut noter qu’un &
valant la moitié de la largeur d’une maille semble en général suffisant a obtenir des résultats
précis sans redondance de calculs. En effet, au-dela d’augmenter la quantité de calcul a
réaliser, avoir un & trop faible s’avere étre inutile. La perte d’information di a la taille de Ia
maille est en partie récupérée par I'interpolation mais ce n’est le cas qu’a I’échelle de la maille.
Pour les échelles bien plus petites, I'interpolation ne fournit aucune précision dans ses
résultats.

Figure 29 — Lignes de contraintes de compression (bleu) et de traction (rouge) tracer pour processus itératif

—— Principal compressive strain projectory

_____ Principal tensile strain projectory P ﬂ

Figure 30 — Schéma des lignes de contraintes attendus pour le systeme étudié. Issus de (Tuchscherer,
Birrcher, et Bayrak 2011)

27
Mémoire — A.Breugnot



On peut noter que la Figure 29 comporte des anomalies et des vides. Ces anomalies et vides
empéchent d’obtenir un résultat final qualitatif. La structure tracée étant directement déduite
des lignes de contraintes, si celles-ci sont de mauvaises qualités alors le résultat final le sera
aussi.

Nous verrons dans cette partie le processus mis en place pour résoudre cette problématique,
sans oublier qu’il s’agit d’'une étape lourde en calculs et qu’il est donc nécessaire d’obtenir un
résultat le plus qualitatif possible en faisant un minimum de calculs.

Les anomalies (visibles sur le bas de la Figure
31) sont dues au fait que certains vecteurs ont
mal été orienté (Figure 32, sur la bordure
inférieure). La majorité de ces anomalies ont
pu étre éliminées en procédant a une i ‘\\ %%%
correction du champ des contraintes en - T el P A\ AN

s‘assurant que les contraintes soient Figure 31 — Lignes de contraintes de compression
orientées dans le sens des contraintes comprenantles anomalies et des vides

voisines. Toutefois, cela échoue souvent dans
les zones ou le champ varie fortement,
comme les coins ou le centre. Comme, indiqué
en Figure 25.d, la direction de la contrainte
principale est un plan et non un vecteur. On AR,

choisit d’employer des vecteurs car le R R RN VR o
processus itératif déplagant les points _ _
nécessite d’avoir un sens. Le sens de ces gcl)gnl:riisguze; Champs des contraintes dont les lignes
vecteurs va donc dépendre de la maniére dont

on dispose les points dans le processus

itératif. Comme on va le voir par la suite, la

disposition des points est un sujet en soit,

pour lequel il existe beaucoup de solutions

possibles.
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Les vides peuvent étre d{i au fait que dans ces _ o _

| h d traint dilat Figure 33 — Champs des contraintes de compression
zo.nes € Champ de contraintes s.e late au niveau de I'appuis, montrant le champ se dilatant/
(Figure 33). Cela se produit tres s’écartant vers les bords
régulierement, mais une solution a pu étre

trouvée. Nous la verrons par la suite.
Une autre raison peut étre la forte variation dans le champ des contraintes (centre de la Figure

32). Cela se traduit, pour les lignes de contraintes, par des angles de courbures trés aigues
pouvant avoir pour effet qu’une ligne passe deux fois dans une maille ou effectue un U au sein
d’une maille. Dans le processus itératif, on observe alors des allers et retours dans deux mailles
voisines (Figure 31).

Il est également possible gu’il soit impossible de tracer une courbe car le vecteur de la
contrainte du point de base est orienté vers I'extérieur de la géométrie. Dans ce cas, certaines
lignes ne sont pas tracées en raison de la disposition des points de bases ainsi qu’au sens des

vecteurs contraintes.
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Afin d’obtenir les lignes de contraintes présentes dans ces vides, une autre méthode de
disposition des points est donc a mettre en ceuvre. A noter que nous souhaitons avoir des
lignes continues allant d’un bord a I'autre et dont la répartition est la plus homogeéene possible,
il n’est donc pas possible de placer les points de base aléatoirement.

On peut observer en Figure 34, le vide laissé
par une disposition des points de base sur le
contour de la géométrie. On peut également
voir dans le champ des contraintes le
retournement de sens des vecteurs et ayant
pour effet de créer ce vide.

Ici le champ a été orienté de cette maniere
car nous souhaitions obtenir des lignes de
contraintes continues allant d’'un bord a
I'autre. Ce qui a induit un choix du sens des
vecteurs orientés selon x (gauche — droite)

On notera que la Figure 35 fournit les lignes
de contraintes selon les mémes conditions
que la Figure 34 avec comme seul
changement, l'inversion du sens des vecteurs
(droite — gauche). Bien que cette inversion
permette de réduire des vides, ce n’est pas
une solution viable dans le sens paramétrique
de [lalgorithme puisque le probléeme se
reposera dés que la géométrie changera. Une
autre méthode doit donc étre envisagée.

Le but fut dans un premier temps de trouver
une méthode permettant d’obtenir
I'ensemble les lignes de contraintes sans
avoir de vide.

Une des solutions envisagées pour combler
ce vide fut de disposer les points de bases non
pas sur le contour mais suivant I'axe entre la
contrainte maximum en compression et en
traction (Figure 36). L'idée est de placer les
points sur ce qu’on pourrait appeler le
« sommet » des lignes de contraintes. Les
points placés a cet endroit ne seraient pas
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Figure 34 — Lignes de contraintes avec disposition des points
de bases sur le contour de la géométrie

Figure 35 - Lignes de contraintes selon disposition identique &
Figure 34 mais avec sens de vecteurs inversé

Figure 36- Lignes de contraintes avec disposition des points de
bases suivant I'axe entre la contrainte maximum en
compression et en traction (excluant les réactions aux appuis)

soumis au changement de direction des vecteurs et permettraient de tracer des résultats sans
se soucier des sens. Toutefois, I'axe tracé n'est qu’une approximation de I'emplacement des
sommets puisque ceux-ci ne forment pas une droite mais une courbe non linéaire.

Il ne semble pas y avoir de méthodes simples (sans avoir recourt a un premier tracer
déterminant I'emplacement des sommets) permettant d’obtenir cette courbe. Toutefois,
cette méthode, associée a la premiere pour obtenir les tracés des extrémités semble

engendrer des résultats plus qualitatifs.

Mémoire — A.Breugnot
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Il existe un grand nombre de méthodes afin de traiter ces problématiques mais ces méthodes
doivent rester générales au risque de perdre le caractére paramétrique de I'algorithme. De la
méme maniére il serait possible de placer un grand nombre points au hasard afin de s’assurer
d’obtenir toutes les lignes de contraintes mais cela nécessiterait une quantité de calculs trop
importante pour le faire en une fois, et cela ralentirait fortement les étapes qui suivent.

Apres plusieurs d’essais et différentes méthodes mise en place, il semblerait que tracer
I’ensemble des lignes de contraintes en une fois nécessiterait de connaitre le comportement
du champ des contraintes. C'est-a-dire, savoir ol celui-ci se dilate et se contracte. Cela signifie
gu’une analyse zone par zone serait nécessaire avec des comparaisons entre zones. Cela
semble fortement compliqué a mettre en place, ce qui est contraire a I'objectif.

La méthode a laquelle nous avons abouti, est une méthode en deux étapes visant a étre la
plus légere en calcul possible. Dans un premier temps, les lignes de contraintes sont tracées
suivant la méthode montrée en Figure 34. Cela permet d’obtenir une base de travail viable
indépendamment de la géométrie de base. Nous pouvons par la suite déterminer assez
simplement les zones sans lignes de contraintes, et y répartir des points de bases tel que
montré en Figure 37.

Les lignes de contraintes obtenues a I'issue de ces deux étapes (Figure 38), ne laissent donc
aucuns vides et restent disposées de maniere relativement homogéne. Cela devient important
par la suite car plus le nombre de lignes est grand, plus les calculs sont lourds. Ainsi se
contenter de combler les trous plutdt que de placer un maximum de points au hasard est plus
judicieux pour le bon fonctionnement de I'algorithme.

Ce genre de résolution est quelque chose qui fut quasi-systématique dans le développement
de 'algorithme, celle-ci ayant été 'une des plus grosses puisque qu’impliquant des boucles
itératives. Le processus de développer une méthode a partir des hypothéses et théories
établies, repérer les failles et les manques dans la méthode, en trouver les sources, trouver
des solutions permettant de rectifier au mieux le probléme tout en prenant en compte les
limitations imposées. Le plus souvent le but n’était pas de trouver la solution parfaite mais
celle qui permet de passer a I'étape suivante le plus efficacement et simplement sans étre
impacté par les problemes existants. Cette logique est quelque chose qui devient trés
important vers la fin de I'algorithme pour que celui reste utilisable de maniere fluide.

= ] ' Toye
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Figure 37 - Disposition des points de bases dans les vides laissé par la premiére

étape

Figure 38 — Lignes de contraintes a l'issue des deux étapes
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Méthode :

Cette derniere étape dans le processus est inspirée de la méthode de (Li et Chen 2010) en
sélectionnant certaines lignes de contraintes et en les connectant.

Les lignes de compression formeront les barres fonctionnant en compression et les lignes de
traction formeront celles en traction. L'intersection des lignes de compression et des lignes de
traction formeront les nceuds de la structure (Figure 40). Cette méthode de résolution assure
d’une part, que les barres formées sont dans la disposition la plus efficace possible, c’est-a-
dire qu’elles suivent au mieux le champ des contraintes. Ainsi plus le nombre de barres est
important (complexité élevée) plus ces derniéres seront proches de la ligne de contraintes
dont elles sont issues. Et d’autre part, cette méthode assure que les nceuds sont bien dans
leur position optimale, c’est-a-dire, sur la ligne de contrainte que les barres suivent. On notera
gu’une étape de déplacement des points, form-finding, est nécessaire dans la méthode de
(Gilbert et Tyas 2003) pour obtenir ce résultat. On peut donc mettre en parallele les deux
méthodes, ol 'une est directement issue de la forme la plus optimisée (figure de référence),
tandis que 'autre déforme une structure préexistante afin de se rapprocher de la figure de
référence.

Dans un premier temps, il s’agit de sélectionner les lignes de contraintes qui constitueront la
structure. L’avantage de la méthode présentée est, comme on peut le voir en Figure 39, que
ce choix est trés visuel et permet a I'utilisateur d’avoir une pleine connaissance des différentes
dispositions possibles, avec la possibilité de pouvoir ajouter ou retirer des lignes a la main si
cela s’avére étre nécessaire. De la méme maniere, la complexité de la structure tracée, c’est-
a-dire le nombre de barres sélectionné (plus on sélectionne un grand nombre de barres plus
la structure sera complexe), est directement visible donnant ainsi une grande transparence
sur I’'ensemble des solutions possibles.

Afin de tracer une structure « viable », c’est-a-dire, pouvant transmettre les efforts du point
de chargement aux appuis, certains critéres se doivent d’étre respectés. En effet, la structure
a tracer n’est dans un sens qu’une simplification de I'ensemble des lignes de contraintes
(Michell p20 — les lignes de contraintes sont la structure la plus optimisée. Celle-ci contient un
nombre infini de barres, infiniment fines et reprenant des efforts infiniment faibles). Il faut
donc s’assurer qu’en simplifiant la structure des éléments nécessaires ne sont pas supprimés.
Le critére applicable a toute typologie est qu’il doit toujours exister un élément continue
connectant les appuis et la charge.

D’autres critéres ont pu étre observés afin d’obtenir le résultat ci-présent sans pour autant
prouver que ceux-ci sont généralisables. Les critéres observés sont de maniere exhaustive :

- La nécessité d’'une enveloppe extérieure allant d’'un appui a l'autre. Cette enveloppe
contient en général une partie des lignes de contraintes maximales (lignes de
contraintes contenant les contraintes les plus importantes du systeme).

- La nécessité d’avoir une répartition homogéne des lignes sélectionnées. Pour assurer,
gue la longueur des barres reste équivalente a tous les membres, évitant ainsi les
risques de flambement et de membres surdimensionnées.

Dans notre cas, il a été possible d’obtenir un résultat acceptable lorsque :
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- Un ensemble de lignes réparties de maniere homogene a été sélectionné

- Les lignes passant par les appuis ont été ajoutées

- Une ligne connectant les appuis et le large a été ajoutée

- L’enveloppe extérieure a été créé. C’'est-a-dire, une connexion entre les lignes
passant par les appuis et les autres lignes.

Il s’agit donc d’un processus qui est actuellement difficile a généraliser car nécessitant trop
d’opérations spécifiques a ce systéme pour parvenir a un résultat. On notera que I'existence
de ces critéres montre qu’il est important d’avoir des lignes de contraintes propres et de
qualités car cela peut rendre I'obtention d’un résultat a cette étape trés complexe autrement.

Figure 39 — Choix des lignes contraintes formant la structure

v

Figure 40 — Structure issue des lignes de contraintes sélectionnées en Figure 39

Répartition des barres :

Deux méthodes de sélections des barres ont été envisagées ici. La premiéere est une répartition
homogene des lignes sélectionnées, assurant ainsi d’avoir des barres de longueur équivalente.
C’est la méthode qui est traditionnellement employée comme présentée dans la Figure 41.
La seconde consisterait a densifier le nombre de barres aux endroits ou les contraintes sont
plus élevées (Figure 40). L'avantage de cette méthode est qu’aux endroits reprenant le plus
d’effort, plus d’éléments sont placés, permettant ainsi de mieux répartir les efforts. Toutefois,
cela implique également des assemblages plus denses a ces endroits.

Aucun résultat concluant montrant la supériorité d’'une méthode par rapport a 'autre n’a été
trouvé. On choisira néanmoins une répartition homogéene car, suite au dimensionnement, il
en est sorti, qu’avoir des barres excessivement petites (trop courtes) ou trop longues
(soumises au flambement) engendrait une perte de matiére dans la plupart des cas.
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Figure 41 — Structure issue du plugin Peregrine pour le systéeme étudié

Variation de typologie — implémentation d’un arc :

L’analyse structurelle suivante a été réalisée sur le logiciel de calcul RSTAB. Cette analyse vise
a comparer deux procédés structurels sous des conditions identiques. Les conditions sont les
suivantes :

Géométrie de 10m x 2m de hauteur (Ratio ou lI'impact de la modification est
conséquent sans pour autant étre majoritaire)

Appui simple a gauche, appui glissant a droite

Charge Nodal de 100 kN (10T) au centre en membrure supérieure

Les deux structures ont les exactes mémes dispositions a I'exception de la partie que
I’on souhaite observer

Les sections sont identiques pour tous les éléments

La premiére structure (Figure 42) est une sortie directe de |'algorithme alors que la seconde
(Figure 43) remplace la partie a proximité du point de chargement par un arc avec des rayons.
Dans la disposition avec un arc, toutes les lignes de compression sont connectées avec le point
de chargement alors que dans la sortie de I'algorithme, une seule barre est connectée au point
de chargement. On peut donc s’interroger sur la répartition des efforts et le role de certains
éléments.

l—-x

z
Figure 42 — Structure 1 (sortie de I'algorithme sans altération)

Figure 43 — Structure 2 (implémentation d’un arc)

Bien que I'on cherche a savoir si le résultat de I'algorithme doit étre altéré, cette altération
n’est pas aléatoire. On peut voir avec la Figure 39 et la Figure 40, que ce principe structurel
est parfois adopté naturellement par I'algorithme, mais de maniere plus notable, il est adopté
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systématiquement par la méthode utilisée dans le plugin Peregrine. On notera que la
différence entre ce plugin et notre algorithme est que le plugin utilise un processus itératif, au
cours duquel il détermine les efforts passant dans les éléments, pour ne conserver que les
barres les plus utiles, tandis que l'algorithme se contente de déduire la disposition de ces
barres. L’algorithme ne calcule a aucun moment les efforts dans la structure qu’il renvoie.

Il s’agit a la fois d’une qualité et d’un défaut
de la méthode que nous cherchons a mettre
en ceuvre ici. Cela montre gu’il est possible
d’approcher une forme d’optimisation des
structures sans avoir a calculer les éléments
au sein de ces structures. En contrepartie,
les structures sortantes de lalgorithme
doivent étre légérement retouchées. Ce
sont les conditions développées dans la
partie précédente. En effet, les lignes de
contraintes sont des courbes libres dans la
géométrie, elles n"ont aucun lien avec les
points d’appuis et de chargement. Il s’agit
donc de déduire une structure a partir des
lignes de contraintes en prenant en compte
les points d’appuis et de chargement. Cela
signifie qu’altérer la structure pour que les
lignes se connectent au point de chargement
peut étre une étape nécessaire de
I'algorithme.

Les résultats de I'analyse sont présentés en
Figure 44 et

Figure 45. On notera d’abord que le
dimensionnement a montrer que
'implémentation de l'arc a permis de
réduire de 20% le volume de matiere
nécessaire pour assurer la stabilité de la
structure.

On peut en voir la raison sur la Figure 45, qui
présente les déformations des structures
sous I'effet du chargement. En effet, on peut
voir que la présence de l'arc augmente
fortement la stabilité de la structure. Dans le
premier cas, au niveau du point de
chargement, on peut voir un « écrasement »
de la structure qui pourrait indiquer une
difficulté a transmettre les efforts aux
éléments voisins.
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La Figure 44 présente plusieurs résultats intéressants. Tout d’abord, dans les deux cas, la
répartition des efforts est en accord avec les lignes de contraintes. C'est-a-dire, que les
éléments placés sur les lignes de contraintes de traction travaillent en traction et de la méme
maniére pour la compression. Il s’agit la d’un résultat important puisque cela montre que les
éléments placés sur une ligne de contraintes sont bien soumis aux mémes contraintes que
cette ligne. Enfin la répartition des efforts semble |égérement plus homogéne sur la structure
avec l'arc, ce qui va dans le sens des observations précédentes.

On notera également que la ligne formant I’'arc ne semble pas étre anodine. On peut voir dans
la Figure 44, que la ligne étant supposée former la partie gauche de I'arc ne reprend aucun
effort, contrairement a la ligne de la rangée d’apres qui reprend des efforts semblables a la
ligne formant la partie droite de I'arc. Je ne vois pas d’explication pouvant justifier ce
comportement. Par observation, on pourrait émettre I’hypothése que la symétrie joue un role
dans cette répartition des efforts.

D’aprés les résultat obtenu, I'implémentation ) A F
de l'arc et des rayons au niveau du point de
chargement semble étre un critére nécessaire
pour assurer la stabilité et I'efficacité de la
structure.
La question de la généralisation se pose alors.
Dans le cas des poutres, on peut définir le
principe de fonctionnement de ces structures.
Toutefois, cela n’est pas forcément
transposable a toutes les géométries. Il s’agit
donc d’un sujet a approfondir. Les travaux de
Michell (Figure 46) sur 'économie de matiere '9ure¢ 46 — lllustration issu de (Michell 1904)
concernant la disposition d’un systeme a trois forces
des structures réticulaires semblent pointer minimisant le volume nécessaire
dans la méme direction. (En raison de la
difficulté a trouver plus que quelques extraits de ses travaux, ainsi que mon incapacité a
pouvoir lire des travaux de cette époque et leur complexité, je n'ai pas été en mesure de
pouvoir enrichir cette étude par les travaux de Michell).

Le principe de fonctionnement est le suivant. Il s’agit de connecter les lignes au point de
chargement. Si le point de chargement est en membrure inférieure (membrure reprenant de
la traction) alors il est connecté aux lignes de traction (cas de la Figure 40). A I'opposé, si le
point de chargement est en membrure supérieure (membrure reprenant de la compression)
alors il est connecté aux lignes de compression (cas étudier dans cette partie). Pour un
maximum d’efficacité, I'arc doit faire la hauteur de la poutre et se connecter a toutes les lignes.
Plus concrétement, on retire les lignes entre le point de charge et la membrure opposée. La
ligne la plus proche du point de chargement est alors I’arc. Tous les nceuds sur cette ligne sont
connectés au point de chargement et formant ainsi les rayons.

Comme on I'a vu cette méthode augmente fortement la stabilité de la structure, réduisant
ainsi son volume total. Toutefois, cela introduit la création de membres (rayons) dont la
longueur est indépendante de la complexité de la structure. Cela les rend particulierement
sensibles au flambement, faisant ainsi perdre la structure en efficacité.
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Méthode :

Il s’agit dans cette partie de tester les limites de I'algorithme développé et de mesurer
I'efficacité de la méthode mise en ceuvre. Pour cela, une étude comparative entre un
ensemble de résultats de I'algorithme, du plugin Peregrine et des treillis classiques de type
Warren et Howe.

Le but est ici de mesurer la complexité (nombre de nceuds) en fonction du volume de matiere
requis pour assurer la stabilité des structures. Ainsi on considere comme simple et efficace un
résultat alliant une faible complexité et un faible volume. Le but de cette étude est de pouvoir
rendre compte des capacités de la méthode développée en la comparant a des solutions
standards et solutions optimisées par des méthodes reconnues.

Le cadre de cette étude porte sur une poutre simple. On retiendra que la méthode développée
ainsi que celle de Peregrine ne sont pas limitées aux poutres treillis. Ainsi les résultats
présentés ne représente pas l'intégralité des possibilités qu’offrent ces méthodes. Il est
néanmoins important de connaitre la fiabilité de la méthode développée dans un cadre connu
et maitrisé avant de chercher le meilleur usage de cette méthode.

La typologie étudiée est une poutre simple telle que développée au cours de cette recherche.
Les caractéristiques du systéme étudié sont les suivantes :

- Géométrie de 10m x 2m de hauteur. Ce ratio a été choisi car il s’agit d’un ratio qui
permet de voir une grande variété de typologies différentes sans observer une forte
répétition (si la longueur est bien plus élevée que la largeur alors une répétition du
motif sera observée).

- Appui simple a gauche, appui glissant a droite.

- Charge Nodal de 100 kN (10T) au centre, en membrure supérieure. Ramenée a une
charge répartie, Cela représente 10kN/ml. Ce qui correspond a une capacité portante
de 10m de complexe de toiture a 1kN/m? (100kg/m?), 100m? de toiture.

- Les sections sont optimisées par éléments. Il s’agit de sections circulaires en bois pour
simplifier le processus. L'incrément dans la liste de sections est de 1cm. Cela signifie
que certains éléments seront surdimensionnés. Le choix de limiter les sections
disponibles est lié au fait qu’en réalité le choix de section est limité. Un incrément de
1lcm peut déja étre considéré comme généreux. Il s’agit donc la d’une pénalité peu
pénalisante pour les structures simple mais dont I'impact augmente avec le nombre
d’élément. Cela reflete une réalité constructive. L'impact mesuré sur le volume est de
I'ordre d’au maximum 5% d’augmentation.

Les volumes sont mesurés sous trois catégories afin de prendre en compte un maximum de
facteurs, devant étre pris en compte dans le dimensionnement du type de structures étudiées
ici. Séparer ces mesures permet également de mesurer I'impact de ces facteurs. Les types de
volumes mesurés sont les suivant :
- Le volume de matiere minimum pour assurer la stabilité de la structure (résistance en
compression et traction uniqguement)
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- Le volume de matiére minimum pour assurer la stabilité de la structure ainsi que son
utilisation (résistance en compression et traction + Critére de fleche®)

- Le volume de matiere minimum pour assurer la stabilité de la structure, y compris le
flambement des éléments en compression et son utilisation (résistance en
compression et traction + Résistance au flambement + Critére de fleche)

Les volumes sont donnés relativement a la structure « CO », étant la structure la plus simple,
composée uniquement de 3 éléments. Il a été choisi de présenter les résultats de cette fagon
car pour ce systéme (géométrie, appuis, position de la charge) les résultats relatifs sont
indépendants de la valeur du chargement, ce qui permet de généraliser nos résultats. Dans
les faits, cela n’est vrai que pour le premier volume. En effet, une augmentation de la charge
entrainera une augmentation de la déformé et donc le volume augmentera pour compenser
cette déformé.

La prise en compte de tous ces critéres permet de se faire une idée du comportement globale
ainsi que de I'efficacité des structures.

Dans notre étude, les treillis de Warren et Howe ont été dessiné sans réflexion poussée sur
leur géométrie. On pourra se référer a I'étude porté par (Latteur, Samyn, et De Wilde 2000)
sur les treillis de Warren, Pratt et Howe pour plus d’information sur leurs dispositions
optimales. Comme indiqué dans cette étude, tandis que les treillis de Warren et Pratt sont
équivalents dans leur volume, les treillis de Warren restent plus efficaces en termes de
déformation. D’autre part, les treillis de Howe sont inférieurs a la fois en volume et en
déformation. On a donc choisi d’intégrer a cette étude les treillis de Warren et Howe, ce qui
permet d’avoir une gamme plus large de résultat a comparer a ceux des algorithmes.

Enfin, I'optimisation du volume des éléments ainsi que la prise en compte du critére de fleche
ont été faite grace au plugin Karamba3D afin de simplifier la tache et surtout d’accélérer le
processus. Karamba3D est un outil paramétrique d'ingénierie structurelle qui fournit une
analyse précise des treillis, des portiques et des coques. La vérification au flambement est
réalisée séparément et se contente d’augmenter les sections issues de Karamba3D si celle-ci
ne sont pas en mesure de reprendre les efforts de flambement.

6 Le critére de fleche indique le déplacement vertical limite d’une structure en fonction
de sa portée.

Il est défini conformément a 'EN 1995-1-1 et a son Annexe Nationale. Les déplacements
verticaux des éléments de structure en bois respecteront les criteres suivants, L étant
la distance entre deux appuis de I'élément concerné :

Caractéristique Symbole | Valeur limite
Fleche instantanée (déformation immédiate aprés application de la charge) Winst L /300
Fleche résultante finale (déformation totale qui se produit au fil du temps — fluage) |  Wnet fin L /200
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Prise en compte du flambement :

Le flambement est un effet d’instabilité dans les structures élastique par
lequel un élément subissant un effort normal de compression tend a fléchir
et se déformer hors de son axe neutre (Figure 47).

Il est important de prendre ce phénoméne en compte car plus une barre est
longue plus elle est affectée par le flambement. Ainsi, si il était ignoré, cela
pourrait amener a sous-dimensionner un élement. Cet impact peut étre
important pour les structures simples contenant peu de barres comme
« HOWE ». On notera qu’il y a une présence notable du flambement dans
les résultats de I'algorithme. Cela est du au fait que les rayons de I'arc
subissent du flambement. |l reste néanmoins plus économique de les
dimensionner au flambement plutét que d’ajouter des barres pour les
recouper et réduire le flambement.

Les vérifications suivantes sont effectuées conformément a I'EN 1995-1-1:
- Effet systeme : ksys=1
- Coefficient réducteur des caractéristiques mécaniques ywm :
Bois massif : 1.30 / Lamellé-collé : 1.25 /LVL : 1.2

N
-~
""'--. —”’ A

e iddd
- Longueur de flambement : Rotule — Rotule : ly=1xL Figure 47 - Schema
P . présentant le mode de
- Elancement: )\y = |0,y/ ly flambement d’un élément
Avec, iy=V(ly/ (b xh)) entre deux appuis simples
. . . ST articulés
- Module élastique axial caractéristique Eo.k
- Contrainte de compression axiale feok
- Elancement relatif : Arely = Ay / U X V(fcok/ Eox)

Si >0.3 : risque de flambement, vérification du flambement nécessaire
- Facteur de rectitude B. : Bois massif: 0.2 / Lamellé-collé : 0.1 /LVL:0.1
- Facteurs d'instabilité : key =1/ (ky + V(ky? - Arely?))
Avec, ky=0.5x [1+Bc X (Arely - 0,3)+Arely? ]
- Résistance de calcul en compression paralléle au fil :
fc,O,d: Kmod X ksystc,O,k/ Ym
- Contrainte de compression paralléle au fil a I'ELU :
Oc0d= NELU,compression/ (b X h)

Vérification du flambement : 0c,0d/ (Keyxfeod) <1

Propriétés caractéristiques des bois massifs RESINEUX définies par NF EN 338 (décembre 2009), pour calculs avec EC5

Symbole Désignation Unité [ C14 | C16 | C18 | C20 | C22 | C24 | C27 | C30 | C35 | C40 | C45 | C50
[ Contrainte de flexion N/mm? 14 16 18 20 22 24 27 30 35 40 45 50
frox Contrainte de traction axiale N/mm? 8 10 11 12 13 14 16 18 21 24 27 30
fiook Contrainte de traction transversale N/mm? 04 0,4 04 | 04 0,4 04104104 |04 0,4 0,4 0,4
fook Contrainte de compression axiale N/mm? 16 17 18 19 20 21 22 23 25 26 27 29
| feo0x Contrainte de compression transversale N/mm? [ 20 | 22 [ 22 | 23 | 24 | 25|26 | 27 |28 29 | 31 3,2
fuk Contrainte de cisaillement N/mm? 3,0 3,2 34 | 36 38 40| 40 | 40 | 40 40 | 4,0 4.0
Eo,mean Module moyen d'élasticité axiale kN/mm? 7 8 9 9,5 10 11 115 12 13 14 15 16
Eg05 Module élasticité axial au 5°™ percentile | kN/mm? | 4,7 54 | 60 | 6,4 | 6,7 74 | 77 | 80 | 87 94 10,0 10,7
Ego,mean Module moyen d’élasticité transversale kN/mm? | 0,23 | 0,27 | 0,30 | 0,32 (0,33 | 0,37 | 0,38 | 0,40 | 0,43 ]| 0,47 | 0,50 | 0,53
Gmean Module moyen de cisaillement kN/mm* | 0,44 | 0,50 [ 0,56 | 0,59 | 0,63 | 0,69 (0,72 0,75 /0,81 0,88 | 0,94 | 1,00
Pk Masse volumique caractéristique kg/m*® [ 290 | 310 | 320 | 330 | 340 | 350 | 370 | 380 | 400 | 420 | 440 | 460
Prmeam Masse volumigue moyenne kg/m® | 350 | 370 | 380 | 390 | 410 | 420 | 450 | 460 | 480 [ 500 | 520 | 550

Figure 48 — Propriétés caractéristiques des bois massids résineux définies par NF EN 338 (décembre 2009), pour
calculs avec Eurocode 5
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Résultats :

. Volume
. , Volume | Volume relatif ) Volume
Topologie Indice | Nb noeuds . R relatif yc .
Relatif yc fleche relatif max
flambement

A

co 3 1.00 1.00

A 19 0.54 0.56 0.56

4 271 041 0.45 0.45

Solutions

issues de )
I'algorithme /"
E

ca4 42 0.39 0.43 0.43

55 0.43 0.44 0.44

74 0.43 0.48 0.48

89 0.46 0.49 0.54 0.54
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HOWE 1 12 0.41 0.44 0.47 0.47
Solutions de
treillis
standards
HOWE 2 16 0.44 0.53 0.53
WARREN 7 0.40 0.42 0.42
P2 15 0.35 0.39 0.39
Solutions
issus du P3 27 0.33 0.37 0.37
Plugin
Perigrine
43 0.39 0.43 0.43
51 0.49 0.54 0.54

Figure 49 — Tableaux de résultats liés au graphique de la Figure 50, présentant pour différentes typologies de poutres treillis
le volume de matiére nécessaire pour assurer la stabilité, en prenant compte le critére de fleche et le flambement
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Figure 50 — Graphique présentant I'évolution du volume de matiere en fonction de la complexité pour différentes méthodes de
conception des poutres treillis
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A la lecture du graphique, on trouve que le treillis de Warren possede le meilleur ratio
complexité/ Volume parmi toutes les solutions. Peregrine propose, par ailleurs, les solutions
les plus efficaces. Elles restent néanmoins plus complexes qu’un Trellis de Warren, pour un
volume seulement légérement meilleur. Par rapport a un treillis de Howe a complexité égale,
Peregrine montre une économie de matiére allant jusqu’a 25%. Il s’agit l1a d’un excellent
résultat, qui pourrait peut-étre réussir a compenser le colit de fabrication plus important
gu’ont les treillis aux géométries complexes. En effet, un treillis de Howe est constitué de
barres verticales, horizontales ainsi que des diagonales. Les angles sont toujours les mémes et
donc les assemblages sont plus simples a réaliser comparé a un treillis issu d’un algorithme
nécessitant des assemblages sur mesure). On comprend également ici pourquoi les treillis
standards sont toujours privilégiés a ce jour. lls possédent un rapport complexité/ volume trés
intéressant tout en restant facile a concevoir, calculer et réaliser.

Les résultats issus de I'algorithme sont en accord avec les hypothéses posées et voir méme
plutdt intéressants. Les observations réalisées sont les suivantes :

- L’algorithme ne sais pas faire du trés simple (peu de nceuds). Cela est d{ au fait qu’un
grand nombre de critéres ont été mis en place pour pouvoir obtenir des résultats. La
cause est donc la rédaction de I'algorithme et non la méthode.

- Les solutions sont trés stables (volume constant et
disposition simple) a haute complexité. Comparé a
Peregrine (Figure 52), les solutions produites (Figure
51) sont plus simples en termes de disposition et se
montrent méme plus efficaces. Cela est di au fait
que Peregrine retire les éléments travaillant le
moins. Ainsi a haute complexité, les résultats ont Nb nceud : 55 — Volume RM : 0.44
tendance a perdre en efficacité. La raison principale
pour cette perte est l'incrément imposé dans le
choix des sections. La solution de Peregrine posséde
beaucoup d’éléments et est donc fortement
pénalisée par cette contrainte. D’autre part, ce
genre de complexité ne peut étre approché par les
typologies de treillis standards.

AN ' i

A - .'--“‘. R AN
Figure 51 — Typologie « C5 » (Algorithme)

Figure 52 — Typologie « P5 » (Peregrine)
Nb nceud : 51 — Volume RM : 0.54

- Dansl'ensemble la méthode développée est la moins efficace. Pourquoi est-ce le cas ?
Il faut revenir a la définition des méthodes. La forme d’origine (énoncé par Michell,
p20) est théoriquement la plus optimisée possible. Pour obtenir nos résultats, cette
forme est simplifiée. Notre simplification est-elle la meilleure ? celle prenant le
meilleur de la forme d’origine ? La réponse est non. La simplification effectuée est
aléatoire, elle se contente de choisir des lignes de contrainte de maniére homogene
au sein de la géométrie. Il est donc logique qu’'une méthode dont le but est de
minimiser le volume (Peregrine) soit plus efficace qu’'une méthode se limitant a
simplifier une forme plus optimisée. Le résultat est donc attendu. Il reste a prendre en
considération le fait que I'algorithme de Peregrine calcul le volume a chaque étape et
modifie sa solution afin de réduire ce volume alors que la méthode des lignes de
contrainte ne calcule pas une seule fois, au cour du processus, le volume de sa solution.
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On retiendra alors que la méthode des lignes de contraintes permet de créer des structures
complexes, sans perte de matiére conséquente, grace a une disposition homogéne et efficace
des éléments.

La méthode développée n’est donc pas la plus adaptée pour traiter des problématiques
nécessitant des structures simples comme des poutres treillis. D’autre part, cette méthode
n’emploie que des opérations simples contrairement aux algorithmes minimisant le volume.
Ainsi elle trouve son utilité dans des problématiques visant a trouver une disposition
structurellement efficace d’'un grand nombre d’éléments. On peut alors penser au travail de
Kam-Ming Mark Tam et Caitlin T. Mueller sur les grid shells (Kam-Ming Mark Tam et Mueller
2015) et I'impression 3D (K.-M.M. Tam et al. 2016)

Ouverture :

- Il serait intéressant d’étudier I’évolution du volume des différentes typologies en faisant
varier les conditions initiales, a savoir la géométrie, les points d’appuis et les points de
chargement.

- L'étude a porté sur une géométrie de ratio L x L/5. Il serait intéressant de voir pour d’autre
ratio si certaines méthodes perdent ou gagnent efficacité.

- Une autre étude intéressante a réaliser serait sur le chargement. Notamment le cas
combinant une charge orientée sur z et une -z. Il s’agit d’'une combinaison de charge courante
pour des treillis en toiture. Cela correspond au cas les charges de vents qui mettent une partie
de la toiture est en suppression et une autre en dépression. Ce cas est intéressant a étudier
car il engendre une inversion du fonctionnement des éléments sur une moitié de la structure.
- La prise en compte de la stabilité global de la structure (contreventement) est un sujet
complexe mais nécessaire pour rendre ces structures constructibles. Il est d’ordinaire fait a la
main par l'ingénieur. La possibilité d’optimiser ces solutions a un potentiel tres fort, qui
pourrait venir a modifier la facon dont nous concevons. On peut notamment penser aux
travaux de (Weldeyesus et al. 2019) sur le sujet. On notera également que dans cette étude,
seuls les nceuds a l'intérieur de I'enveloppe sont des articulations. Les éléments formant
I’enveloppe doivent assurer une continuité pour garantir la stabilité de la structure. Le sujet
de la stabilité pour cette méthode est donc omniprésent.

- Les problématiques de stabilité s’accompagnent également de la question des assemblages.
En effet, I'algorithme ne prend pas en compte les assemblages. Cela a pour conséquence que
la stabilité ne peut étre assuré que si I’'ensemble des nceuds sont des encastrements, ce qui
rend les structures difficilement constructibles et nécessiterait pour des structures en bois, la
mise en place d’'une grande quantité de ferrures. Toutefois, si I’'on revient a la forme étudiée
(poutre sur deux appuis), la stabilité peut étre obtenu en ne considérant que des
encastrements sur I'enveloppe de la structure. Une étude statique de la structure produite
afin de trouver les causes de son instabilité permettrait donc de pouvoir réduire le nombre
d’encastrement. On peut toutefois s’interroger sur I'impact que cela a sur |'efficacité des
solutions proposées. Il est possible que dans certains cas, I'ajout d’'une barre pour supprimer
une instabilité se montre étre plus efficace que de créer un encastrement. Il s’agit donc d’'une
guestion riche et complexe qui est lien direct avec la constructibilité des structures.

- Comme on a pu le voir, la méthode d’optimisation par les lignes de contraintes présente un
potentiel important pour obtenir des solutions complexes et efficaces. Suivant les travaux de
Kam-Ming Mark Tam et Caitlin T. Mueller, I'étude de cette méthode appliquée aux grid shells,
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a 'impression 3D ou a tout autre type de problématiques nécessitant ce genre de solution
peut s’avérer particulierement intéressante.

- Enfin, I'algorithme développé ici n’est pas généralisable a toutes les géométries et tous les
systemes. Cela est a la fois d a la rédaction de I'algorithme de la derniere partie (tracer de la
structure) et aux hypothéses émises. En effet, les critéres émis pour permettre le tracer de la
structure n’ont pas été prouvé étre nécessaire ou suffisant pour assurer le tracer de la
structure dans tous les cas. Un travail de recherche de ces criteres est donc encore a réaliser.

Au cours de ce travail, la mise en ceuvre de la méthode d’optimisation par les lignes de
contraintes a été présenté avec les problématiques qui lui sont associés, ainsi que des
résolutions possibles. Par le biais de I’étude comparative, il a été possible d’observer les limites
de cette méthode, ainsi que la qualité de ses solutions.

Ainsi, la méthode d’optimisation par les lignes de contraintes est une méthode offrant la
possibilité de créer des structure complexes, sans perte de matiere conséquente, grace a une
disposition homogéne et efficace des éléments. Les solutions produites ne sont toutefois pas
compétitives avec les autres méthodes pour des structures simples.

On retiendra, d’autre part, que cette méthode n’emploie que des opérations simples
contrairement aux algorithmes minimisant le volume. Ainsi elle trouve son utilité dans des
problématiques visant a trouver une disposition structurellement efficace d’un grand nombre
d’éléments.

Enfin, on notera que cette étude s’est placée, par les caractéristiques du systéme choisi, dans
une situation mettant en avant les solutions standards comme Howe et Warren. Comme dit
précédemment, cette comparaison est nécessaire afin de pouvoir créer des paralléles et faire
ressortir les forces et faiblesses de chaque méthode, pour ensuite en trouver des utilisations
adéquates. On peut alors revenir aux principes de ce séminaire :
« Si les outils ont pour vocation de prolonger la main de I'architecte, il reste a savoir comment,
a quels moments du processus de conception et ce qu’ils induisent. » (Francois Guéna, Caroline
Lecourtois, « Un séminaire de recherche sur le humérique et la conception architecturale a
I’ENSA Paris la Villette » DNArchi, 22/02/12)
En effet, les algorithmes de form-finding et d’optimisation topologique sont des outils
puissants s’ils sont utilisés pour la bonne tache et au bon moment. Il s’agit, avant tout, d’outils
de conception capable de résoudre des problémes complexes. Ils sont capables de proposer
des solutions variées et aux typologies éloignées des solutions standards tout en restant
efficaces.
Ces solutions sont donc une base de travail permettant de sortir des idées précongues
auxquelles architectes et ingénieurs sont formatés. Ainsi, l'utilisation dés la conception
permettrait de s'orienter vers des designs plus responsables. La capacité de simplifier et
d’altérer la solution permet a ses typologies de ne pas étre des freins a la conception et de
rendre les structures plus adéquates et constructibles.
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